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I. Mitigating Insider Threats to RSA Key Generation
Adam Young

A B S T R A C T

RSA keys form the cornerstone for numerous security systems. They provide for confidentiality of
communications as well as non-repudiability of digital signatures. However, there are several insid-
er attacks against RSA key generation that can have devastating effects when 
carried out. In this paper we address such attacks by surveying measures that can be taken to mit-
igate insider attacks against RSA generation.

II. Secure Verification of Location Claims

Naveen Sastry, Umesh Shankar, David Wagner

A B S T R A C T

With the growing prevalence of sensor and wireless networks comes a new demand for location-
based access control mechanisms. We introduce the concept of secure location verification, and we
show how it can be used for location-based access control. Then, we present the Echo protocol, a
simple method for secure location verification. The Echo protocol is extremely lightweight: it does
not require time synchronization, cryptography, or very precise clocks. Hence, we believe that it is
well suited for use in small, cheap, mobile devices.

III. Manual Authentication for Wireless Devices
Christian Gehrmann, Chris J. Mitchell, Kaisa Nyberg

A B S T R A C T

Manual authentication techniques have been designed to enable wireless devices to authenticate one
another via an insecure wireless channel with the aid of a manual transfer of data between the
devices. Manual transfer refers to the human operator of the devices performing one of the fol-
lowing procedures: copying data output from one device into the other device, comparing the out-
put of the two devices or entering the same data into both devices. Techniques currently being stan-
dardised which achieve this, and which require only small amounts of data to be transferred
between the two devices, are described. This makes the mechanisms particularly attractive for non-
expert use, as required for ubiquitous mobile wireless devices.
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Abstract

RSA keys form the cornerstone for numerous security
systems. They provide for confidentiality of commu-
nications as well as non-repudiability of digital sig-
natures. However, there are several insider attacks
against RSA key generation that can have devastat-
ing effects when carried out. In this paper we address
such attacks by surveying measures that can be taken
to mitigate insider attacks against RSA generation.

1 Introduction

The RSA algorithm [20] has gained widespread use in
the software industry and it is utilized by more and
more people each year. RSA key pairs are the ba-
sis for ensuring both the privacy of data in RSA ci-
phertexts as well as the non-repudiability of digitally
signed messages. However, the security of these basic
functionalities rests on the honest and correct genera-
tion of RSA key pairs.

There are many subtle security issues surrounding
the generation and use of RSA keys. For example,
there are instances in which a malicious user may de-
liberately try to generate and certify a weakpublic key.
The user can choose the prime p in the RSA public key
n = pq such that p−1 is smooth(a smooth integer has
no large prime divisors). This allows anyone to factor
n using Pollard’s p − 1 factoring algorithm [19].

The notion of generating a weak key may appear
counter-intuitive to many readers. Why would anyone
ever want to do a thing like that? The reasons for do-
ing it are many.

Perhaps the biggest reason for doing so is to be able
to back out of a contract if business begins to turn
south. By certifying a “weak” RSA public key, the
signer will be in a position down the road to repudiate
any and all digital signatures that were created using
the corresponding private key. This can be argued on
mathematical grounds in a court of law since a weak
key is a key that can be factored by anyone. Hence, ev-
eryone has the ability to produce signatures using the
weak key pair. Weak keys are particularly attractive to
a malicious user when the existence of the weakness
is not readily apparent, since in this case another user
is not likely to produce forgeries under the malicious
user’s name.

However, to avoid being blamed for deliberately
generating a weak key, the signer would have to con-
vince a disinterested third party (such as a judge) that
the use of the weak key was not deliberate. This is a
challenge since it must be proven that a trustworthy
key generation algorithm was used and that it was not
tampered with. When RSA keys are generated ran-
domly, the probability that a key is weak is already
very small, and the use of strong primesreduces the
risk even more. Strong primes have certain properties
that make the product n hard to factor by specific fac-
toring methods. Such properties include the existence
of a large prime factor of p−1 and a large prime factor
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of p + 1. This is one of the issues in the strong primes
debate.

Why else would a user want to certify a weak key?
Consider the possibility of political insurgency. A per-
son from country A starts working for the government
in country B and acts under cover. The person certi-
fies a weak public key and uses it to store, receive, and
transmit (in key exchange protocols) highly sensitive
information. This has the potential to severely dam-
age country B. Also, an “innocent” weakness in the
key could get the person off the hook if he or she is
accused.

Of course, a simpler approach to the problem is
for a malicious user to simply publish his or her pri-
vate key in some inconspicuous fashion. The user
would later point out the location of the private key
and state that anyone could have obtained it. How-
ever, this argument is not likely to hold up in court.
One would have to assess the probability that the pri-
vate key would show up naturally, without the inter-
vention of the key owner, and the chances of this are
very small indeed.

In truth weak keys are not likely to be generated,
even when the simplest methods for generating RSA
keys is used. However, it is possible using simple RSA
key generation. So, a malicious user can try to make
the case that, e.g., p − 1 just happened to be smooth.
These issues illustrate the importance of being able to
validate RSA keys [21].

Even an honest user may generate and use an eas-
ily factorable RSA public key without realizing it.
This happens when a malicious insider, such as the
programmer that creates the RSA key generation de-
vice, inserts a backdoor that lets the insider obtain the
user’s private key. The reasons why a programmer
would want to insert such a backdoor are obvious. It
would permit the programmer to gain illicit access to
encrypted information such as e-mails, secure socket
connections, and so forth, and would also allow the

programmer to impersonate users (e.g., forging signa-
tures of other users, accessing the accounts of other
users, etc.).

The scope of the problem is by no means specific
to RSA. Backdoor attacks have been shown to exist in
Diffie-Hellman, ElGamal, DSA, elleptic curve cryp-
tosystems, and more. The scope of the problem is not
limited to insider attacks either. An outsider is often
in a position to insert a backdoor as well. Malicious
software such as viruses and worms can insert a back-
door as part of their payload. The scope of this prob-
lem is immense, especially considering the fact that a
backdoor can often be exploited in a completely covert
way. For instance, when the attacker simply reads in-
formation but does not modify information it is often
difficult to detect that the attack is even occuring.

A tamper-resistant microchip is an ideal medium
for planting a backdoor, since by its very nature the
backdoor is well-hidden. Even when a key generation
algorithm is implemented in software, the program is
effectively a “black-box” in the eyes of the average
user, since a deep understanding of mathematics as
well as the underlying assembly language is necessary
to discern the true nature of the program.

2 Proving the Form of n = pq

When an RSA key generation device outputs two RSA
primes, the key owner can perform rather simple tests
on the correctness of the outputs. For instance, the
key owner can check that p and q are primes, that they
are the correct size, etc. However, for ensuring non-
repudiability it is necessary that other usersbe con-
vinced as well that n = pq was generated properly.
The purpose is to convince others that n is not “weak”
and that there is no backdoor in use. This is a chal-
lenging problem since it is often the case that only the
key holder is allowed to know p and q.



Certain properties relating to the correctness of
RSA key generation can be verified simply be per-
forming computations on n. For instance, it can be
publicly verified that: n is not prime, n is not divisible
by small primes, and that n is not a perfect power (see
[2] for sieving algorithms). Performing these checks
is a good measure, since a weak key such as n = p2q2

will be readily discovered. These verifications help to
show that n was properly generated, but they are not
sufficient. For example, when a 1024-bit key n is gen-
erated these verifications will not detect the case that
p is 160 bits in length and q is 864 bits in length.

One way that a black-box key generation im-
plementation can prove these more complex asser-
tions regarding n is to utilize non-interactive zero-
knowledge proof systems. In a nutshell, a non-
interactive zero-knowledge proof system consists of
a proof generating algorithm and a corresponding ver-
ification algorithm.

The proof generating algorithm proves some type of
assertion regarding a problem instance. For instance,
the problem instance may be an integer n and the as-
sertion may be that n is the product of two distinct
prime numbers. The output of the proof generating al-
gorithm is a data file that is typically anywhere from
40 kilobytes to over a 100 kilobytes in size. The data
file has the property that it reveals nothing about the
secrets associated with the problem instance (e.g., it
does not expose p or q).

The verification algorithm takes this file and the
problem instance as input and verifies whether or not
the file is valid. A valid file implies that the assertion
holds with overwhelming probability. Several such
proof systems can be utilized to prove the form of n.
These proof systems are the subject of this section.

The following are some well-known zero-
knowledge interactive protocols that show various
properties of n. All of these protocols can be con-
verted into non-interactive zero-knowledge proof

systems. Peralta and van de Graaf presented a
protocol that proves in perfect zero-knowledge that n
is a Blum integer [12]. They define the set of Blum
integers to be integers of the form n = prqs where
p, q ≡ 3 mod 4, r and s are odd, and p and q are
prime. A zero-knowledge protocol has been given
that proves that n is square-free [6]. Recall that an
integer n is said to be square-freeif m2 does not
evenly divide n for any m > 1. The protocol utilizes
a parameter k that signifies the number of rounds in
the protocol. By making k large enough, a cheating
prover has a negligible chance of convincing the
verifier that n is square-free when in fact it is not. A
protocol that proves that n is a Blum integer combined
with a protocol that proves that n is square-free proves
that n is contained in the subset of Blum integers
characterized by r = s = 1.

Zero-knowledge protocols have been developed
that prove surprisingly complicated facts about n.
For instance, a statistical limited-knowledge protocol
(that leaks very little information) has been given that
proves that n is the product of two primes that are
nearly equal in size, assuming that n has already been
proven to be the product of two distinct primes [17].
A statistical zero-knowledge protocol has been given
that proves that n is the product of two quasi-safe
primes [11]. Finally, there is a zero-knowledge proto-
col that proves that n is the product of two safe primes
[7]. This last protocol is asymptotically efficient but
would be cumbersome to utilize in practice.

An interesting open question regarding Blum inte-
gers is the following. Is there a probabilistic (or de-
terministic) algorithm for deciding whether or not n
is a Blum integer? The existence of such a predicate
would eliminate the need for a zero-knowledge proof
that n is a Blum integer.

These algorithms and protocols that prove various
properties of n are helpful since they prove that there
are no obvious weaknesses in the structure of n. How-
ever, they do not sufficiently protect against various



forms of abuse. There is a wealth of literature sur-
rounding the abuse of key generation algorithms, dig-
ital signature algorithms, and so on. These abuses are
the subject of the next section.

