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Introduction
Cryptography offers a set of sophisticated security
tools for a variety of problems, from  protecting
data secrecy, through authenticating information
and parties, to more complex multi-party security
goals. Yet, the most common attacks on crypto-
graphic security mechanisms are ‘system attacks’
where the cryptographic keys are directly exposed,
rather than cryptoanalytical attacks (e.g., by ana-
lyzing ciphertexts). Such ‘system attacks’ are done
by intruders (hackers, or through software trapdoors
using viruses or Trojan horses), or by corrupted in-
siders. Unfortunately, such attacks are very com-
mon and frequently quite easy to perform, espe-
cially since many existing environments and oper-
ating systems are insecure (in particular Windows).

As a result, computer and network security involve
a set of ad-hoc tools to prevent and detect intru-

sions, and to regain control over a computer from
the attacker. Detection is particularly important,
since once an attack is detected on any one com-
puter, system administrators are alarmed and are
likely to regain control from the attacker — on
most or all computers. Furthermore security mea-
sures are likely to be tightened, and at least some
security exposures found and fixed. Therefore, at-
tackers often do their best to avoid detection, and
indeed often give up control over a computer rather
than risk being detected.

A common approach to enhancing the security is
periodic refreshments of secrets. Examples include re-
freshments of passwords, and of session-key refresh-
ment in secure communication  protocols (such as
IP-SEC [5] and SSL/TLS). The idea is to make ‘old
secrets’ (i.e., secrets from before the refreshment)
useless for the attacker. Thus the attacker is forced
to either lose control or to be constantly active,
thus risking detection.

Another approach to enhancing the security is
the distribution of cryptographic trust among sev-
eral components, or servers. This approach is ex-
emplified in secret sharing algorithms [26,3], and
taken to a much greater extent in the notion of
threshold cryptography [11,17]. Here a secret key
is split into shares, and each share is given to one
of a group of servers. The servers engage in a pro-
tocol that ‘emulates’ the behavior of the central-
ized solution (the case where the key is kept in
one piece). The protocol ensures security as long
as at most some predefined number (a ‘thresh-RSA Laboratories
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Editor’s Note

About RSA Laboratories

An academic environment within a commercial organization, RSA
Laboratories is the research and consulting division of RSA Data
Security, the company founded by the inventors of the RSA public-
key cryptosystem. Its purpose is to provide state-of-the-art exper-
tise on cryptography and information security for the benefit of
RSA Data Security and its customers. RSA Data Security is a
Security Dynamics company.

Newsletter Availability and
Contact Information

CryptoBytes is a free publication and all
issues, both current and past, are avail-
able via the World-Wide Web at <http://
www.rsa.com/rsalabs/pubs/cryptobytes.html>.

For each issue a limited number of copies
are printed. They are distributed at major
conferences and through direct mailing.
While available, additional copies of the
newsletter can be requested by contacting
RSA Laboratories though a nominal fee to
cover handling costs might be charged for
individual requests.

RSA Laboratories can be contacted at:

RSA Laboratories
100 Marine Parkway, Suite 500
Redwood City, CA 94065
415/595-7703
415/595-4126 (fax)
rsa-labs@rsa.com

We encourage
any readers

with comments,
opposite opinions,

suggestions or
proposals for

future issues to
contact the

CryptoBytes
editor.

This issue of CryptoBytes marks the start of the third
volume. With a world-wide readership of more than
6,000 it has rapidly become a useful forum for cryp-
tographic updates and for presenting some of the lat-
est research results.

One recent area of cryptographic research has been
that of proactive security. In the field of computer and
network security, systems might come under attack
as adversaries attempt to control part of a network.
The task facing the administrator of such networks
is to detect and reverse any such compromises.
Among the techniques available are so called thresh-
old techniques (surveyed in the last issue of Crypto-
Bytes) with which the storage and use of sensitive
cryptographic information can be shared. This forces
an attacker to undertake far more work in attempt-
ing to compromise the system. The proactive tech-
niques described here by Ran Canetti, Rosario
Gennaro, Amir Herzberg and Dalit Naor can add an
additional dimension to this protection. Using such
techniques it is possible to automatically recover
from undetected break-ins, and to force an attacker
to restart the process of compromising the system
from scratch.

In the second article of this issue, Bob Silverman
presents the recommendations he made to the X9.31
standards committee on the generation of prime
numbers when using RSA. The relevance of so-
called “strong” primes to the security of the RSA
cryptosystem has long been open to question and
the position of RSA Laboratories is that such primes
offer little, if any, additional practical protection to
the user of RSA. However, some standards bodies
have adopted calls for RSA moduli that are com-
posed of such primes and here Bob Silverman de-
scribes one way of generating them.

As always, the newsletter contains some of the latest
news from the world of algorithm and standards de-
velopment. We report on the solving of the DES
challenge by a distributed search effort and also on
the publication of a description of RC2® as a part of
the S/MIME standardization effort. In the standards
arena, we report on the latest developments in the
Public Key Cryptography Standards. The PKCS have
become widely used in the cryptographic industry.
However, over the years there have been substantial
advances in cryptographic knowledge and algorithm

design. It is now time for the PKCS suite to undergo
revision, and this substantial undertaking has been
started in RSA Laboratories.

The future success of CryptoBytes depends on input
from all sectors of the cryptographic community, and
as usual we would very much like to thank the writ-
ers who have contributed to this first issue of the
third volume. We encourage any readers with com-
ments, opposite opinions, suggestions or proposals
for future issues to contact the CryptoBytes editor at
RSA Laboratories or by E-mail to bytes-ed@rsa.com.
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Proactive Security
Continued from page 1

old’) of servers are broken into. Threshold cryptog-
raphy can indeed enhance the security against
break-in attacks in many scenarios. However, it is
also limited: Given sufficient amount of time, an
attacker can break into the servers one by one, thus
eventually compromising the security of the sys-
tem. This danger is particularly eminent in systems
that must remain secure for long periods of time
(such as certification authorities) or where secure
recovery may be difficult (such as with secure com-
munication).

