
CRYPTOGRAPHIC

RSA
L A B O R A T O R I E S

RESEARCH AND
CONSULTATION

Tim Matthews

RSA Data Security

Introduction
The generation of random numbers is critical to cryp-
tographic systems. Symmetric ciphers such as DES,
RC2, and RC5 all require a randomly selected en-
cryption key. Public-key algorithms — like RSA,
Diffie-Hellman, and DSA — begin with randomly
generated values when generating prime numbers.
At a higher level, SSL and other cryptographic pro-
tocols use random challenges in the authentication
process to foil replay attacks.

But truly random numbers are difficult to come by
in software-only solutions, where electrical noise and
sources of hardware randomness are not available (or
at least not convenient). This poses a challenge for
software developers implementing cryptography.
There are methods, however, for generating suffi-
ciently random sequences in software that can pro-
vide an adequate level of security. This bulletin
offers suggestions on generating random numbers in
software, along with a bit of background on random
numbers.

Random vs. Pseudo-Random Numbers
What is a truly random number? The definition can
get a bit philosophical. Knuth speaks of a sequence
of independent random numbers with a specified dis-
tribution, each number being obtained by chance
and not influenced by the other numbers in the se-

Suggestions for
Random Number Generation in Software

quence. Rolling a die would give such results. But
computers are logical and deterministic by nature,
and fulfilling Knuth’s requirements is not something
they were designed to do. So-called random number
generators on computers actually produce pseudo-
random numbers. Pseudo-random numbers are num-
bers generated in a deterministic way, which only
appear to be random.

Most programming languages include a pseudo-ran-
dom number generator, or “PRNG.” This PRNG
may produce a sequence adequate for a computer-
ized version of blackjack, but it is probably not good
enough to be used for cryptography. The reason is
that someone knowledgeable in cryptanalysis might
notice patterns and correlations in the numbers that
get generated. Depending on the quality of the
PRNG, one of two things may happen. If the PRNG
has a short period, and repeats itself after a relatively
short number of bits, the number of possibilities the
attacker will need to try in order to deduce keys will
be significantly reduced. Even worse, if the distribu-
tion of ones and zeros has a noticeable pattern, the
attacker may be able to predict the sequence of num-
bers, thus limiting the possible number of resulting
keys. An attacker may know that a PRNG will never
produce 10 binary ones in a row, for example, and
not bother searching for keys that contain that se-
quence.

The detail of what makes a PRNG cryptographical-
ly “good” is a bit beyond the scope of this paper.
Briefly stated, a PRNG must have a high degree of
unpredictability. Even if nearly every bit of output is
known, those that are unknown should remain hard
to predict. The “hardness” is in the sense of compu-

N U M B E R 1 � J A N U A R Y 2 2 , 1 9 9 6

News and advice from RSA Laboratories

BulletinRSA
Laborator ies’

tics, clock, and various files. Now the next RC2 key
generated will be based on new seed material as well
as the old.

Conclusion
Done properly, random number generation in soft-
ware can provide the security necessary for most
cryptographic systems. Using a good PRNG and
choosing good seed material are the two critical
points.

Developers may wish to create a set of routines to
pull random and unique information from the oper-
ating system, which can then be used in any applica-
tions requiring cryptography. It may be desirable to
save encrypted seed state for use in subsequent ses-
sions.

Over time, as the need for cryptography in software
increases, hardware and operating system vendors
may provide more tools and hooks for random infor-
mation. In the meantime, however, the techniques
described can be used.

Tim Matthews is a cryptographic systems engineer at RSA Data
Security. He can be contacted at tim@rsa.com.

Further Reading
For more information on random numbers and cryp-
tography, take a look at the following:

• Donald Eastlake, Steve Crocker, Jeff Schiller, “Random-

ness Recommendations for Security,” IETF RFC 1750,

1994

• Ian Goldberg and David Wagner, “Randomness and the

Netscape Browser,” Dr. Dobb’s Journal, January 1996

• Donald E. Knuth, The Art of Computer Programming:

Seminumerical Algorithms, Addison-Wesley, Reading,

MA, 1981

• Colin Plumb, “Truly Random Numbers,” Dr. Dobb’s Jour-

nal, November 1994

• RSA Data Security, Inc., BSAFE User’s Manual, Ver-

sion 3.0, 1996

• Bruce Schneier, Applied Cryptography, John Wiley &

Sons, Inc., New York, 1995

For more information on this and other recent

developments in cryptography, contact RSA Labo-

ratories at one of the addresses below.