3 Cryptographic Abuses of RSA Key
Generation

Gus Simmons initiated the investigation of abuses
that involve clandestine information leakage within
the context of cryptographic algorithms and proto-
cols. The classic problem that demonstrates this type
of abuse is known as the Prisoner’s Problem[22].
In the prisoner’s problem, two prisoners are allowed
to communicate to each other but are not allowed to
send encrypted messages to each other. They are only
permited to exchange public keys and digitally sign
their messages. The problem is to devise a way, us-
ing the digital signature algorithm in question, for the
two prisoners to communicate secretly with each other
through digital signatures in such a way that the war-
den cannot detect or read the subliminal messages.
Such a communications channel is called a subliminal
channel.

Yvo Desmedt noted that a subliminal channel ex-
ists in composites, and that use of this channel con-
stitutes an abuse of RSA key generation [8] (see also
[16]). One way to implement a subliminal channel
in composites is as follows. A subliminal message
ms and a checksum t of ms are concatenated together
(denoted by ms || t). The resulting string is asym-
metrically encrypted using the public key of the re-
cipient of ms. The asymmetric cryptosystem must be
probabilistic to ensure that c is pseudorandom (OAEP
can be used [4]). Let c be the resulting ciphertext. A
random prime p and a random pad RND are chosen.
The quotient q and remainder r are then solved for in
c || RND = pq + r. If q is composite then this pro-
cess is repeated. When q is prime, the public key is

n = pq = (c || RND)− r. At worst a borrow bit will
be taken from c, but this can be rectified. The sublimi-
nal message ms is recovered by decrypting c and c+1
and verifying which of the two checksums is correct.
Note that the security parameter for c is half of the
value of the security parameter for n. This approach
is based on kleptography [26, 25].

The subliminal channel in composites can be used
to let one prisoner communicate secretly with another
(although they have to keep generating new keys to
keep communicating this way). Therefore, typical
RSA key generation is subject to information leakage
abuse by inmates.

RSA key generation is also subject to abuse by ma-
licious insiders. Consider the following rather simple
attack. The attacker, who is the programmer that is
creating the RSA key generation algorithm, stores a
secret seed in the key generation algorithm and the
algorithm supplies this seed to pseudorandom num-
ber generator. The fact that the seed is chosen uni-
formly at random and is “secure” leads to a crypto-
graphically secure pseudorandom bit sequence. This
sequence is known to the attacker and can be the sole
source of randomness for deriving output pairs (p, q).
The attack amounts to replacing the “honest” random
sequence that is inherent to a probabilistic Turing ma-
chine with a “dishonest” pseudorandom sequence that
is completely reconstructable by the insider.

An RSA key pair that is compromised in this way
allows the insider to read anything encrypted using the
user’s public key, and allows the insider to forge any
signed document on behalf of the user. This type of
attack is a very general one, since it can be applied
to any probabilistic algorithm, not just cryptographic
ones.

Research has been conducted to investigate insider
attacks against cryptographic algorithms with the spe-
cific goal of making the attacks robust from the at-
tacker’s perspective. This type of attack is far more



attractive to an attacker than generating a “weak” key
that can be exploited by anyone (see the attack in Sec-
tion 1). The goal in this type of attack is to plant
a backdoor in the key generation algorithm that: (1)
generates keys that are indistinguishable from “nor-
mal” keys, (2) is robust against reverse-engineering,
and (3) generates keys that are cryptographically se-
cure with respect to everyone exceptthe attacker. This
type of attack gives the attacker an exclusive advan-
tage.

It has been shown how to use the notion of a sub-
liminal channel to mount this type of attack against
RSA key generation [26, 25]. The attack makes use of
the subliminal channel in composites n = pq where
n is a W -bit quantity. The intuition behind the insider
attack is as follows. If there were a way to display ran-
domly generated information in the bit representation
of n = pq such that: (1) only the insider can access the
information, (2) only the insider can detect that the in-
formation is there, and (3) the information allows the
insider to factor n, then a robust attack against RSA
key generation would exist. The fact that the informa-
tion is randomly generated each time that a key pair
is generated provides security going forward with re-
spect to a passive reverse-engineer.

A heuristic version of this attack is as follows.
It makes use of a pseudorandom number generator
(PRNG) denoted by G. The insider places his or her
own public key in the device. This key is used to com-
pute c in the subliminal channel. The device chooses
ms randomly. It then computes the pseudorandom bit
sequence G(ms). The bits in this sequence are con-
sidered W/2 bits at a time. The first such sequence
that is a W/2-bit prime becomes p. If p leads to a
prime value for the quotient q in the channel, then
n = (c || RND)−1 is output as the user’s public key.
The insider obtains this public key from a CA, for in-
stance. The insider then uses his or her own private
key to obtain ms. Given ms it is then straightforward
to recover p and factor n.

The attack is robust against reverse-engineering
since only the public key of the insider, not the cor-
responding private key, is revealed upon inspecting
the RSA key generation code. Furthermore, compro-
mised composites are computationally indistinguish-
able from uncompromised composites under reason-
able intractability assumptions, thus assuring that no
one will ever know that the attack is being carried out
[26, 25].

This type of attack is called a secretly embedded
trapdoor with universal protection (SETUP). The at-
tacker’s public key is the secretly embedded trapdoor.
The advantage of a SETUP attack over using a fixed
pseudorandom bit sequence is that it provides secrecy
going forward. That is, even if the key generation de-
vice is reverse-engineered and its state is revealed, it
will not help the reverse-engineer factor the future (or
even past) RSA keys that are produced. This is be-
cause the seed ms is chosen randomly each time that
the key generation algorithm is invoked. This is of
particular importance in software implementations in
which each user obtains the exact same copy of the
key generation software.

These types of attacks are by no means unique
to RSA key generation. In addition they have been
shown to exist in discrete-logarithm based cryptosys-
tems [27]. A SETUP attack has been shown against
the Diffie-Hellman key exchange [10] that leaks one
of the two Diffie-Hellman exponents. An attack has
been shown against the Digital Signature Algorithm
that leaks the private key, and other attacks have been
shown as well.

4 Early Work on Curbing Abuses of
Cryptosystems

The standard approach to mitigating insider abuse in
a cryptographic algorithm is to prevent the algorithm
from having the luxury of controlling the final ran-



domness that is used to derive the output values. This
is enforced by requiring the use of a protocol to per-
form the computation, as opposed to a stand-alone al-
gorithm.

Gus Simmons introduced the idea of using random-
ization to destroy subliminal channels [22]. To de-
stroy a particular subliminal channel that was iden-
tified, Simmons has the warden generate a random
number x ∈ Rn (the ring of residues modulo n) and
modify the message that was being sent from one pris-
oner to the other prisoner using x. For other early re-
sults that use randomization to eliminate subliminal
channels, see [23, 9].

To address the problem of key generation abuse,
Desmedt investigated abuse-freeways of generating
key pairs. His protocol is outlined within the context
of the prisoner’s problem, but applies to other abuses
as well such as the previously mentioned attack that
uses a pseudorandom number generator. In this pro-
tocol an inmate Alice and a warden jointly generate
a key pair such that only Alice knows the private key
and such that the warden is conviced that no form of
abuse is occuring [8].

A high-level description of this protocol is as fol-
lows. Alice commits to a random string ra and the
warden sends Alice a random string rw. Alice per-
forms the bitwise exclusive-or operation to obtain the
random string r = ra ⊕ rw. If r does not satisfy the
properties needed to make the key pair (e.g., it does
not lead to two RSA primes) then Alice reveals ra to
the warden. If r does lead to a proper public key, then
Alice proves this in zero-knowledge. The overhead of
this zero-knowledge protocol is substantial in practice
since it relies on a very general zero-knowledge inter-
active protocol construction [13].

5 Oracle-Based RSA Key Genera-
tion

In this section a heuristic algorithm is presented that
minimizes the capacity of the subliminal channel in
RSA composites n = pq. The entire approach is
not provably secure, although its design utilizes best-
practices (it is similar to the process of generating
DSA parameters) and it is ideal for use in stand-alone
RSA key generation programs since it does not in-
volve a protocol. The key generation algorithm is
“oracle-based” since it utilizes a random oracle. In
a nutshell, a random oracle is a deterministic func-
tion that returns a random string in response to a given
query. It is an idealized function that is approximated
in practice using a cryptographic hash function.

Before continuing, some basic notation needs to be
introduced. The Greek symbol φ denotes Euler’s to-
tient function. The greatest common divisor function
is denoted by gcd. The notation |A| is used to repre-
sent the number of bits in the bit string A. For exam-
ple, when A = 00101 it follows that |A| = 5. Fi-
nally, {0, 1}∞ denotes the set of countably infinite bit
strings.

5.1 RSA Key Generation

Recall that in the RSA algorithm, the public key is
(n, e) where n is the product of two large randomly
chosen primes p and q that satisfy gcd(e, φ(pq)) =
1. The value e is the public exponent, which must be
an odd integer greater than 2. The private key is d
where d satisfies the equality ed = 1 mod φ(n). As is
typically the case in practice, it will be assumed that e
is fixed and shared by everyone (e.g., e = 216 + 1).

In a typical RSA key generation algorithm, a W/2-
bit integer p is chosen randomly and is accepted only
if p is prime and gcd(e, p−1) = 1. If p is rejected then
p is reassigned to be p+1, it is tested for primality, and



gcd(e, p − 1) is computed again. This process repeats
until a prime p is found such that gcd(e, p − 1) =
1. This is called incremental search. Most standards
recommend that p be at least 512 bits in size. This
same procedure is used to generate the prime q. There
are many variations of this algorithm. For example,
before testing for primality p and q often have their 2
most significant bits set to 1. Other methods involve
generating each prime such that the prime minus one
has a large prime divisor, checking the p − q is large,
and so on.

A signficant weakness in this standard approach to
generating RSA keys is that it exhibits a subliminal
channel that is capable of diplaying about W/2-bits of
explicitly chosen information in the bit representation
of pq. When exploited, this channel can display any
potentially sensitive information, and hence paves the
way for devastating insider attacks.

The algorithm GenPrivatePrimes1 models a
typical method of RSA key generation based on in-
dependent generation of primes. This algorithm sets
the stage for the more robust key generation algorithm
called GenPrivatePrimes2 that is presented in Sub-
section 5.2. GenPrivatePrimes1 outputs two large
prime numbers p and q that satisfy gcd(e, φ(pq)) = 1.
The primes also satisfy other constraints as well.