Proactive security is a mechanism for protecting
against such long-term attacks. It combines the ap-
proach calling for distribution of trust with the one
of periodic refreshment:

Proactive = Distributed + Refresh

That is, first distribute the cryptographic capabili-
ties among several servers. Next, have the servers
periodically engage in a refreshment protocol. This
protocol will allow servers to automatically recover
from possible, undetected break-ins, and in particu-
lar will provide the servers with new shares of the
sensitive data while keeping the sensitive data un-
modified. Very importantly, information gathered
by an attacker before a refreshment period becomes
useless to attack the system in the future. We will
see later that sometimes the attacker may be able
to prevent complete automatic recovery of system
security, however in these cases the attack is de-
tected beyond doubt. As explained above, this
would enable highly effective (yet expensive)
manual security measures to be applied, and secu-
rity would ultimately be restored. In all,  the secu-
rity of the system will be guaranteed as long as not
too many (say, less than half) of the servers are
broken into between two consecutive executions of the
refreshment protocol. Notice that in this approach,
security is preserved even if, over a long span of
time, every server can be broken into at some time
or another. In other words, a proactively secure sys-
tem does not wait until a break-in is detected. In-
stead, it invokes the refreshment protocol periodi-
cally (and proactively) in order to maintain unin-
terrupted security, or force detection.

Before proceeding any further, let us present an ex-
ample where proactive security seems very much

called for: Certification authorities (CA’s). Such sys-
tems must remain secure for very long periods of
time. Moreover, the security of all clients of the CA
hinges on the secrecy of the CA’s signing key. Thus,
CA’s will pose an attractive target for break-ins. A
proactive solution for CA’s will have the signing key
shared among several servers. Signatures will be gen-
erated via a special protocol run by the servers. Fur-
thermore, periodically (say, every day) the servers
will engage in a refreshment protocol, guaranteeing
the security of the CA as long as not too many (say,
less than half) of the servers are broken into during
the  same day.

Works on proactive security
Ostrovsky and Yung showed how a large class of mul-
tiparty protocol problems can be solved in a proac-
tive way, in a setting where secure communication
channels are available [24]. Their solution, based on
the general paradigm of multiparty computation
[27,19,2,6], is of significant theoretical interest but
leaves the door open to efficient, practical solutions
to specific problems.

In [8] the proactive approach as a security enhance-
ment to centralized systems is considered, and a
practical proactive pseudo-random generator with
applications to secure sign-on is presented. Another
basic task that has been ‘proactivized’ is secret shar-
ing, and  in particular verifiable secret sharing (i.e.,
secret sharing resilient against malicious faults) [22].
This algorithm plays a key role in proactive solu-
tions for public-key cryptosystems, and in particular
in proactive signature systems [21] (extending the
threshold signature of [11]). Proactive solutions were
found for the DSS signature algorithm [18,21] and
for RSA [15,14].

Proactive signatures are a powerful tool. They are
used in [9] to provide a proactive, automated solu-
tion to key refresh. Namely, [9] shows how to use
cryptography to ensure authenticated and secret
communication among servers, with recovery from
penetrations and key exposures. This provides an al-
ternative to manual key refresh. Some of the solu-
tions mentioned above are described in more detail
later in the article.

In a related vein, proactive protocols for byzantine
agreement were presented in [25,16].

[…] in this
approach,
security is
preserved even
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until a break-in
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Applications
Proactive security has a wide range of applications.
In general, proactivization can help in any scenario
where the security of a system has to be maintained
for a relatively long period of time.  The important
application to certification authorities was described
above. Other applications  of proactive signature al-
gorithms include electronic cash, where the signa-
ture of the bank validates an electronic bill. Also
here, the signature system has to remain secure for a
long period of time.

In other applications it is beneficial to proactivize the
capability to decrypt a message encrypted with a pub-
lic-key encryption system. Examples include electronic
voting  systems where voters encrypt their votes with
the voting center’s public key [10], and secure reposi-
tories where users keep sensitive data in a certified way.

Implementations
We are aware of three implementation efforts of pro-
active security systems currently under way: by
Sandia National Labs, IBM Research, and a DARPA
project. We elaborate on these efforts in Architec-
tural design and implementations later.

Algorithmic results
We now describe briefly three proactive techniques,
which we believe to be applicable to many systems
and scenarios. These are: proactive secret sharing,
proactive signatures, and proactive secure commu-
nication.

Proactive secret sharing
Secret Sharing protocols were introduced in [26,3]
to protect the secrecy of a value by distributing it
over several servers. Typical implementation use
threshold schemes in which the secret is shared
among n servers and any t + 1 out of them can re-
cover the secret.

To maintain the security of secret sharing schemes
even in the presence of attackers that can eventu-
ally break into all servers, but can only break into a
limited number of servers given limited time, have
the servers periodically (say, every day) refresh their
shares of the secret. The refreshment protocol should
guarantee that the new shares are independent of the
old shares, except for the fact that they define the same
secret.

For example in Shamir’s scheme if the secret is a
value s in the set of integers [0 … p−1] where p is a
prime, then this process can be carried out as follows
[24,22]. The dealer (who is sharing the secret) gen-
erates t random numbers a1, … , at modulo p. Given
the polynomial f(X) = s + a1 X + … + at Xt the dealer
gives to server i the share si = f(i) mod p. It’s clear
that any t servers have no information about s while
t + 1 can reconstruct the value by polynomial inter-
polation.

Periodic refreshments of the shares can be performed
as follows. Each server i chooses a random t-degree
polynomial fi(X) such that fi(0) = 0. Server i then
sends to server j the value sij = fi(j) mod p. Server j
then computes its new refreshed share ŝj as follows:

 ŝj = sj + s1j + … + snj mod p

and erases its old share. It’s easy to see that the new
shares ŝi lie on the polynomial f̂ (X) = f(X) + f1(X) +
… + fn(X) which is still of degree t and whose free
term is still s.

The above procedure works only in the case of a
passive adversary who may read the content of
memory but not modify it or cause the behavior of a
server to change. In case of an active adversary the
above techniques were extended using Verifiable Se-
cret Sharing (VSS) protocols [7]. In particular, the
VSS protocol by Feldman [13] proved especially suit-
able for this purpose, and in addition provides the
ability to recover lost or corrupted shares and to re-
install them. See [22] for more details.

Proactive signatures
The security of public key cryptosystems relies
heavily on the secrecy and integrity of the private
key. Thus such cryptosystems should be augmented
with methods for protecting the secret key while pro-
viding continuous availability of the system (e.g.,
signing capabilities).