RSA Laboratories

100 Marine Parkway, Suite 500

Redwood City, CA 94065 USA

415/595-7703

415/595-4126 (fax)

rsa-labs@rsa.com

http://www.rsa.com/rsalabs/

4

R S A L A B O R A T O R I E S B U L L E T I N # 1 � J A N U A R Y 2 2 , 1 9 9 6

Copyright © 1996 RSA Laboratories, a division of RSA Data Security, Inc. All rights reserved.

formation that moves across a network that could be
intercepted by a dedicated attacker. Mouse move-
ments on X-terminals, for example, may be avail-
able to anyone listening on the wire.

Now we get to the issue of quantity. A developer
cannot assume that all of the bits collected are truly
random, so a useful rule of thumb is to assume that
for every byte of data collected at random, there is
one bit of entropy. This may either be a bit conser-
vative, or a bit generous, depending on the source.
To illustrate this rule of thumb, take the example of
user keystrokes, which many consider to be a good
source of randomness. Assuming ASCII keystrokes,
bit 7 will always be zero. Many of the letters can be
predicted: they will probably all be lowercase, and
will often alternate between left and right hand.
Analysis has shown that there is only one bit per
byte of entropy per keystroke.

To guard against this kind of analysis, the idea is to
collect one byte of seed for each bit required. This
information will be fed into the PRNG to produce
the first random output.

As an example, if the seed will be used to produce a
random symmetric encryption key, the number of
random bytes in the seed should at least equal the
number of effective bits in the key. In the case of
DES, this would be 56 random bits culled from a
seed pool of 56 bytes. Any less and the number of
possible starting keys is reduced from 256 to some-
thing smaller, reducing the amount of effort required
by an attacker in searching the seed space by brute
force. Attacks like this have recently been widely
publicized on the Internet and in the press. For
public-key algorithms, the goal is to make search-
ing for the seed at least as difficult as the hard math-
ematical problem at their core. This will discour-
age attackers from searching for seeds instead of at-
tacking problems like factoring composite numbers
and calculating discreet logarithms. A seed of 128
bits (taken from a seed pool of 128 bytes) should be
more than enough for the modulus sizes being used
today.

One last thing that should be mentioned is updat-
ing the seed, or “re-seeding.” It makes sense to al-
low an application to add seed bits as they become
available. User events often provide additional
sources of randomness, but obviously have not taken
place when an application starts. These should be

included as they occur. Re-seeding also frustrates
attackers trying to find the seed state using a brute
force attack. Since the seed will be change, say, ev-
ery thirty seconds, the seed state becomes a moving
target and makes the brute force attack infeasible.
The idea is to take the existing seed and mix it to-
gether with the new information as it becomes avail-
able.

Example
A brief example is in order. The diagram in Figure 1
illustrates how functions in BSAFE would be used to
generate random keying material.

The first step is to supply the pool of random seed
bytes. Let’s assume that the application needs a
random 80-bit RC2 key. Using the rule of thumb
that one byte of data yields one bit of randomness, a
minimum of 80 bytes will be needed for the pool.
This pool would be gathered from the sources listed
in Table 1. The B_RandomUpdate function in
BSAFE takes the seed pool and runs it through the
MD5 message digest algorithm to create the state.

The state is then used by the function
B_GenerateRandomBytes, which runs it through
MD5 to produce the key. This is the key that would
be used for RC2. As an added measure, BSAFE au-
tomatically advances the state after random bytes are
generated.

Notice the arrow labeled “Update” within
B_RandomUpdate. This is where re-seeding is done.
By calling B_RandomUpdate again, the state can be
mixed with more seed information. Random infor-
mation like key timing and mouse movement can be
used here, along with changes in the system statis-

tational difficulty — predicting the bits should re-
quire an infeasible amount of computation. A true
random number generator, like a hardware device,
will have maximum unpredictability. A good PRNG
will have a high degree of unpredictability, making
the output unguessable, which is the goal.