The purpose of GenPrivatePrimes1 is
not to “replace” existing methods of RSA key
generation. Rather, it is a hypothetical algo-
rithm that is used to demonstrate the security of
GenPrivatePrimes2 that utilizes a cryptographic
hash function. GenPrivatePrimes2 is more
robust than straightforward RSA key generation
(e.g., GenPrivatePrimes1) since it significantly
reduces the number of bits that can be subliminally
displayed in the bit representation of composites pq.
It is later shown that these two algorithms produce
pairs of primes that are drawn from the same set
and probability distribution. So, the purpose of
GenPrivatePrimes1 is to show just how “normal”

(as far as RSA key generation goes) the primes are
that are output by GenPrivatePrimes2.

For simplicity, GenPrivatePrimes1 only gener-
ates W/2-bit primes such that W is evenly divisible
by 2. Given (p, q), it is a simple matter to compute
n = pq and d = e−1 mod φ(n).

RandomBitString1():
input: none
output: random W/2-bit string
1. generate a random W/2-bit string str
2. output str and halt

GenPrivatePrimes1():
input: none
output: W/2-bit primes p and q such that

p �= q and |pq| = W
1. while (TRUE) do:
2. p = RandomBitString1()
3. if p ≥ 2W/2−1 + 1 and p is prime then

goto step 4
4. while (TRUE) do:
5. q = RandomBitString1()
6. if q ≥ 2W/2−1 + 1 and q is prime then

goto step 7
7. if |pq| < W or p = q then goto step 1
8. if gcd(e, φ(pq)) �= 1 then goto step 1
9. set S = (p, q)
10. output S, zeroize all values in memory, and halt

The purpose of the seemingly trivial function
RandomBitString1 will be addressed in more de-
tail later on. It is abstracted away since it constitutes a
tempting target for the insertion of a subtle backdoor.

Testing for primality can be performed in determin-
istic polynomial-time [1]. The expected running time
of finding p can be found using the prime number the-
oremwhich was proven independently by Hadamard
and De La Valleé Poussin in 1898 (see [15] for a



statement of the theorem). The prime number theo-
rem implies that a random W/2-bit number will be
prime with probability about 2/W . The choice of p in
step 2 is independent each time around, so the while
loop that selects p corresponds to independent trials
(Bernoulli trials) with a fixed failure probability. In m
iterations of the while loop, the probability that no ac-
ceptable prime p is found is about (1 − 2/W )m. So,
this can be used to estimate the chances of finding p.
The same analysis applies to finding q.

The reason that the algorithm checks whether or not
|pq| is less than W in step 7 is to ensure that n is a W -
bit composite. It is standard practice to generate RSA
moduli n that are exactly 768 bits in length, 1024 bits
in length, and so on. It is constructive to consider how
|pq| < W can occur.

Note that a K-bit string can have leading zeros. A
K-bit positive integer must have a most significant bit
equal to 1. The product of two K-bit positive binary
integers with K > 1 is either a 2K-bit integer or a
(2K − 1)-bit integer. To see this, note that 2K−1 is
the smallest K-bit integer. 2K−1 squared is 22K−2,
which is 2K − 1 bits long. Also, note that 2K − 1 is
the largest K-bit positive integer. 2K − 1 squared is
22K −2K+1 +1, which is a 2K-bit integer. So, in this
algorithm it is entirely possible that W/2-bit primes p
and q will be chosen such that |pq| < W bits.

5.2 The Oracle-Based Key Generation Algo-
rithm

The basic idea behind the oracle-based key genera-
tion heuristic is to fill the subliminal channel in com-
posites with a hash value and force the key genera-
tion device to reveal a pre-image for this hash. It is
similar in flavor to the NIST method for generating
DSA keys that was devised, in part, due to the alle-
gations of some researchers that DSA could be us-
ing “trapdoor” primes (that might permit signatures to
be forged) [18]. To convince skeptics that trapdoor

primes were not in use, a procedure was developed
for generating DSA parameters using a one-way hash
function, namely, SHA. The DSA parameter genera-
tion algorithm is given in Appendix A of [24].

The main idea behind the DSA parameter genera-
tion algorithm and the algorithm given in this section
is as follows. In this approach, a pre-image to the hash
algorithm is generated randomly and is supplied to the
hash algorithm. The parameters are derived directly
from the output of the hash algorithm. This high level
description glosses over various details, since an inte-
ger counter is used to speed things up, for instance.

In the algorithm proposed by Smid and Branstad
[18], the DSA parameters p and q are output by the pa-
rameter generation algorithm along with a pre-image
and counter value that can be used to heuristically ver-
ify how p and q were generated. This procedure makes
it very difficult to choose p and q and then find the
corresponding pre-image and counter value that give
rise to them. So, assuming that a very small num-
ber of pairs (p, q) are amenable for use as a backdoor,
it should be difficult to find a pre-image and counter
value that leads to one of these pairs under this hash-
ing procedure.

The goal in this section is to devise a lightweight
RSA key generation algorithm that is as robust as pos-
sible against insider abuse without using a trusted third
party during key generation, and without relying on
multiple, independently manufactured programs that
work together to generate keys. The operating as-
sumption is that key generation is performed in a
black-box device. When the output values are veri-
fied, the private key holder and the CA can heuristi-
cally verify that at most a very small number of bits
are being subliminally leaked in n = pq. This assures
that a high-bandwidth SETUP attack is not being per-
formed.

This key generation algorithm can replace any
stand-alone RSA key generation implementation. The



black-box can output other values as well, such as a
non-interactive zero-knowledge proof that n is a Blum
integer. This provides even more assurance to the CA
that n is a properly generated RSA public key.

A little background on the theoretical “tool” known
as a random oracleis needed [3]. Recall that a random
oracle R(·) is a deterministic function from {0, 1}∗
onto {0, 1}∞ that behaves like a random function.
That is, R always returns the same response for a par-
ticular input string, and for a given input string the out-
put is drawn uniformly at random from {0, 1}∞ (this
sampling is performed once and for all when R is de-
fined).

Let H(s, i, v) denote a function that invokes the
oracle and returns the v bits of R(s) that start
at the ith bit position, where i ≥ 0. For ex-
ample, if R(110101) = 01001011110101... then
H(110101, 0, 3) = 010 and H(110101, 1, 4) = 1001
and so on.

The following is the heuristic RSA key generation
algorithm. Observe that it outputs s1, s2, and cnt in
addition to what is output by GenPrivatePrimes1.
Note also that p and q have the same specifications as
in GenPrivatePrimes1.

GenPrivatePrimes2():
input: none
output: W/2-bit primes p and q such that

p �= q and |pq| = W
1. while (TRUE) do:
2. generate s1, s2, c2 to be random strings

using RandomBitString1()
3. compute c1 = H(s1, 0,W/2)
4. set cnt = 0
5. while (TRUE) do:
6. p = H(s1||s2,

cnt∗W
2 ,W/2)

7. if p ≥ 2W/2−1 + 1 and p is prime
then goto step 9

8. cnt = cnt + 1
9. compute n′ = (c1 || c2)

10. solve for the quotient q and the remainder r
in n′ = pq + r

11. if q is not a W/2-bit integer or if
q < 2W/2−1 + 1 then goto step 2

12. if q is not prime then goto step 2
13. if |pq| < W or if p = q then goto step 2
14. if gcd(e, φ(pq)) = 1 then goto step 15
15. set S = (p, q, s1, s2, cnt)
16. output S, zeroize all values in memory, and halt

The private key owner should always keep
(p, q, s2, cnt) secret. Observe that p can be re-
constructed using s1 and s2 alone (cnt can be easily
guessed).

Given N and s1, the derivation of the predetermined
portion of n is publicly verifiable. This is accom-
plished by having the verifier (i.e., someone in pos-
session of n and s1) check that either H(s1, 0,W/2)
or H(s1, 0,W/2)+1 equals the W/2 upper order bits
of n. Here the +1 accounts for a potential borrow bit
having been taken from c1 in computing n = n′−r =
pq.

Since the verifier performs this check on the upper
order bits, the black-box device that outputs p and q
must provide a proper pre-image s1 under H for the
upper order bits of n or else the verifier will assume
that the device is faulty. The algorithm uses the sub-
liminal channel in pq to “close” the channel in pq,
and therefore constitutes a heuristic method for foiling
high-bandwidth SETUP attacks. However, whereas n
can be published, s1 should not be published since
it now contains a subliminal channel (see subsection
5.4).

The seed s2 is for the benefit of the owner of p
and q. A heuristic way to check that p was gener-
ated using H is to verify that the prime p is equal to
H(s1||s2,

cnt∗W
2 ,W/2) and that a smaller value for

cnt does not make H(s1||s2,
cnt∗W

2 ,W/2) a prime
that is greater than or equal to 2W/2−1 + 1. The goal
is to force devices that implement this algorithm to



first commit to s1 in the upper order bits of n and then
commit to s2 in the prime p.

This method is not perfect since it is feasible to leak
a small number of bits in practice. This small channel
can be implemented by matching bits in the generated
modulus to some subliminal message, and rejecting
moduli in which the matching fails. This brute-force
method may be able to leak 8 bits (give or take) in
practice. So, a very low bandwidth kleptographic at-
tack is still possible.

The practical impact of this heuristic is that it signif-
icantly minimizes the capacity of the subliminal chan-
nel in composites by employing the channel to dis-
play a commitment based on a hash function. This
algorithm can be deployed in existing software sys-
tems without having to redesign the key generation
process. However, an alternative method exists that
provides stronger security guarantees at the cost of
significantly redesigning the key generation process.
This is the subject of Section 6.

5.3 Output Distribution of Oracle-Based
Key Generation

Under the assumed existence of a random oracle
R, GenPrivatePrimes2 produces primes p and q
from the same set and probability distribution as
GenPrivatePrimes1. The reason why this is so
is the subject of this section. This demonstrates
that GenPrivatePrimes2 produces “normal” RSA
primes, despite its awkward appearance.