A naive solution may be to share the private key
using a proactive secret sharing scheme. This solu-
tion provides the necessary protection as long as the
key is not used. However, in order to generate a sig-
nature the private key would need to be recon-
structed in a single site, thus losing the advantage of
distribution:  A single break-in to this site will com-
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promise the security.  Instead, a proactive threshold
signature scheme allows the servers (i.e., the share-
holders) to jointly generate  valid signatures in a spe-
cial way that  prevents an  attacker from generating
fake signatures. In particular, the scheme makes sure
that the key is never reconstructed at a single site.

A proactive signature scheme involves three phases:
the key generation phase (preferably done without a
trusted dealer), the joint signature-generation phase
and finally a special proactive key refreshment phase
of the servers’ key shares which is done periodically.
The signature is generated in a distributed fashion
from the shares of the key.  Moreover, it has to hold
that despite proactivization of the signing key, the
signature on a message m, computed under any of
the representations of the key is the same. The
scheme withstands attackers that eventually break
into all servers, as long as only a limited number
(say, half) of the servers are broken into between
two consecutive invocation of the refreshment pro-
tocol. Proactive solutions for various signature
schemes have been devised, among them is a solu-
tion to RSA signatures and to DSS (Digital Signa-
ture Standard) signatures. See [21,18,15,14] for more
details.

In order to exemplify an actual proactive signature
scheme, we outline in the Appendix the DSS solu-
tion. It is based on the threshold signature scheme
of [18] combined with [21].

Proactive secure communication
Another cryptographic task where the proactive ap-
proach seems called for is maintaining authenticated
and secret communication among a set of parties.
Here the parties must keep the integrity and secrecy
of the relevant keys: shared keys (such as session
keys), private signature and decryption keys, as well
as the integrity of public keys (of other parties).

It is a standard practice to keep two levels of keys:
short-lived ‘session’ keys, and long-lived ‘master’
keys. The ‘master’ keys are used to periodically re-
fresh the ‘session’ keys (e.g. in TLS/SSL). This pro-
vides recovery from exposure of the session keys —
but not of the master keys.

Protecting against the exposure of the master keys is
considered a hard problem; when deemed necessary,

it is achieved via manual master key refresh process,
done periodically but infrequently. Some mecha-
nisms, most notably perfect forward secrecy [12] (e.g.,
implemented by the IP-SEC standard [5]) provide
protection of past session keys from a future exposure
of the master keys. However, this does not protect
future session keys from active impersonation at-
tacks. Proactive security provides a more complete
solution, where exposing a master key does not re-
veal either future or past session keys even from ac-
tive attackers — achieving the same effect as the
manual key refresh process, at much lower costs.

A solution may seem straightforward at first: at each
refreshment phase, each party will choose a new
pair of public and private keys, distribute the new
public key to other parties (signed using the old
secret key), receive new public keys (signed) from
each other party, and then use the new public keys
to agree on new shared keys. However, an intruder
who also controls the communication links can suc-
cessfully impersonate an attacked party by sending a
fake public key on its behalf. Moreover, if the at-
tacker broke into two machines, it can select fake
public keys for both of them and thereby perma-
nently ‘insert’ itself between the two parties. This
way the attacked parties lose their ability to authen-
ticate each other, even long after the intruder lost con-
trol of the machines.

These and additional problems are solved using the
following idea [9]: The parties will hold shares of a
proactive signature scheme (such as the ones de-
scribed under Proactive signatures). The correspond-
ing verification key will be held by all parties in an
unmodifiable memory (e.g., a ROM or a privileged
memory address). Next, in each refreshment phase,
each party will obtain a certificate, signed jointly by
the parties using the proactive signature scheme, for
the authenticity of its newly chosen public keys.
(The certificate may read: the public key of

party P at phase t  is … ) These certificates
will be used by the parties to authenticate the newly
received public keys of other parties.

We remark that the above sketch is very rough; it
omits many important details, to be found at [9]. (For
instance, one has to modify the proactive signature
scheme to withstand unauthenticated channels in
the first place.)
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Architectural design and implementations
The security of a proactive solution relies heavily
upon its correct architecture and integration with the
existing, non-proactive, operating system. We out-
line a plausible architectural design of a proactive
system (this is the design of IBM Research’s proto-
type). The design does not view the proactive model
as series of protocols but, rather, as a security en-
hancement of the operating system which transforms

it into a proactively
secured system. The
design also supports
proactive implementa-
tion of various mecha-
nisms such as encryp-
tion, signatures, data-
base maintenance and
other multiparty com-
putations.

Figure 1 schematically
depicts the integration
with the operating sys-
tem. The proactive
extension consists of

two parts: the proactive program and its constants.
The underlying assumption is that the program and
its constants are protected against any malicious manipu-
lation; the rest of the memory space may be subject
to any type of attack. This requirement must be ad-
dressed by any implementation that adopts the sug-
gested architecture. It may be implemented either
by some special hardware, or by an extension of the
operating system’s kernel to support this security re-
quirement.

The proactive program
should first provide a tool-
kit consisting of communi-
cation and cryptographic
p r imi t ive s  which  a re
needed to implement any
proactive algorithm. In ad-
dition, it should be able to
support multiple instances
of proactive applications
running concurrently. An
essential component of
such a program is a module
responsible for refreshing

the on-going proactive tasks of the system. A picto-
rial view of a plausible proactive program, which sup-
ports proactive signatures and proactive secure com-
munication, is depicted in Figure 2.

Implementations
We are aware of three implementation efforts that
are currently under way. In IBM Research, we imple-
ment a proactive-security enhancement application
based on the architecture described above [23]. Aside
from the basic modules, it is intended to initially
implement a proactive DSS Signature Module based
on [18,21], and a secure communication module
based on [9]. This application could be used to en-
hance general security management systems. Sandia
National Laboratories [20] has preliminary imple-
mentations of Proactive DSS, based on research done
by [18], and Proactive RSA, based on on-going re-
search by Frankel, et. al. The implementations are
completely flexible with regard to the number of par-
ticipants involved in the protocol within the param-
eters of the particular algorithm. Sandia sees the ini-
tial application of proactive protocols in the areas of
multilateral international treaties and distributed
certification authorities. However, components of
the protocols (i.e., secret-sharing mechanisms) have
proven valuable to a wide variety of applications. A
third implementation is the plan of a DARPA grant
project [4].
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Appendix:  Proactive DSS

In order to exemplify an actual proactive signature
scheme, we have chosen to outline one such solu-
tion, the DSS solution. It is based on the threshold
signature scheme of [18] as incorporated with [21].
First, recall the definition of the Digital Signature
Standard (DSS), the adopted US standard for signa-
ture scheme:

Key Generation: Let p be a prime number of a speci-
fied length, q be a prime divisor of p − 1 and g be an
element of order q in Z*

p. The triple (p, q, g) is pub-
lic. The DSS key consists of a secret key x, which is
a random number satisfying 1 ≤ x ≤ q, and a verifica-
tion public key y satisfying y = gx mod p.