One essential ingredient in producing good random
numbers in software, then, is to use a good PRNG.
Important to note is that although the PRNG may
produce statistically good looking output, it also has
to withstand analysis to be considered strong. Since
the one included with your compiler or operating
system may or may not be, we recommend you don’t
use it. Instead, use a PRNG that has been verified
to have a high degree of randomness. RSA’s BSAFE
toolkit uses the MD5 message digest function as a
random number generator. BSAFE uses a state value
that is digested with MD5. The strength of this ap-
proach relies on MD5 being a one-way function —
from the random output bytes it is difficult to deter-
mine the state value, and hence the other output
bytes remain secure. Similar generators can be con-
structed with other hash functions, such as SHA1.

The Seed
The other component in producing good random
numbers is providing a random seed. A good PRNG
like BSAFE’s will produce a sequence that is suffi-
ciently random for cryptographic operations, with
one catch: it needs to be properly initialized, or
“seeded.” Using a bad seed (or no seed at all) is a
common flaw in poorly implemented cryptographic
systems. A PRNG will always generate the same out-
put if started with the same seed. If you are using
MD5 with the time of day as the seed, for example,

an attacker has a high likelihood of re-creating your
sequence of pseudo-random bytes by guessing the
exact seeding time. Once he has the pseudo-ran-
dom bytes, he can re-create your keys. The security
issue becomes one of making sure an attacker can-
not determine your seed.

You may be wondering why use a random number
generator to generate random bytes, if to use it, you
need to first generate random bytes. Seeding is a
bootstrap operation. Once done, generating subse-
quent keys will be more efficient. Another impor-
tant point is that the information collected for the
seed does not need to be truly random, but
unguessable and unpredictable. Once the seed is fed
into MD5, the output becomes pseudo-random. If
attackers cannot guess or predict seeds, they will be
unable to predict the output.

There are two aspects to a random seed: quantity
and quality. They are related. The quality of a ran-
dom seed refers to the entropy of its bits. Cryptogra-
phers use the word entropy a lot, so it is worth know-
ing. In a system that produces the same output each
time, each bit is fixed, so there is no uncertainty, or
zero entropy per bit. If every possible sequence of
outputs is equally likely (i.e. truly random) then
there is total uncertainty, or one bit of entropy per
output bit. There are precise mathematical formulas
for entropy, but the short summary is the more en-
tropy per bit, the better. Since the quality may vary,
it is a good idea to account for this with quantity.
Sufficient quantity makes it impractical for an at-
tacker to exhaustively try all likely seed values. Let’s
start with quality.

Table 1 shows a list of potential sources for building
the initial seed pool. External random events are
the best, but harder to get than variable or unique
information. Sources that are variable, while not
random, are very difficult for an attacker to guess.
Quantities that are unique to a system are also hard
to guess and usable if more bytes are needed.

In general, collect as much external random infor-
mation as possible. Supplement this with sources
from the two other columns if more bytes are needed.
Using a composite of many items makes the
attacker’s task more difficult. In an application
where several keys will be generated, it may make
sense to collect enough seed bytes for multiple keys,
even before the first is generated. Be careful of in-

Table 1

Seed Sources

System Unique Variable and Unguessable External Random

Configuration files Contents of screen Cursor position with time
Drive configuration Date and time Keystroke timing
Environment strings High resolution clock Microphone input (with

samples microphone connected)
Last key pressed Mouse click timing
Log file blocks Mouse movement
Memory statistics Video input
Network statistics
Process statistics
Program counter for other
processes or threads

Less More
Entropy Entropy

Figure 1

Random Seed

Process

Seed
Bytes

MD5

State

Key

MD5

Update

Advance
State

B_RandomUpdate

B_GenerateRandomBytes

2 3

R S A L A B O R A T O R I E S B U L L E T I N # 1 � J A N U A R Y 2 2 , 1 9 9 6 R S A L A B O R A T O R I E S B U L L E T I N # 1 � J A N U A R Y 2 2 , 1 9 9 6