Consider the division of n′ by p that leads to the
quotient q and the remainder r. The quantity n′ =
pq + r = (2W/2−1 + 1)2 + 0 is the smallest possible
value for n′ such that p, q ≥ 2W/2−1 + 1. But this
equals 2W−2 + 2W/2 + 1 and is thus a (W − 1)-bit
quantity. The greatest possible W/2-bit integer is p =
q = 2W/2 − 1. So, n′ = pq + r = pq + (p − 1) =
(2W/2 − 1)2 + (2W/2 − 1)− 1 is the greatest possible

value for n′ such that p and q are W/2-bit integers.
But this equals 2W − 2W/2 − 1 and is hence a W -
bit quantity. This shows that all possible values for
n′ = pq + r where |p| = |q| = W/2 and p, q ≥
2W/2−1 + 1 are contained in {0, 1}W . It follows that
for every pair (p, q) such that |p| = |q| = W/2 and
p, q ≥ 2W/2−1 + 1, there are p values in {0, 1}W that
when divided by p yield q as the quotient.

Clearly c2 is a random W/2-bit string. Under the
random oracle assumption c1 is an independently ran-
dom W/2-bit string as well. Since all n′ ∈ {0, 1}W

are equally likely and p is an independently random
prime under the random oracle assumption, step 11
chooses q uniformly at random from the W/2-bit in-
tegers greater than or equal to 2W/2−1 + 1 in C ′.
Those values for q that are composite will be rejected.
Hence, q is chosen uniformly at random from all W/2-
bit primes.

This can be conceptualized as follows. The W/2-
bit prime p can be fixed and the space {0, 1}W can
be “divided” into regions containing p numbers. A
region consists of qp+0, qp+1, qp+2,..., qp+p−1.
Observe that when each of these values is divided by
p the quotient is q. Note also that there are p such
values. The regions are the rows below.

. . .

(q−1)p+0 (q−1)p+1 (q−1)p+2 . . . (q−1)p+p−1

(q+0)p+0 (q+0)p+1 (q+0)p+2 . . . (q+0)p+p−1

(q+1)p+0 (q+1)p+1 (q+1)p+2 . . . (q+1)p+p−1

. . .

All regions of interest fall fully within the set of W -
bit integers since no region is “cut-off” by the 2W − 1
upper limit. A dart can then be thrown at {0, 1}W .
Which region if any the dart lands in determines the
value of q. Due to acceptance/rejection no region is



preferred and exactly one valid region must be se-
lected.

This establishes that p and q are chosen, just before
step 13 in GenPrivatePrimes2 is executed, from
the same set and probability distribution as p and q just
before step 7 in GenPrivatePrimes1 is executed.
The remaining steps are essentially the same in both
algorithms.

5.4 Security Analysis of Oracle-Based Key
Generation

Observe that it is perilous for the key owner to pub-
lish s1 along with n = pq in regards to the output of
GenPrivatePrimes2. The problem with publishing
s1 is that s1 is a subliminal channel by itself. To see
why this is a problem, suppose that the key owner pub-
lishes s1. Consider the following attack. The device
can choose a seed for a pseudorandom number gener-
ator and use the resulting pseudorandom bit sequence
to derive s2. The seed is asymmetrically encrypted us-
ing the insider’s public key and s1 assumes the value
of the resulting ciphertext. Since s1 is published, the
insider obtains it, decrypts it, and computes s2 using
the resulting plaintext. The value s2 allows n = pq to
be factored.

As a result of this subliminal channel, only the cer-
tification authority and the private key owner should
know s1. A CA that is given (n, s1) can check that the
upper order bits of n is a proper commitment of s1.

It is claimed that the oracle-based RSA key genera-
tion heuristic, when implemented in a black-box, has
the following trade-offs.

1. (advantage) It is difficult for the black-box device
to generate a pair of primes(p, q) of a particular
form (e.g., p having a long sequence of binary
zeros). This results from the fact that the private

key holder can verify that the upper order bits of
n correspond to a commitment of s1, and p is a
verifiable commitment of s2.

2. (advantage) It is difficult for the black-box to dis-
play subliminal information inn = pq. Given
(n, s1), a verifier can check that the upper order
bits of n correspond to a commitment of s1. The
method is not perfect, since a small number of
bits can still be subliminally displayed in n (see
subsection 5.2).

3. (advantage) The algorithm is self-contained.
Users perform key generation without interacting
with a verifier. It is compatible with existing RSA
systems and optionally permits heuristic verifica-
tion of public keys by a third party.

4. (disadvantage) The algorithm is slower
than straightforward RSA key generation.
GenPrivatePrimes1 will test O(log n)
candidates for p and O(log n) candidates for
q. GenPrivatePrimes2 performs two-level
prime finding. It will test O((log n)2) candidates
for p before finding a satisfactory q. The reason
for this is that if q is invalid then p is chosen all
over again.

Advantage (2) foils the possibility of high-bandwidth
secretly embedded trapdoor attacks.

It is important to emphasize that a black-box imple-
mentation of GenPrivatePrimes2 does not elimi-
nate the possibility of backdoor attacks. The attack
mentioned in Section 1 that uses a nefarious secret
seed for a PRNG is still possible. This type of back-
door can be implemented in RandomBitString1(),
for instance. This attack is not as robust as a SETUP
attack, but is nonetheless effective.

For non-interactive key generation, one can try to
separate the source of randomness from the key gen-
eration algorithm by using two separate devices. In
this approach, one device generates the random bits



and the other device uses the random bits determinis-
tically. A user might try to verify the operation of the
deterministic portion of the key generation system by
performing, say, 224 key generations. However, the
deterministic key generation device may in fact have a
secret on-board random number generator that it uses
as the source of randomness in a given invocation with
probability 1/240. So, the resulting “deterministic”
key generator may in fact be a randomized algorithm
that leaks the private key rather infrequently.

It then becomes a game for the manufacturer to
see how many invocations he or she can compromise
without being detected. It is a game because detecting
the attack amounts to generating enough key pairs to
reveal the true Byzantine behavior of the “determinis-
tic” device. No matter how many tests the user decides
to conduct, the manufacturer can always deploy a new
device the lowers the probability of attack just a little
bit more.

Fortunately, an alternative to oracle based RSA key
generation exists that addresses this problem. The so-
lution involves the use of a trusted third party during
the generation of an RSA key pair. This is the subject
of the next section.

6 A Provably Secure Protocol for
Abuse-Free RSA Key Generation

In this section the protocol of Guajardo and Juels for
generating RSA keys with verifiable randomness is
outlined [14]. The approach is similar to other solu-
tions for subliminal channel elimination since it uses
a third party that contributes randomness to the final
output values, which in this case are the primes p and
q. Unlike Desmedt’s construction that relies on prov-
ing NP statements [8], this protocol utilizes several
zero-knowledge sub-protocols and as a result is quite
efficient.

However, it should be noted that there have been
other protocols for RSA key generation as well.
Franklin and Boneh gave efficient techniques for a
group of users to jointly generate an RSA key pair
[5]. At the end of the protocol, a new RSA modulus
n = pq is known to all users. However, nobody knows
the factorization of n. The public encryption exponent
e is publicly known and each user holds a share of
the corresponding private exponent d. This allows the
users to perform threshold decryption of RSA cipher-
texts. The results are in the honest but curiousthreat
model. In this model, it is assumed that the adversary
is passiveand follows the prescribed protocol. The
adversary may record all available values and later try
to determine secret information. It is assumed that the
adversary will not alter any values except as required
by the cryptographic protocol.

The remainder of this section is dedicated to the
Guajardo-Juels protocol since it was specifically de-
signed to guard against dishonest or otherwise incor-
rect RSA key generation with the single user in mind
[14]. The protocol is called KEGVER, which stands
for key generation with verifiable randomness. In this
protocol the user and the CA (a trusted third party)
generate a key pair for the user and the CA does not
learn the private key. At the end of the protocol the
CA (not necessarily the general public) is convinced
that the key pair has the correct form, that it is ran-
domly chosen, and that its randomness was influenced
by the CA’s coin tosses. To prevent subliminal leak-
age it might be necessary to avoid publishing all of
the user’s outputs except n (the proof transcripts might
contain a subliminal channel).

In a nutshell, KEGVER operates as follows. The
user and the CA conduct a cryptographic protocol that
leads to the generation of two random integers, x and
y. The protocol has the property that the CA influ-
ences the selection of x and y. Furthermore, the CA
verifies that the CA influenced these values as ex-
pected. The values x and y are known the user, but
not to the CA. The user then computes an RSA com-



posite n and proves to the CA that n is a Blum integer
of the form prqs with r = s = 1. The user also proves
that p and q lie in the intervals [x, x+ �] and [y, y + �],
respectively, for some public parameter �. This effec-
tively proves that p is close to x and q is close to y,
thereby severely hampering the user’s ability to uni-
laterally “choose” the primes p and q. The value �
is chosen to be small enough so that the user is con-
strained in the construction of n, yet large enough to
ensure that the user can find p and q in these intervals.

Guajardo and Juels indicated that this protocol can
be conducted using two independently designed im-
plementations that communicate with each other to
foil SETUP attacks. For example, one peripheral de-
vice can act as the “user” and another peripheral can
act as the trusted third party in the protocol. It is nec-
essary that at least one of these two implementations
be honest in order to detect an insider attack. This is
a promising direction for efficiently protecting against
insider abuse.

7 Conclusion

Various insider attacks against RSA key generation
were addressed that potentially impact the privacy of
encryption as well as the non-repudiability of digital
signatures. Many of the existing protocols for proving
properties of RSA public keys were cited, along with
an open problem regarding Blum integers.

A stand-alone algorithm for generating RSA keys
was presented in the random oracle model that is sim-
ilar in flavor to the DSA parameter generation algo-
rithm. It is claimed that this heuristic minimizes the
bandwidth of the subliminal channel in RSA com-
posites, and hence heuristically guards against high-
bandwidth SETUP attacks against key generation.
However, the method does not prevent all insider at-
tacks. This algorithm should be regarded as orthogo-
nal to (as opposed to replacing in any way) the effi-

cient protocol of Guajardo and Juels that shows how a
verifier can be convinced of the random nature of the
two RSA primes belonging to the prover.
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Secure Verification of Location Claims∗
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Abstract

With the growing prevalence of sensor and wireless
networks comes a new demand for location-based ac-
cess control mechanisms. We introduce the concept of
secure location verification, and we show how it can
be used for location-based access control. Then, we
present the Echo protocol, a simple method for secure
location verification. The Echo protocol is extremely
lightweight: it does not require time synchronization,
cryptography, or very precise clocks. Hence, we be-
lieve that it is well suited for use in small, cheap, mo-
bile devices.