Signature Algorithm:
Input: m, the hashed message.
Signature: pick a random number k between 1 and
q, calculate k−1 mod q and set

r = (gk−1 mod p) mod q          s = k(m + xr) mod q

Output: the signature on m is the pair (r, s).

Verification Algorithm:
Verify that

r = (gms−1yrs−1 mod p) mod q

Now, assume the existence of protocols to perform
the following three tasks:

• [JRSS] Joint Random Secret Sharing: servers
jointly generate a random value v which is se-
cretly shared among the parties. This task is per-
formed as follows. Each server i chooses a random
t-degree polynomial fi(X). Server i then sends to
server j the value sij = fi(j) mod p. Server j then
computes its new share ŝj where ŝj = s1j + … + snj

mod p. Observe that the new shares ŝi lie on the
polynomial f̂ (X) = f1(X) + … + fn(X) which is still
of degree t, and its free term f̂ (0) is the joint se-
cret v. An extended version of the above protocol
which uses verifiable secret sharing also provides,
at the end of the protocol, the value gv mod p to
all parties.

• [Recp] Given a shared secret v, the protocol for
computing the reciprocal computes the shares of
its reciprocal v−1 mod q without revealing v or v−1

[1,18]. The value of gv−1 mod q is also provided to
all parties.

• [Mult] Given two shared secretes u and v, com-
pute the shares of the product uv without reveal-
ing the original secrets [2,6,18].

Equipped with these tools we are now ready to out-
line the proactive DSS scheme:

1. Proactive DSS Key Generation: Jointly gener-
ate a DSS key by using the [JRSS] protocol to
share a random value x. x is now the signing
(private) key, and its corresponding verification
key is gx.

2. DSS Signature Generation:

(i) Jointly generate a shared random

value k by using the [JRSS] proto-

col.

(ii) Compute the shares of k
−1

 and r = gk−1

mod q; this is done via the protocol

[Recp] for computing the reciprocal of

the joint secret k.

(iii) Use the multiplication protocol [Mult]

on k and (m + xr) to compute the shares

of the value s = k(m + xr). Note that

since m and r are known to all parties,

and x is a shared secret, the shares of

the value (m + xr) are readily known to

each server.

(iv) Each server outputs  the pair (r, si).

The shares (r, si) are then combined (by a public
procedure) to produce the signature (r, s).

3. Proactive Key-Refresh: Use the proactive secret
refresh scheme described in the section Proactive
secret sharing to refresh the key x.
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A number of cryptographic standards currently under
development place restrictions on the primes that are
used in the generation of an RSA key. In particular,
in section 4.1.2 of the X9.31-1997 standard for public
key cryptography there are a number of recommenda-
tions regarding the generation of primes that make
up an RSA modulus including that they be “strong.”

In this article we will examine these criteria. The po-
sition of RSA Laboratories is that virtually all of these
requirements are unnecessary [10,11]. In particular,
we will show that the relevance of strong primes to
the security of RSA is, at best, doubtful. However,
given this position, we will outline in this article a
fast way of generating random strong primes that also
satisfy a number of other cryptographic requirements.
The method requires no more time to generate strong
primes than it takes to generate random primes.

Are strong primes necessary?
A strong prime p is one for which p ± 1 has at least
one large prime factor. The historical reason for this
requirement has been to guard against the Pollard
P − 1 and Williams P + 1 factoring algorithms. A
paper by Bach and Shallit has shown that algorithms
exist for finding a factor p provided that any one of a
number of other cyclotomic polynomials in p, e.g.
p2 + 1, p2 ± p + 1, etc. has only small prime factors.

In [10,11] it is argued that the Elliptic Curve Factor-
ing Algorithm (ECM) obsoletes the requirement to
protect against these attacks in the sense that gener-
ating an RSA key with strong primes does not add
any security to the key over using random primes.
This is because ECM majorizes the P ± 1 algorithms.

There are currently two classes of factoring algorithms
that are applied to large integers. The first class at-
tempts to find a factor p | N by computing a multiple
of a random element in some specially selected group
such that the order of that group is divisible only by

Fast Generation of Random, Strong RSA Primes

small primes. The second class includes algorithms
such as the Multiple Polynomial Quadratic Sieve
(MPQS) and the Number Field Sieve (NFS) and
their variations, and will not be discussed here.

The P − 1 method uses the group ZZ /pZZ in the hope
that the order of that group, p − 1, will be divisible
only by small primes. The P + 1 method works in the
multiplicative sub-group of order p + 1 in the finite
field GF(p2). These two algorithms can be quite ef-
fective at quickly finding small prime factors (5 to 25
digits) of large integers. ECM works by selecting a
random Elliptic Curve over ZZ /NZZ and a random
point on the curve. One then hopes to find a mul-
tiple of that point which is the identity element mod
p, but is not the identity element in ZZ/NZZ. This will
reveal p. This is easy to do if the order of the curve is
divisible only by small primes.

The advantage that ECM has over P ± 1 is that if
one curve fails it is possible to choose a different
curve and hope that its group order is divisible only
by small primes. With P ± 1 there is only one group
to work with. If that one fails, you are out of luck.

Suppose we choose our primes for our RSA key such
that p ± 1, q ± 1 have no small factors and are thus
inaccessible to P ± 1. This does not guard against the
existence of a small value of k, k ≠ 1, such that p ± k
is divisible by only small primes. And if such a k
exists, ECM can succeed where P ± 1 fails. It is im-
possible to guard against all such possible values of k.

P − 1 has been in use since about 1975. ECM has
been in use since 1985. Since then, the largest prime
ever found by P − 1 was 34-decimal digits (with an
FFT version [12]). The largest factor ever found by
ECM was 47 decimal digits. This is thought to have
been an extraordinary bit of luck. The second largest
factor ever found was 43 digits. In the last 12 years,
only about a dozen factors greater than 2128 have been
found. Finding a 50-digit factor should take about 4
times this total effort, and finding a 256-bit factor
should take about 50 million times as this total effort.

Suppose one expends the same level of effort with
P − 1 as was spent in factoring RSA-130 with the
number field sieve. It can be shown that a 256-bit
prime factor can be found with a probability of
9 × 10−7 and a 384-bit prime factor can be found with

Robert D. Silverman is Senior Research Scientist at RSA Labora-
tories East. He can be contacted at bobs@rsa.com.
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a probability of 2 × 10−11. For ECM it is very difficult
to estimate the chance of success within an a priori
fixed amount of time. Extensive computations would
have to be performed to determine the optimal ECM
parameters for a given level of event when looking
for 256-bit and 384-bit primes. A rough estimate sug-
gests 2 to 3 orders of magnitude greater chance than
with P − 1. But one still only has about a 1 in 10,000
chance of finding a 256-bit prime. In short, randomly
chosen 256-bit and 384-bit primes are safe from at-
tacks via P ± 1 and ECM.

X9.31 criteria for RSA key generation
Here we summarize the criteria currently cited in
the X9.31 standard for public key cryptography:

If e, the public exponent, is odd, then e shall
be relatively prime to p − 1 and q − 1.

This is easily satisfied by choosing e.g. e = 3, or
e = 216 + 1. These are commonly used values. This
criterion is necessary in order for encryption to work
properly. When constructing the primes p and q, it
is easy to ensure that e does not divide LCM(p − 1,
q − 1).

If e is even, then it must be relatively prime to
(p − 1)/2 and (q − 1)/2, and  p ≡⁄ q mod 8.

These criteria are easily satisfied by letting e be twice
a prime, and then generating p and q so that one of
them is congruent to 3 mod 8 and the other is congru-
ent to 7 mod 8 with e coprime to LCM(p − 1, q −1).
These latter conditions are easily satisfied during prime
generation and we show how to do so below.

Note: The public exponent e is selected prior to gen-
eration of the primes.

The modulus shall have 1024 + 256x bits for
x = 0, 1, ….

As a result, the primes p and q shall then be
512 + 128x bits each. The choice of the value of x
depends on the level of security required. Larger val-
ues of x give greater security. This requirement is a
statement reflecting the current state of the art in
factoring technology. With the Number Field Sieve
512-bit moduli are simply not secure today for new
applications, 768 bits offers a basic level of security,

and 1024-bit moduli are often used for longer-term
security.

p and q shall each pass a probabalistic primality
test where the probability of error is less than
2−100.

One can also use a deterministic primality proof such
as the Bosma-Cohen-Lenstra algorithm or the
Atkins-Goldwasser-Killian algorithm. The criterion
here simply states that we shall have chosen primes
with a high degree of confidence; that we have ei-
ther chosen a prime using a decision procedure and
that the probability that the procedure is in error is
less than 2−100 ∼ 8 × 10−31 or that we have a rigorous
proof of primality.

p − 1, q − 1, p + 1, and q + 1 shall each have
large prime factors.

This is the typical strong primes condition. Unfortu-
nately, early drafts of X9.31 do not define ‘large’.
From the results presented in [5,7,12], we suggest that
2100 is sufficiently large. This will put p ± 1 factoring
attacks well out of computer range. The size of the
prime factors (101 bits) of p ± 1 and q ± 1 is much
too large for these algorithms to succeed in the life-
time of the universe.

GCD(p − 1, q − 1) shall be small.

Early drafts of X9.31 did not define ‘small’, but the
method for generating primes satisfies this require-
ment sufficiently to guard against the relevant at-
tacks (repeat encryption). The argument in section
9 of [10] shows that if r is a large prime factor divid-
ing LCM(p − 1, q − 1), then either the order of the
public exponent exceeds r (which renders repeat en-
cryption attacks impossible because it requires too
much computation) or the order of the encrypting
exponent is small with probability less than 1/(4r).
Since p − 1 and q − 1 both have prime factors at least
2100, GCD(p − 1, q − 1) can be no more than
s = √N/2100, and hence the probability that the pub-
lic exponent has order less than k = 2100 is ks2/N,
which is less than 2−100. In practice, the probability
will be much lower. This is a worst case analysis.

p/q shall not be near the ratio of two small
integers and p − q > 2412 + 128x.

In short,
randomly

chosen
256-bit and

384-bit primes
are safe

from attacks
via P ±  1
and ECM.
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The purpose of these requirements is to guard against
Fermat and related (i.e. Lehman) factoring algo-
rithms. This condition is easily checked once one
has generated two primes simply by subtracting their
4 or 8 highest order bytes and checking that the dif-
ference is non-zero. However, the basis for the re-
quirement is that if p and q are too close together,
then Fermat’s or Lehman’s algorithm can factor the
modulus with work load equal to (p + q)/2 − √pq.
The algorithm works by finding x, y such that
x2 − y2 = N. The work load cited assumes that the
attacker will start with an initial guess for x at √N.
However, there is no reason why the attacker can’t
choose some other starting guess for x, (say) z, and
the work then becomes (p + q)/2 − z.  Requiring p − q
to be large can not guard against choices for z other
than √N, and hence adds no real security to the
key. We view this requirement as irrelevant. Simi-
larly, the requirement that p/q shall not be close to
the ratio of small integers is also irrelevant. We do
note however, that this last requirement derives from
an attempt to guard against the Lehman algorithm.
If r and s are small (which in this context means less
than 100), then ps − qr needs to be less than 264 for
the attack to be feasible, and the chance of this hap-
pening is negligible.

p − q shall have a large prime factor.

This condition would prevent an attack that runs in
time N1/3. In practice this is not a serious threat. Fur-
thermore, the condition seems to be impossible to
satisfy, short of actually factoring p − q or running
sufficient trials of ECM to be satisfied that no small
factor exists.

There is also a suggestion that some forms of the
modulus, such as N = 264x ± c will simplify the reduc-
tion and require less storage. This seems to have been
put in place before the discovery of the Number Field
Sieve. Moduli of this form are readily susceptible now
to the special version of NFS and are quite insecure.
They should not be used.