1 Introduction

Computer scientists are used to studying access con-
trol mechanisms where one’s identity determines what
one is authorized to do. However, in the physical
world, identity is not the only thing that matters: often,
the requester’s physical location also plays an impor-
tant role in determining access rights. This suggests
studying location-based access control.

Location-based access control in the physical world
is easy, natural, and familiar. For example, being able
to turn on or off the lights in a particular room us-
ing traditional technologies requires having a physical

∗This work was supported in part by DARPA NEST contract
F33615-01-C-1895, NSF CCR-0113941, and an equipment dona-
tion from Intel.

presence in the room. The very design of the light
switch is what enforces the security policy. In con-
trast, achieving the same kind of guarantee with in-
formation systems, such as wireless networks, is less
straightforward; it is not simply a matter of putting a
switch in the right place. To enforce location-based
access control policies on information resources, we
need a way to perform location verification, where a
principal’s location is securely verified to meet certain
criteria, e.g., being inside a particular room or a spe-
cific building.

Location verification enables location-based access
control. After verifying a principal’s location using
a location verification protocol, the principal can be
granted access to a particular resource according to
the desired policy. This approach is naturally com-
bined with physical security; guards or locks might be
used to determine who is allowed to enter a building,
then location verification employed to allow wireless
access to all those inside. The location verification
problem is the key technical challenge that must be
surmounted to implement location-based access con-
trol.

Location-based access control has several benefits.
Most importantly, it is natural for many applications.
One simple policy might allow wireless control of
only the lights for the room you are in, or might in-
sist that a company server cease operating if it is taken
outside the building. In addition, using location for
access control obviates the need to establish shared se-
crets in advance: visitors to a building need not obtain
wireless encryption keys prior to their visit.
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In this paper, we study the location verification
problem. First, we introduce and define the location
verification problem (Section 2). Then, we propose a
new protocol for location verification, called the Echo
protocol (Section 3), and we prove its security (Sec-
tion 4). Additionally, we discuss the privacy impli-
cations of the Echo Protocol, observing that privacy
is largely an orthogonal issue. This work provides a
foundation for securely using location in wireless in-
formation systems.

2 Goals and Assumptions

2.1 Problem Statement

There are many natural variants of the secure location
problem. We focus on solving the in-region verifi-
cation problem: a set of verifiers V wish to verify
whether a prover p is in a region R of interest. R
may be a room, a building, a stadium, or other physi-
cal area. The region typically has some sort of phys-
ical control to restrict people’s entry into it; the pur-
pose, then, is to control access to resources that are not
intrinsically constrained by physical security, such as
wireless networks. The verifier infrastructure V may,
in some cases, be a distributed system consisting of
multiple nodes.

The protocol must run correctly in the face of adver-
saries. Thus, when p does not in fact have a physical
presence inside R, the verifier must be careful not to
accept p’s claim to be in R. Furthermore, if p does
have a presence in R, the verifier should accept p’s
claim; otherwise the protocol would not be useful in
practice. We therefore require the following two prop-
erties to ensure that the protocol is useful and secure:

• Completeness: If p and V both behave according
to the protocol, and p is in R, then V will accept
that p is in R.

• Security: If V behaves according to the protocol
and accepts p’s claim, then p, or a party colluding
with p, has a physical presence in R.

It is important to distinguish between the problem
we are addressing, the in-region verification problem,
and the secure location determination problem. In the
latter problem, V attempts to securely discover the
physical location of p. In contrast, in the in-region ver-
ification problem, p claims to be in a particular region,
and V accepts or rejects the claim. The prover’s loca-
tion claim serves as a hint for the verifier to confirm or
disprove. Framing the problem in terms of secure in-
region verification, not secure location determination,
simplifies the problem and allows different location
determination algorithms to be used.

In fact, it is possible to compose an in-region verifi-
cation protocol with any location determination algo-
rithm, even a potentially insecure one, without com-
promising the security of the ultimate guarantee that a
prover is in the region. The in-region verification al-
gorithm verifies whether the claimed location is in R
or not; thus, p can use an insecure localization algo-
rithm to generate a claimed location that will be se-
curely tested for accuracy by V . At worst, p’s claim
will be rejected; in no case will V believe something
about p’s location that has not been securely checked.
The prover p thus has the flexibility to choose any ap-
propriate location determination algorithm, even if it
has not been proven secure. After running the deter-
mination algorithm, p will know which claims it can
plausibly make.

2.2 Assumptions

It is worth considering in more detail what our partic-
ular protocol is and is not attempting to do:

• Regions, not points. We are not attempting
to verify the exact location of the prover. In



other words, the location claims we verify are
not claims of particular point locations (plus or
minus some error distance), but rather just pres-
ence in a particular region R of interest. This
model accords well with our anticipated applica-
tions. We assume that before the verification pro-
tocol begins, both the prover and verifier know
the definition of the region R.

• Only “local” regions. It is not a requirement to
verify all location claims. More specifically, we
only attempt to verify location claims for regions
R that are “near” V . We will explore more pre-
cisely what this means in Sections 3 and 4. The
restriction makes sense in light of the proposed
application domain: controlling access to wire-
less resources once physical access to an area has
been granted.

• RF and sound capability. The verifier and
prover must each be able to communicate using
both radio frequency (RF) and sound (typically
ultrasound frequencies). We will use both trans-
mission media in our protocol.

• Bounded processing delay. The prover must be
able to bound its processing delay. We will de-
scribe the effects that a loose bound will have on
the protocol in Section 4.

2.3 Threat Model

In order to verify the security property, we must con-
sider the protocol with respect to a particular threat
model. We assume the verifier nodes are all trusted,
and they can communicate securely amongst them-
selves. In contrast, the prover p might behave ma-
liciously, and we will consider an adversarial prover
consisting of multiple colluding nodes, arbitrary com-
puting power, and secure RF (speed of light) commu-
nication amongst its own nodes as well as sound gen-
eration and detection capability on each of its nodes.

Each adversarial node can generate directional sig-
nals. Furthermore, the verifiers will not be able to de-
tect the presence of an adversary by monitoring the RF
communications since an adversary can easily use en-
cryption or send its data on different RF frequencies.

Lastly, by definition, the adversary must not actu-
ally have any presence in the region R. Otherwise, it
would be able to make a legitimate claim and would
not need to attack the protocol.

2.4 Design Principles

We designed our protocol according to the following
design principles:

• Make few resource demands on the prover
and verifier. We would like to minimize the
computational power and hardware resources
necessary to participate in the protocol. The real
goal is to enable location proofs for a large class
of devices.

• No prearranged setup required. It should not
be necessary for the prover to have previously
engaged in a setup or registration step with the
verifier. This excludes many cryptographic solu-
tions; even public-key cryptography requires pre-
arranged trust relationships, and thus is not suit-
able for our purposes. By eliminating the setup
step, we are enabling access to resources to be
granted based on physical presence alone.

In settings where keys have been previously set
up, we can use them to complement our protocol.
In the full version of this paper[14], we discuss a
variant of the Echo protocol where a challenge-
response protocol can be used to verify that a par-
ticular principal is inside a given region.

• Quantitative guarantees. We would like to pro-
vide precise bounds on the uncertainty in the pro-
tocol.



Figure 1: An illustration of our first simplification of
the problem. The prover (not shown here) will try to
convince the single verifier node v that it is inside the
region R (depicted as a shadowed circle, which in this
first scenario is assumed to be centered at v).

3 Our Design: The Echo Protocol

Next, we describe the design of our proposal for loca-
tion verification, which we dub the Echo protocol. For
expository purposes, we start by considering a sim-
plified toy scenario and developing a simple protocol
for this scenario (Section 3.1); then, we extend it re-
peatedly (Section 3.2) until we obtain the full protocol
(Section 3.3).

Notation We define s to be the speed of sound, or
331 m/s. Likewise, we will take c to be the speed of
light (which is the same as the speed of propagation of
electromagnetic waves), or 3×108 m/s. Define d(x, y)
to be the distance between x and y. We define R to be
the area in which we would like to verify the location
of a prover p. The set of all verifier nodes is denoted
by V . N denotes a nonce, i.e., an unpredictable ran-
dom value.

3.1 Protocol Intuition

Consider first a simplified case, where we have only a
single verifier node v, where the region R is a circle1,

1In practice, the region is a sphere, instead of a circle. This
simplification makes the protocol easier to understand and does
not affect the validity of our results.

1. p
radio
−−→ v : `

2. v
radio
−−→ p : N

3. p
sound
−−−→ v : N

v accepts iff ` ∈ R and
elapsed time ≤ d(v, `) · (c−1 + s−1).

Figure 2: A protocol that solves our first simplification
of the problem.

and where this circle is centered at v. This scenario is
shown pictorially in Figure 1. Now, suppose that the
prover claims to be at some location ` ∈ R inside the
region.

We present a simple protocol for validating the lo-
cation claim in this restricted case. First note that if the
claimed location ` is not inside R, then the verifier can
reject the claim immediately. Thus, we may safely as-
sume that the prover claims to be inside R. Next, the
verifier node v sends a packet containing a nonce to
the prover using RF; the prover immediately echoes
the packet back to the verifier using ultrasound. The
verifier node v can then calculate how long it should
take to hear the echo, namely, the sum of the time it
takes to reach ` using RF, plus the time it takes for a
return packet to go from ` to v using ultrasound. Thus,
the total elapsed time for the prover to hear the echoed
nonce should be about d(v, `)/c + d(v, `)/s seconds.
The only thing v has to do is time this process: If the
elapsed time from the initial transmission to reception
of the echo packet is more than this amount, the ver-
ifier node v rejects the prover’s claim; otherwise, if
the elapsed time is at most this expected amount, v
accepts. This protocol is summarized in Figure 2.

Why does this work? If the prover is able to return
the packet within some maximum amount of time,
then the verifier is assured that the prover is within
d(v, `) meters of v. This means that ` is known to be
inside a circle of radius d(v, `) centered at v. Call this



circle C; then we know ` ∈ C . Since R is defined to
be a circle of radius at least d(v, `) centered at v, we
have C ⊆ R, and hence ` ∈ R. In short, we know that
the prover must be inside R.