Given that some applications will have to conform
to these conditions, we will now describe a method
of generating such RSA moduli.

Randomly generating strong primes
We shall randomly generate two strong primes, each

of size 512 + 128x bits in such a way that their prod-
uct is 1024 + 256x bits. The procedure for prime gen-
eration that is outlined below would therefore be ex-
ecuted twice; once for p and once for q. The proce-
dure described here though shall refer to p only. We
start by randomly generating a number X of the cor-
rect size. Then, we randomly generate 101-bit fac-
tors p1 and p2 for p ± 1. Using the Chinese Remain-
der Theorem with p1 and p2 we then construct a se-
quence of candidates, starting at our random point
X, for p such that p1 | p − 1 and p2 | p + 1 . We then
remove all candidates divisible by small primes with
a sieve. Finally, we test the remaining candidates fol-
lowing the sieve for primality.

Selection of starting point
Randomly select an integer X in the range

[√2  2511 + 128x,  2512 + 128x − 1]

Our prime p will be selected as the first integer
greater than X which satisfies the strong prime re-
quirements. The product, N = pq, of two of these
randomly chosen primes will produce the public
modulus which will have exactly 1024 + 256x bits.

Selection of large prime factors of p ± 1
Start by randomly generating two 101-bit numbers,
y1 and y2. Using a sieve procedure we shall generate
a sequence of candidates for p1 and p2 by starting
respectively at y1 and y2 and sieving out small primes.
This will remove a substantial number of composite
numbers that need not be tested for primality. We
then test what survives the sieve for primality. These
shall be p1 and p2.

Starting at each of y1 and y2 sieve out all small primes
up to 105 over the range [y1, y1 + 5 × 105], and
[y2, y2 + 5 × 105]. The limit, 105, for the primes with
which we sieve is somewhat arbitrary, and is chosen
for reasons of performance, rather than security. Any
number between 103 and 106 is acceptable. Similarly,
the length of the sieve interval, 5 × 105, is somewhat
arbitrary. One can choose any numbers which are
convenient for the particular implementation of this
procedure as dictated by resources such as the
amount of computer memory available. The length
of the sieve interval should be several times the larg-
est prime that is sieved. The numbers selected are a
good balance between the cost (in time) of the sieve

There is also a
suggestion that
some forms of
the modulus
[…] will
simplify the
reduction and
require less
storage. […]
Moduli of this
form are
readily
susceptible
now to the
special version
of NFS and are
quite insecure.
They should
not be used.
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procedure against the cost of testing candidates for
primality. See the box below for a full description of
a sieve procedure.

The sieve will ‘strike out’ many of the numbers in
the sieve interval. The numbers that are removed are
divisible by small primes and hence can not be can-
didates for primality testing. After sieving,  test the
remaining numbers in the sieve interval sequentially,
starting at y1, y2 to see if they are prime. Apply 25
iterations of Miller-Rabin to each candidate. This will
results in a chance of error of less than 2−100. One can
also rigorously prove they are prime (if desired) by
applying the Selfridge improvements to the theorem
of Proth, Pocklington, & Lehmer [2]. This procedure
will yield two primes p1 and p2 which will be used as
the large prime factors of p − 1 and p + 1 respectively.

These primes correspond to the B1 limit discussed
in [10]. It is well beyond computer range to apply
the P ± 1 algorithms up to 2100 ∼ 1030. In fact, it can’t
be done within the lifetime of the universe with ex-
isting hardware.

Searching for a strong prime
At this point we use the Chinese Remainder Theo-
rem to construct a sequence of integers Y, starting at
X such that every integer in the sequence is congru-

ent to 1 mod p1 and −1 mod p2.  This means that
every integer Y in the sequence will have p1 | Y − 1
and p2 | Y + 1.  That is to say, p1 and p2 will be large
prime factors of Y − 1 and Y + 1. In order to do this
one computes

R = ((p2
−1) mod p1) ⋅ p2 − ((p1

−1) mod p2) ⋅ p1.

One then computes Y0 = X + (R − X mod p1p2).  This
is the first integer greater than X which is 1 mod p1

and −1 mod p2. Starting at Y0 one now sieves the
integers Y0, Y0 + p1p2, Y0 + 2p1p2, … by all small primes
up to (say) 106. Once again, the value of 106 may be
changed to anything that is convenient. The length
of the sieve interval should be several times the larg-
est prime in the sieve factor base (5 ⋅ 106 is a good
choice). The integers untouched by the sieve will be
candidates for primality testing and as a result of our
use of the CRT, will automatically be strong primes if
they are prime. One also sieves with the public expo-
nent e at this time, so that candidates p with e | p − 1
are also removed.

Even exponents
At the point where one constructs R via the CRT,
one could also add in the condition that R = 3 mod
8 (for the first prime to be generated) or R = 7 mod 8
(for the second prime to be generated) in the case
where one wanted to use an even integer as the pub-
lic exponent (the Rabin-Williams system). One can
therefore choose Rabin-Williams at essentially no
extra computing cost if desired since the additional
time computing the CRT is negligible. One also
sieves the public exponent as in the odd case.

Testing candidates
Once the set of candidates has been sieved by small
primes, one can now test the numbers that have not
been touched by the sieve for primality. There are
several ways to do this. The set of possible methods
has been greatly extended by new results which are
discussed below. The basic criteria shall be that any
method used must have an error rate no greater then
2−100 ∼ 7.8 × 10−31.

A deterministic primality test
The two best current methods are the Cyclotomic
ring test by Bosma-Cohen-Lenstra or the Elliptic
Curve Primality Test by Atkin-Goldwasser-Killian
[1,8]. My personal recommendation is that while

A sieve procedure is as follows. Start by selecting a factor

base of all the primes pi up to some selected limit L.  Select

a starting point for the sieve P, and a length for the sieve

interval M. Compute Si = P mod pi for all i. Initialize an

array of length M to zero. Then starting at P − Si + pi let

every pi
th element of the array be set to 1. Do this for the

entire length of the array and for every i.

Now, every location in the array which has the value 1, is

divisible by some small prime and is hence composite.

The array can be a bit array for compactness, when

memory is small, or a byte array for speed, when memory

is readily available. This is also no need to sieve the entire

sieve interval at once before looking for candidations. One

can partition the array into suitably small pieces, sieve

each piece, look for candidates then go on to the next

piece. Every location with the value 0 is a candidate for

prime testing.

The length of
the sieve interval
should be several
times the largest

prime that is
sieved. The
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are a good
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these are possibilities, they should not be used. The
reason is that these algorithms are quite complicated
to implement and that the likelihood of error in the
implementation far exceeds the likelihood that a
random method will return a composite.

Use of the Miller-Rabin algorithm
One applies sufficient tests so that the probability of
a randomly generated candidate actually being com-
posite when multiple Miller-Rabin tests say ‘prime’
is less than 2−100. According to [3,6] for 512-bit
primes, 8 iterations suffice. For 640-bit primes, 6 it-
erations suffice. This is the suggested method for this
standard. Other possibilities are given below.

One might use the Miller-Rabin algorithm combined
with a Lucas or Frobenius strong probable prime test
[4].  According to a very recent paper of Grantham,
if one uses a Frobenius probable prime test, the prob-
ability that a candidate is composite when the tests
say ‘prime’ is less than 1/1770, as opposed to the 1/4
one gets with Miller-Rabin alone. If one performs a
single Miller-Rabin test, followed by T Frobenius
tests, the probability of error for 512-bit primes is
then less than 1.5 × 10−17 (1/1770)T [5, equation 1.6].
To achieve a probability of 2−100, T = 4 suffices. One
should be able to apply the analytical techniques of
[3] to the Grantham algorithm to arrive at even
stronger probability estimates. That is to say the
number 1.5 × 10−17 can probably be reduced, but the
method is as yet too new for anyone to have done
this analysis. However, the correctness of the
1.5 × 10−17 bound is not in question.

It should be noted that there is no known composite
integer which passes a single Miller-Rabin test, fol-
lowed by a single Lucas strong probable prime test.
Pomerance, Selfridge, and Wagstaff Jr. currently of-
fer $640 for a counter-example. While a formal esti-
mate of the probability of error for a combined
Miller-Rabin/Lucas test is still lacking, heuristics sug-
gest that counter-examples are extremely rare. This
combination of tests was suggested in [9]. It is there-
fore suggested that following the Miller-Rabin tests
a single Lucas test be performed.

This subject area is changing rapidly. The purpose of
the above discussions is simply to demonstrate that
there are stronger alternatives to Miller-Rabin and
they can be used if desired.

Conclusions
Some standards efforts have recommended that re-
strictions be placed on the form of primes that might
be used to produce an RSA modulus. In this article
we have outlined reasons why we believe that many
of these restrictions are unnecessary; keys generated
according to such requirements are, in practice, no
more secure than keys that are not. However, given
that such restrictions exist in these standards, we
have outlined a way that users can generate RSA
moduli that will satisfy the conditions.
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DES Challenge Solved
On June 19, 1997 it was announced that the DES
challenge, one of the challenges offered as a part of
the Secret Key Challenge sponsored by RSA Data
Security, was solved. After a search of 96 days and
after checking a little under 25% of the key space,
the correct key was found revealing the plaintext
message “Strong cryptography makes the world a
safer place.”

While providing a dramatic demonstration of the
computing power available across the Internet, the
solution of the DES challenge employed nothing
more sophisticated than a brute-force search through
all possible keys. Nevertheless, since this most basic
attack can always be applied to any block cipher and
is essentially dependent on the length of the key
used, the solution to the DES challenge provides an
illustration of the conflicts brought into play when
legal restrictions are placed on the length of encryp-
tion keys.

The successful challenge was coordinated by Rocke
Verser. During the final 24 hours of the challenge
more than 6.4 × 109 DES keys were tried. If the final
rate of key testing had been available from the be-
ginning then the DES key would have been recov-
ered in around 32 days. Of course the rate of key
testing was increasing as the challenge progressed and
so even this time estimate to recover a DES key would
have been reduced as more people joined the effort.

A second DES-search effort coordinated from Swe-
den started much later than the US effort and was
beginning to gain ground as it garnered support from
sites in most European countries and other countries
as far afield as Taiwan. As Rocke Verser was claim-
ing the prize the Swedish effort had searched around
14% of the key space.

Of course there’s more to these challenges than mere
races. It can be hoped that the experiences gained in
these distributed efforts can be used in other endeav-
ors, be it in the search for Mersenne primes (http://
www.mersenne.org/) or in some distributed effort to
factor RSA-type moduli (http://www.rsa.com/rsalabs/
html/factoring/html).

It is worth noting that the DES challenge was solved
using a software-based search. The results would have

been particularly interesting if some participant had
been tempted to bring hardware techniques into play.

In 1993, a report by Michael Wiener on building a
machine dedicated to a similar exhaustive search re-
vealed that for the modest sum of one million U.S.
dollars, a machine could be built that would find a
DES key in an expected time of three and a half
hours. Over the last four years, we can expect that
even this remarkable estimate will have improved
considerably.

For those interested in more information on the
strength offered by different lengths of encryption
key, a report on this subject by an ad hoc group of
cryptographers and computer scientists was com-
pleted in January of 1996. It was published by the
Business Software Alliance and is currently avail-
able at http://www.bsa.org/policy/encryption/
cryptographers.html.

And for those interested in further exhaustive search
opportunities, there are currently at least three dif-
ferent efforts underway for the solution to the 56-bit
challenge using the variable key length block cipher
RC5. More information on this and the remaining
challenges can be found at http://www.rsa.com/
rsalabs/97challenge/.

RC2® Published in IETF Forum
Developed in 1987 by Ron Rivest, RC2 is a variable
key-length block cipher. It is often used as a drop-in
replacement for DES and it features widely in a large
number of commercial software packages.

In a move to promote broad acceptance of a single
standard for electronic messaging, a description of
the RC2 encryption algorithm was recently pub-
lished for evaluation by the Internet Engineering
Task Force (IETF). The published description of RC2
allows developers working in the IETF to scrutinize
the algorithm as part of the process to establish S/
MIME (which supports the use of RC2) as a stan-
dard for electronic messaging.