If the prover cannot return the nonce in sufficient
time, it may be for one of two reasons. Either the
prover is more than d(v, `) meters away from v, or
the prover has some processing delay between receiv-
ing the RF packet and returning the ultrasound packet.
We will explore this latter issue in the following sec-
tion.

What if the prover tries to cheat by delaying his re-
sponse? This attack only increases the total elapsed
time of the process, thereby making the verifier reject.
Intuitively, the longer it takes to complete the proto-
col, the farther away the prover appears to be. It is
not in the prover’s interest to appear to be farther from
v, because this will put the prover’s apparent location
outside of R, hence making v reject the prover’s claim.

Can the prover cheat by starting the transmission
of the response early? No, this attack is not possi-
ble. The nonce in the packet prevents the prover from
sending a reply before it has received the outgoing RF
packet. Hence, the speed of light and sound prevents
the prover from pretending to be closer to v than he
really is.

3.2 Processing Delay & Nonuniform Regions

In this section, we present a slightly more advanced
protocol that addresses three additional issues: the fact
that the prover has a nonzero processing delay, the fact
that packets take nonzero time to transmit, and the fact
that R might not be a circle. We base this protocol
on the simple protocol presented in the previous sec-
tion. For a more complete treatment of these consid-
erations, please see the full version of this paper [14].

Processing delay So far we have assumed that a
prover can immediately echo back the nonce it was
sent. In reality, of course, there is some finite pro-
cessing delay. Let us start with the configuration men-
tioned in Section 3.1: We have a single verifier lo-
cated at the center of a circular region R. Suppose the
prover can bound its processing delay to be at most ∆p

seconds and can make the verifier node aware of this
maximum delay. Then, if the prover claims to be at
`, the verifier node can compute the time for a prover
actually at ` to get the packet back: the time for the
RF signal to travel from v to `, a processing delay
of at most ∆p, and finally the time for the sound to
travel from ` back to v. This creates a problem when
the prover is near the edge of R; the processing delay
creates enough uncertainty that we cannot tell if the
prover is inside or outside R. The solution is not to
accept location claims such that the region of uncer-
tainty lies outside R. Thus, we define the term Region
of Acceptance (ROA) to be the area in which the ver-
ifier node v is sure that it can correctly verify claims
for a prover. Note that this region depends on ∆p. We
write ROA(v,∆p) to indicate the region where loca-
tion claims are permitted by v, if the claimed process-
ing delay is ∆p. See Figure 3 for an illustration.

An alternate way to view ROA(v,∆p) is that it is
the region for which the protocol is complete.

What kind of processing delays do we expect to
see? Our experiences with the Berkeley Mica 2 sensor
network platform indicate that a millisecond delay is
completely feasible and realistic [10]. Each device is
a small, embedded device running an 8 megahertz, 8-
bit Atmel 128 processor. Under most applications, the
processor is idle most of the time to increase battery
life, so system bus and processor contention is a minor
contributor to delay. The operating system, TinyOS,
is extremely small and simple, so the delay in the net-
work stack are also minimized. We expect that most
of the delay will arise in using a media access con-
trol protocol (MAC) to acquire the sending channel.
By using an extremely simple MAC protocol that does



not include any waiting (sending immediately only if
the channel is free), we can reduce both the variance
and magnitude of the MAC delay. Each millisecond of
delay contributes ≈ 33 centimeters of uncertainty. If a
more powerful node is used, say comparable to a wire-
less base station, the delay could likely be reduced by
an order of magnitude.

Packet transmission time Another subtle point in
considering the security of the Echo Protocol is that
transmitting a packet is not instantaneous since a
sender sends the first bit of the packet and some time
later finishes sending the last bit of the packet. An ad-
versary can leverage this time differential if it is near
the edge of the ROA. Under certain circumstances, an
adversary can be outside the ROA, yet probabilisti-
cally convince the prover that it is inside, a violation
of the security condition. An adversary that antici-
pates the first k bits of the nonce will gain an advan-
tage since it can overlap the sending of the outbound
packet while still receiving the incoming packet. By
using a nonce generated by a cryptographically strong
pseudo-random number generator, the verifier limits
the effectiveness of this attack. An adversary has a
2−k chance in correctly guessing k bits, so it is not
feasible to anticipate more than a few bytes. As de-
tailed in the full version of this paper [14], one solu-
tion is to incorporate the packet transmission time into
∆p by increasing it by the maximum packet transmis-
sion time; we call the packet transission time ∆min.

Non-circular regions. Up until now, we have been
assuming that R is a circle centered at v. How-
ever, that is not always a realistic assumption: per-
haps we are interested in verifying location claims in
a square room, for instance. We will now relax that
assumption and assume that the verifier node is con-
tained somewhere within an arbitrarily shaped region
R. This causes a larger area to be incomplete, or non-
verifiable, as shown in Figure 4. We will address the
question of incompleteness in the next section.

Figure 3: Diagram illustrating a single verifier at the
center of a circular region R where there is an up-
per bound of ∆ on the processing delay. The dia-
gram illustrates the relationship between ROA(v,∆)
and ROA(v, 0), the latter equal to R in this case.

Previously, ROA(v, 0) had been equivalent to R.
But this will not work when R is not a circle centered
at v. Since we are assuming that our communications
equipment is omni-directional and that signals travel
at the same speed in all directions, the ROA must be
a circle. Furthermore, the ROA must be wholly con-
tained within R. By definition, the ROA is the region
where the verifier will accept a correctly functioning
prover; if the ROA were not fully contained within R,
the prover could accept a location claim for a prover
outside of R, which would be unacceptable. Further-
more, we would like to maximize the area of the ROA
since a larger ROA leads to a larger coverage. Thus,
ROA(v, 0) should be the largest circle that fits within
R; in other words, it should be the largest circle that is
tangent to R and still contained within it.

We now extend the protocol to handle non-circular
regions R where the verifier can bound its processing
delay to be at most ∆p. Recall that both the prover
node and verifier node know R a priori. Using this,
the verifier node can compute ahead of time the region
ROA(v, 0).

The protocol then proceeds as follows: the prover
first broadcasts its claimed location ` and processing
delay ∆p to the verifier. If ` 6∈ ROA(v,∆p), the veri-
fier should immediately reject the location claim since
it will not be able to definitively validate the claim.
Otherwise, the verifier node broadcasts a nonce to the



Figure 4: A single verifier v, inside a irregular re-
gion R. We are interested in proving that the prover
is within R. The larger circle represents ROA(v, 0),
the area in which v is useful for location verification
proofs. This is the largest circle centered at v and
wholly contained within R. The inner circle repre-
sents ROA(v,∆), the region in which v will accept
location claims from a device that is able to bound its
processing delay by ∆.

prover; the prover echoes the nonce back over ultra-
sound. The verifier can again time the communica-
tion: if it is no greater than the time for the signal to
travel out and back and allowing for processing delay,
the verifier accepts the location claim. Recall that ∆p

is an intrinsic property of the prover. So by sending
∆p as the first step of the protocol, it can receive an
early rejection if its delay is too large for its claimed
location; thus, ∆p is only useful for the prover. By ly-
ing about ∆p, an adversary only affects early rejection
and not the security of the protocol (see Section 4 for
the complete proof of security). Intuitively, the total
time that the verifier allows for a message to go out
and come back is fixed and independent of ∆p. So,
when an adversary exaggerates ∆p, it simply allows
itself less time to respond. We expect that in practice
if the prover were rejected early, the verifier would tell
the prover ROA(v,∆p) so the prover could move into
a verifiable area.

3.3 Full Protocol Description: The Echo Pro-
tocol

In the final iteration of the protocol, we introduce mul-
tiple verifier nodes in an attempt to increase the cov-
erage of R. Recall that if R is not a circle, no single
node can provide 100% coverage. Consequently, mul-
tiple verifiers are needed. Intuitively, we will run the
protocol presented in Section 3.2 after selecting one
verifier from among the set of verifiers V .

The protocol is quite simple. See Figure 6 for the
complete definition. First, a verifier is chosen so that
the claimed location ` lies within that verifier’s ROA.
If no such verifier exists, execution is aborted, since
the claim can not be verified. After choosing a verifier
v to participate, v sends a packet to p using RF, which
is echoed back to it using ultrasound. v can calculate
how long it should take to hear the echo, namely, the
sum of the time it takes to reach ` using RF, plus ∆p,
plus the time it takes for a return packet to go from `
to v using ultrasound. If the measured elapsed time
exceeds this anticipated time, v rejects the location
claim. The nonce in the packet prevents the prover
from sending a reply before it has received the outgo-
ing RF packet.

The extra verifier nodes serve to expand the region
of acceptance within R. Thus, while ROA(v,∆p)
refers to the region that one particular verifier node can
accept, we define ROA(∆p) to be the region where at
least one verifier node can prove location claims. It is
then clear that

ROA(∆p) ≡
⋃

v∈V

ROA(v,∆p)

since the set of verifiers can accept a location proof
if the claimed location is inside at least one verifier’s
region of acceptance.

In the Echo protocol, the infrastructure chooses a
single verifier node to participate in the protocol. A
verifier v may participate if ` ∈ ROA(v,∆p), since



Figure 5: The relationship between ROA(v) (for a
single verifier v) and the aggregate ROA. Each gray
circle represents ROA(v,∆) for a particular veri-
fier v. Taken collectively, the gray region represents
ROA(∆), the aggregate region in which the set of ver-
ifiers can successfully verify the location of a prover
that features a processing delay less than ∆. Note that
ROA(∆) is wholly contained within R.

by definition that is the region for which it can per-
form secure location verification proofs. Note that
the claimed location ` may be inside ROA(v,∆p) for
many different verifier nodes v, hence more than one
verifier node might be eligible for participation in the
protocol. We only require one to be chosen, and we
allow the verifiers to use any convenient leader elec-
tion mechanism for choosing which particular verifier
node will run the protocol. They may have a purely
deterministic mechanism for electing verifiers, or they
may use a dynamic algorithm in an attempt to con-
serve power, for example.

4 Security Analysis

As explained in Section 3, the protocol relies on tim-
ing: the amount of time it takes to get a response from
the prover bounds the prover’s distance from the ver-
ifier. We now show that it is impossible for an adver-
sary outside R to convince the verifier that it is in R.

COMMUNICATION PHASE:

1. p
radio
−−→ broadcast : (`,∆p).

The prover broadcasts its claimed location `
and processing delay ∆p.

2. v : ts ← time ().

v
radio
−−→ p : N .

A single verifier v starts its timer and responds
with a random nonce.
We require ` ∈ ROA(v,∆p) and ∆p ≥ ∆min.
If no such verifier exists or ∆p is invalid, abort.

3. p
sound
−−−→ v : N .

v : tf ← time ().
The prover echoes the nonce over ultrasound.
The verifier records the finish time.

VERIFIER COMPUTATION PHASE:
4. if sent nonce differs from received nonce

return false
5. if tf − ts > d(v,`)

c
+ d(v,`)

s
+ ∆p

return false
6. Otherwise, return true

Figure 6: Formal description of the Echo protocol,
which can perform location verification in an arbitrary
region R with multiple verifier nodes. We represent
the prover node as p and the verifier node that runs the
protocol as v. In step 2, ∆min represents the lower
bound on the delay, which is incurred by transmitting
the packet.

Proof of security The heart of the argument is that
an attacker would not be able to get the sound signal
to the verifier in time. In order to confirm that the
prover is at `, all a particular verifier node v must do is
verify that the incoming sound signal, which includes
the outgoing nonce, is received within

tmax ≤
d(v, `)

c
+

d(v, `)

s
+ ∆p seconds,

where d(v, `) is the distance from the verifier to the
claimed location, c is the speed of radio propagation
(the speed of light, which may vary depending on



the medium through which it passes), s is the speed
of sound, and ∆p is the prover’s processing delay.
As described in Section 3.2, ∆p includes the packet
transmission time. This is checked by the verifier in
step two of the communication phase of the protocol.
Recall that v agrees to run the protocol only if ` ∈
ROA(v,∆p), i.e., if the circle of radius d(v, `)+∆p ·s
lies wholly within R. As long as ∆p is positive (guar-
anteed by step two), we know that ROA(v,∆p) ⊂ R.
As we saw in Section 3.2, ∆p is used an an optimiza-
tion and potentially a hint to the prover, so even if an
adversary lies about ∆p, security is assured.

By definition, the attacker A is outside R; thus we
have

d(v,A) > d(v, `) + ∆p · s.

Let ∆tA denote the elapsed time (tf − ti) when the
attacker finishes sending its response (message 3 of
the Echo protocol). The attacker has only two choices:
either guess at least some of the bits of N , or learn
the entire nonce N from v. In the former case, the
attacker’s success probability can be made negligibly
small by choosing N from a set of sufficient size. In
the latter case, it will take at least d(v,A)/c seconds
after v first reveals N before A can receive N , because
no signal can travel faster than the speed of light. Be-
cause v reveals N for the first time in message 2 of the
protocol, ∆tA ≥ d(v,A)/c in this case. Now, since
the attacker cannot finish transmitting its response be-
fore it has received the entire nonce, and because the
attacker’s response cannot travel faster than the speed
of sound, the minimum time required for the attacker

to hear N and get a response to v is

∆tmin = ∆tA +
d(v,A)

s

≥
d(v,A)

c
+

d(v,A)

s

>
d(v, `) + ∆p · s

c
+

d(v, `) + ∆p · s

s

≥
d(v, `)

c
+

d(v, `)

s
+

∆p · s

c
+

∆p · s

s

≥
d(v, `)

c
+

d(v, `)

s
+ ∆p.

Consequently, the attacker’s signal cannot reach the
verifier before the deadline. Note that nowhere in our
analysis did we rely on which verifier node was used.
The only difference would be in the magnitude of the
error terms and, therefore, in the chance that the lo-
cation claim would even be accepted for verification.
The attacker does not gain any advantage by selecting
a different verifier from the one selected to participate.

Attacks One possible attack could exploit the differ-
ence in propagation speed of sound in different media.
For example, the speed of sound in steel is 5032 m/s,
nearly 15 times faster than in air; other materials ex-
hibit similarly higher sound transmission speeds than
air. If the verifier’s estimation of s is slower than the
actual one, then the proof above does not apply. If this
is a valid threat model—say there is a lot of metal near
the verification region that is capable of transmitting
sound from the outside—then the verifier’s estimation
of s should be adjusted. This can be done once on
a site-specific basis. An alternate defense would be
to have other verifier nodes confirm the estimate of s
based on when the sound signals are received.

More generally, we require that there be no way for
an attacker to generate sound waves from afar without
being subject to speed-of-sound delays. For instance,
a remote attacker could call up some person in R over
the telephone and convince the victim to put the call



on speakerphone, then run the protocol. If the ultra-
sound reply can go over the telephone with sufficiently
high fidelity, then the attacker might be able to spoof
his location. The key is that the attacker has evaded
the speed-of-sound limit on signal propagation by ex-
ploiting the ability to remotely actuate a loudspeaker
located inside R. We expect such “remote actuation”
attacks will be very difficult to mount in practice; in
our example, band-limited phones would block ultra-
sound.

Variants We Rejected One might also consider the
implications of other variants of the protocol, where
the use of sound and radio for the outgoing and in-
coming signals is changed from (radio, sound) to (ra-
dio, radio), (sound, radio), or (sound, sound). If radio
communication is used in both directions, then the er-
ror term ∆ · c would be very large (105 to 106 times as
large as the sound case), and it is quite likely that the
verifier would not accept location claims at all, since
the error might exceed the size of R itself! Thus, at
least one of the two directions should use sound.

Why did we reject (sound, radio)? There is a subtle
attack. If sound is used in the outgoing direction, an
attacker might be able to break security by using laser-
based remote “bugging.” The trick is to bounce a laser
off a window within R and analyze the return signal
to detect the vibration of the window, which would
allow a sophisticated attacker outside R to “bug” a
room within R from miles away without being sub-
ject to speed-of-sound delays on the propagation of
the sonic signal. Thus, “remote bugging” attacks ef-
fectively speed up the transmission speed of the sound
wave and thereby invalidate our security proof above.
We thus reject (sound, radio) and (sound, sound) since
both rely on transmitting sound in the outgoing direc-
tion.

The (radio, sound) protocol is more secure against
such attacks, because “remote actuation” seems sig-
nificantly more difficult than “remote bugging,” and

the security of the (radio, sound) protocol rests only
on the difficulty of “remote actuation” and not on the
hardness of “remote bugging.” For this reason, the
Echo protocol uses radio in the outgoing direction
and reserves ultrasound for the return signal from the
prover.

Privacy Implications We now look at privacy con-
cerns related to the Echo Protocol. Clearly, the prover
reveals information to the verifier – it’s trying to con-
vince the verifier that it is in the ROA, after all. The
prover does have some control over what the verifier
learns, however. A prover situated very close to the
verifier can wait some time before replying with its
nonce. This increases the verifier’s uncertainty about
the prover’s location. A prover can employ this tech-
nique to ensure that the verifier only learns that the
verifier is inside the ROA centered around it.

But what about an outside observer? A shareholder
snooping at a company’s headquarters might expect
a press release if ten vice presidents each authenti-
cate their location to the corporate boardroom. An ad-
versary watching the interactions between the prover
(vice president) and the room’s infrastructure could in-
fer the prover’s location. In fact, since in most cases
the verifier is non-malicious, an adversary could in-
fer a prover’s location just by knowing which verifier
the prover interacts with. However, we note that it is
easy enough to obtain the prover’s location via other
means: for example, an adversary can passively tri-
angulate a node’s ordinary wireless communications
and determine its location independent of any location
protocol [17].

If an adversary can find a prover passively using tri-
angulation, why can’t the verifier use triangulation?
An adversary can inexpensively break the security of a
system that uses triangulation. By appropriately send-
ing different signal strengths to each verifier using di-
rectional antennas, an adversary can foil a triangula-
tion system to create a ghost image at any location.



This highlights a difference in the goals of the adver-
sary and verifier: an adversary still “wins” if it can
successfully triangulate only 1% of the time. How-
ever, the verifier must only accept claims in accor-
dance with the security condition, so it cannot use an
unreliable approach.

5 Related Work

Other Approaches A number of authors have pro-
posed using time-of-flight measurements and the
speed of light to securely gain location information
about untrusted parties. Brands and Chaum proposed
a time-bounded challenge-response protocol [4] as a
defense against man-in-the-middle attacks on crypto-
graphic identification schemes. Hu, et al., proposed
using temporal packet leashes for wireless networks to
defend against similar attacks [11]. However, a major
limitation of these schemes is that both the prover and
verifier send RF signals, requiring a much more accu-
rate timing system at the verifier as well as tight real-
time processing guarantees on both the prover and ver-
ifier for accurate readings. For these reasons, we be-
lieve our algorithm is better suited to mobile devices
than those previous proposals.

In independent and concurrent work, Waters and
Felten present a scheme that uses round-trip time-of-
flight of RF signals to achieve goals similar to ours
[21]. Their architecture is similar to ours, in that
they, too, suggest focusing on secure location verifi-
cation rather than on secure location determination.
However, their reliance on RF seems likely to limit
deployment, like the previous proposals mentioned
above. Additionally, by using tamper-resistant trusted
devices, they are able to defend against stronger adver-
saries. If their verifier accepts, they can successfully
show that the trusted device is at the specified loca-
tion. In comparison, we can show that the device or a
collaborator has a presence at the specified location.

Vora and Nesterenko use a novel technique for the
secure location verification problem that doesn’t rely
on time of flight[19]. The intuition behind their idea
is simple: nodes nearby the prover’s claimed location
should hear a prover’s broadcast, while those further
away should not hear it. They make use of “rejec-
tor nodes” to monitor radio signals from a malicious
verifier node that is outside the ROA. When a verifier
claiming to be inside the ROA broadcasts and a rejec-
tor node hears the signal, the system does not accept
the verifier’s claim. Their scheme is, however, vul-
nerable to adversaries with directional antennas and
requires very careful node placement to handle non-
trivial radio falloff models.

Location & Localization The idea of using time-
of-flight to estimate distance is not a new one: it dates
back to the birth of radar systems, which often use
time-difference-of-arrival (TDOA) to determine the
range to detected objects. Ultrasonic time-of-flight
ranging can even be found in nature, where it is used
by bats.

Coarse-grained location authentication has been
used in the television industry to prevent cloning
of set-top boxes [8]. Gabber and Wool propose
four coarse-grained techniques, relying on extensive
telecommunications infrastructure such as satellites,
paging and cellular networks. Their techniques rely
on tamper-resistant hardware.