A description of RC2 can be found at ftp://ftp.ietf.org/
internet-drafts/draft-rivest-rc2desc-00.txt and for those
interested in the progress of the S/MIME standard-
ization effort, more information can be found at
http://www.rsa.com/rsa/S-MIME/.
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Extensive Revisions to PKCS Underway
RSA Laboratories is in the process of revising its
well-known PKCS (“Public-Key Cryptography Stan-
dards”) suite of documents. The PKCS standards
have been developed with the assistance of cryptog-
raphers and developers from a large number of com-
panies, and the current versions of them give devel-
opers guidance and standardization for a variety of
cryptographic tasks. The PKCS standards are a key
part of important security-conscious protocols such
as S/MIME (the dominant protocol for secure email)
and SET (the recently-developed protocol for per-
forming on-line credit-card transactions).

As of July, 1997, the PKCS series includes the fol-
lowing documents:

PKCS #1: RSA Encryption Standard
PKCS #3: Diffie-Hellman Key-Agreement Standard
PKCS #5: Password-Based Encryption Standard
PKCS #6: Extended-Certificate Syntax Standard
PKCS #7: Cryptographic Message Syntax Standard
PKCS #8: Private-Key Information Syntax Standard
PKCS #9: Selected Attribute Types
PKCS #10: Certification Request Syntax Standard
PKCS #11: Cryptographic Token Interface Standard

RSA Laboratories recently held workshops in Palo
Alto to work on Version 2.0 of PKCS #5 and PKCS
#7. Both of these standards are now being modified
to be significantly more general and algorithm-inde-
pendent than their current versions are. It is ex-
pected that the upcoming versions of these standards
will be used even more ubiquitously than their pre-
decessors are.

With the generous assistance of Chrysalis-ITS and
Entrust Technologies, RSA Laboratories also held a
3-day PKCS #11 workshop in Ottawa. Most of this
workshop dealt with the content of the upcoming
Version 2.01 of the PKCS #11 standard, which speci-
fies an interface for applications to use when they
utilize a special-purpose “cryptographic token” to
perform cryptographic functions for them. The final
Version 2.01 specification should be finished soon.

In addition to the above workshops, RSA Laborato-
ries held a PKCS #12 workshop in Palo Alto to de-
velop the new PKCS #12: Personal Information Ex-
change Syntax Standard. This standard, based on a pre-

vious standard written by Brian Beckman of Micro-
soft, specifies a format for applications to use to trans-
fer cryptographic “personal identity information” such
as private keys and certificates from one platform to
another. The final PKCS #12 document is keenly an-
ticipated by a variety of key industry players.

Revisions to other members of the PKCS suite are
planned for the near future. To keep in touch with
latest information on the “next generation” of PKCS,
subscribe to the pkcs-tng@rsa.com mailing list by
sending email to majordomo@rsa.com with the line
“subscribe pkcs-tng ” in the message body.
There is also a mailing list, cryptoki@rsa.com, specifi-
cally for following (and contributing to) develop-
ment of PKCS #11; subscribing is done by sending
email to majordomo@rsa.com with the line
“subscribe cryptoki ” in the message body.

P1363 Work Continues
Intensive work continues on the IEEE P1363 project,
“Standard for Public-Key Cryptography.” The stan-
dard aims to provide comprehensive treatment of
three families of public key techniques: discrete loga-
rithm techniques over finite fields (such as Diffie-
Hellman), elliptic curve discrete logarithm tech-
niques (such as ECDSA), and integer factorization
techniques (such as RSA). The working group also
has plans for a supplement to the standard which will
provide treatment of less-established methods.

The project has generated a great amount of interest
and continues to receive comments and proposals
from members of the cryptographic community
worldwide. The working group presented the latest
developments to Eurocrypt ’97 participants during its
meeting that directly followed that conference. The
latest editorial contribution was thoroughly reviewed
at the working groups’ June meeting held in the Chi-
cago area. The next meeting will be held directly fol-
lowing the Crypto ’97 conference, and will review a
lot of behind-the-scenes work accomplished by the
working group members between the meetings. A
presentation for the Crypto participants is scheduled
for the afternoon of Tuesday, August 19.

The project maintains a mailing list and welcomes
comments and participation. Detailed information is
available from the working groups’ web site, http://
stdsbbs.ieee.org/groups/1363/.

S T A N D A R D S  U P D A T E

The PKCS standards
are a key part of
important security-
conscious protocols
such as S/MIME
and SET.



100 Marine Parkway, Suite 500
Redwood City, CA. 94065-1031

Tel  415/595-7703
Fax 415/595-4126

rsa-labs@rsa.com
http://www.rsa.com/rsalabs

FIRST CLASS

U.S. POSTAGE

PAID

MMS, INC

Copyright © 1997 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics Company. All rights reserved.

In this issue:
• Proactive

Security: Long-
term Protection
Against Break-ins

• Fast Generation
of Random,
Strong RSA
Primes

A N N O U N C E M E N T S

For contact and
distribution
information, see
page 2 of this
newsletter.

RSA Laboratories
A Division of RSA Data Security

®

The RSA Data Security Conference ’98

The seventh annual RSA Data Security Con-
ference is scheduled to be held in San Fran-
cisco on January 13-16, 1998.

Virtually all of San Francisco’s Nob Hill will be
dedicated to the event, including the Masonic
Auditorium, the Fairmont Hotel, the Stanford
Court, and the Ritz Carlton.

The conference will deliver four full days of cov-
erage of the latest trends in cryptographic re-
search, product development, market analysis
and social thought in the field of cryptography,
all presented by some of the leading minds in
the industry. An annual pilgrimage for the
world’s cryptography systems experts, policy-
makers, business people and technology devel-
opers, the RSA Conference delivers breadth and
depth far beyond any other computer security
gathering.

Computerworld called it “the sine-qua-non
event of the crypto community”. From very
humble beginnings in 1991, when 50 develop-
ers gathered to discuss the state of the nascent
crypto industry, the annual RSA Conference
has grown to become the biggest event on the
crypto-circuit. Planners are projecting that over
3,000 cryptographers, policy-makers, business
people and technology developers will attend
the 1998 conference.

An increasingly significant element of the
conference is the RSA Data Security Confer-
ence Partner Fair. Scheduled to take place
January 13-15 at the Fairmont Hotel, this ex-
hibit hall provides an unparalleled opportunity
for attendees to see the very latest develop-
ments in cryptographic and computer security
products.

For more information or to register, please visit
http://www.rsa.com/conf98/.