Location-limited channels provide a communica-
tion mechanism that is restricted to a short range and
provides both endpoints a mechanism to guarantee
the authenticity of each participant [16]. Balfanz, et
al., have proposed using location-limited channels for
location-based access control [3], and many others
have also proposed use of limited-range radio broad-
casts as a way to verify proximity [5, 6, 12]. However,
there are no strong security guarantees that the com-
munication range will always be limited as desired: an
adversary with more powerful equipment may be able



to participate in the protocols even if they are substan-
tially further away than non-malicious parties.

Finally, there are many techniques to help localize
devices [1, 2, 15, 13, 9, 20], GPS being one of the
most widely deployed. However, none of those works
addresses security, and in fact GPS signals can be
spoofed [18, §3.2.2]. Nonetheless, we have noted that
combining a (possibly insecure) localization mecha-
nism with our secure location verification technique
yields a secure localization algorithm. Thus, insecure
localization protocols should be seen as complemen-
tary to our work on secure location verification.

Many authors have commented on the value of
location-based access control [5, 6, 7, 12, 3].

6 Conclusion

We introduced the in-region verification problem.
Then, we designed a provably secure, lightweight pro-
tocol to address it, named the Echo protocol. The
Echo protocol does not require cryptography, time
synchronization, or any prior agreement between the
prover and verifier, making it suitable for low-cost de-
vices such as those in sensor networks. It is robust
against a malicious adversary with unbounded com-
puting power; the security rests on physical properties
of sound and RF signal propagation. We expect the
Echo protocol to be a useful contribution in contexts
where physical presence is used for access control.

References

[1] GPS Documentation. https://www.
peterson.af.mil/GPS_Support/gps_
documentation.htm.

[2] Paramvir Bahl and Venkata N. Padmanabhan.
RADAR: An In-Building RF-Based User Loca-

tion and Tracking System. In INFOCOM (2),
pages 775–784, 2000.

[3] Dirk Balfanz, D.K. Smetters, Paul Stewart, and
H. Chi Wong. Talking to Strangers: Authenti-
cation in Ad-Hoc Wireless Networks. In Net-
work and Distributed System Security Sympo-
sium Conference Proceedings, 2002.

[4] Stefan Brands and David Chaum. Distance-
Bounding Protocols. In EUROCRYPT ’93, vol-
ume 765 of LNCS.

[5] Deborah Caswell and Philippe Debaty. Creating
Web Representations for Places. In 2nd Interna-
tional Symposium on Handheld and Ubiquitous
Computing, pages 114–126, 2000.

[6] Mark D. Corner and Brian D. Noble. Zero-
Interaction Authentication. In MOBICOM ’02.
ACM Press, 2002.

[7] Dorothy E. Denning and Peter F. MacDoran.
Location-Based Authentication: Grounding Cy-
berspace for Better Security. In Computer
Fraud & Security. Elsevier Science Ltd., Febru-
ary 1996.

[8] Eran Gabber and Avishai Wool. How to Prove
Where You Are: Tracking the Location of Cus-
tomer Equipment. In Proceedings of the 5th
ACM conference on Computer and Communica-
tions Security, pages 142–149, 1998.

[9] Lewis Girod, Vladimir Bychkovskiy, Jeremy El-
son, and Deborah Estrin. Locating Tiny Sensors
in Time and Space: A Case Study. In ICCD,
2002.

[10] Jason Hill, Robert Szewczyk, Alec Woo, Seth
Hollar, David Culler, and Kristofer Pister. Sys-
tem architecture directions for network sensors.
In ASPLOS, 2002.



[11] Yih-Chun Hu, Adrian Perrig, and David B. John-
son. Packet Leashes: A Defense against Worm-
hole Attacks in Wireless Ad Hoc Networks. In
INFOCOM, 2003.

[12] Tim Kindberg, Kan Zhang, and Narendar
Shankar. Context Authentication Using Con-
strained Channels. In Fourth IEEE Workshop
on Mobile Computing Systems and Applications,
2002.

[13] A.M. Ladd, K.E. Bekris, G. Marceau, A. Rudys,
D.S. Wallach, and L.E. Kavraki. Robotics-
Based Location Sensing for Wireless Ethernet.
In Eigth Annual International Conference on
Mobile Computing and Networks (MobiCOM
2002), 2002.

[14] Naveen Sastry and Umesh Shankar and David
Wagner. Secure verification of location claims.
In ACM Workshop on Wireless Security (WISE-
2003), 2003.

[15] Nissanka B. Priyantha, Allen K. L. Miu, Hari
Balakrishnan, and Seth J. Teller. The cricket
compass for context-aware mobile applications.
In Mobile Computing and Networking, pages 1–
14, 2001.

[16] Frank Stajano and Ross Anderson. The Resur-
recting Duckling: Security Issues for Ad-Hoc
Wireless Networks. In 7th Security Protocols
Workshop, volume 1796 of Lecture Notes in
Computer Science, pages 172–92, 1999.

[17] Ping Tao, Algis Rudys, Andrew Ladd, and Dan
Wallach. Wireless LAN location sensing for se-
curity application. In ACM Workshop on Wire-
less Security (WISE-2003), 2003.

[18] John A. Volpe. Vulnerability Assessment of
the Transportation Infrastructure Relying on the
Global Positioning System, August 2001.

[19] A. Vora and M. Nesterenko. Secure lo-
cation verification using radio broadcast.

http://www.cs.kent.edu/˜mikhail/
Research/location.ps, submitted to
4th International Workshop on Algorithms for
Wireless, Mobile, Ad Hoc and Sensor Networks.

[20] A. Ward, A. Jones, and A. Hopper. A New Lo-
cation Technique for the Active Office. IEEE
Personal Communications, 4(5):42–47, October
1997.

[21] Brent Waters and Ed Felten. Proving the
Location of Tamper Resistent Devices. http:
//www.cs.princeton.edu/˜bwaters/
research/location_proving.ps.



Manual Authentication for Wireless Devices

Christian Gehrmann
Ericsson Mobile Platforms

Lund, Sweden.
christian.gehrmann@ericsson.com

Chris J. Mitchell
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK.
c.mitchell@rhul.ac.uk

Kaisa Nyberg
Nokia Research Center

Helsinki, Finland.
kaisa.nyberg@nokia.com

January 23, 2004

Abstract

Manual authentication techniques have been designed
to enable wireless devices to authenticate one another
via an insecure wireless channel with the aid of a
manual transfer of data between the devices. Manual
transfer refers to the human operator of the devices
performing one of the following procedures: copy-
ing data output from one device into the other device,
comparing the output of the two devices, or entering
the same data into both devices. Techniques currently
being standardised are described which achieve this,
and which require only small amounts of data to be
transferred between the two devices. This makes the
mechanisms particularly attractive for non-expert use,
as required for ubiquitous mobile wireless devices.

1 Introduction

Entity authentication and authenticated key establish-
ment are of fundamental importance in establishing
secure communications between a pair of communi-
cating parties. Entity authentication is normally pro-

vided when a communications link is established and,
if an authenticated key is established simultaneously,
this can be used to protect subsequently exchanged
data. The purpose of this paper is to examine how
these services might best be achieved for personal
wireless-enabled devices.

Using the terminology of Stajano [12], the problem
is that of securely ‘imprinting’ a personal device. That
is, suppose a user has two wireless-enabled devices,
e.g. a mobile phone and a Personal Digital Assistant
(PDA); suppose further that he/she wishes the two de-
vices to establish a secure association for their wire-
less communications. This will, for example, enable
the two devices to securely share personal data. The
problem is thus for the two devices to mutually au-
thenticate one another and, where necessary, to estab-
lish a shared secret key, all using a wireless commu-
nications link. A shared secret key can be used as the
basis for future secure communications between the
two devices, including further mutual authentications.

The main threat to the process is via a so-called
‘man-in-the-middle attack’ on the wireless link. Be-
cause the link uses radio, a third party with a receiver
and a powerful transmitter could manipulate the com-
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munications between the devices, in a way that will
not be evident to the user. Thus, the attacker could
masquerade as the first device to the second device,
and also as the second device to the first device, and
set up separate keys with each. To prevent this, it will
be necessary for the device operator to input and out-
put data via the devices’ user interfaces (i.e. perform-
ing a manual data transfer) to enable the devices to
verify each other’s identities.

This is the context of use for the manual authentica-
tion protocols described here. We make the following
assumptions about the two devices.

• The two devices have access to a wireless com-
munications channel, which can be used to ex-
change as much data as required; however, no
assumptions are made about the security of this
channel — for example, it may be prone to ma-
nipulation by an active attacker.

• The two devices are both under the control of
either a single human user, or a pair of users
who trust one another and who share a commu-
nications channel whose integrity is protected by
some means (e.g. using handwritten notes or a
voice channel). Both devices have a means to in-
put or output a sequence of digits, i.e. they have
at least a numeric keypad or a multi-digit display.

• If a device does not have a keypad, then it must
at least have an input, e.g. a button, allowing the
successful conclusion of a procedure to be indi-
cated to the device. Similarly, if a device lacks a
multi-character display, then it must at least have
an output capable of indicating the success or
failure of a procedure (e.g. red and green lights
or a sound output).

We do not assume that the devices have any prior
keying relationship or are equipped with any keys by
their manufacturers. Of course, the problem would be-
come dramatically easier if every device had a unique

signature key pair and a certificate for their public
key signed by a widely trusted Certification Authority
(CA). However the overhead of personalising every
device in this way is likely to be prohibitive, particu-
larly for low-cost devices.

Similarly, we do not assume that the two devices
share a trusted communications link, e.g. as might be
provided by a hard-wired connection. Such a link,
even if it only guaranteed data integrity and data origin
authentication (and not confidentiality), would again
make the problem simple, since it could be used to au-
thenticate a Diffie-Hellman exchange (as described in
section 2). However, it would be unreasonable to al-
ways expect such a link to exist, since many simple
wireless devices are likely to possess no wired com-
munications interfaces.

An emerging international standard, ISO/IEC 9798-
5 [6], currently at Committee Draft ballot stage, con-
tains a set of ‘manual authentication’ solutions to the
wireless device imprinting problem. Some of the
schemes in this standard are described in sections 3
and 4 below. The same schemes may also be included
in a future version of the Bluetooth standards. The
existing Bluetooth specifications already contain a so-
lution to device imprinting, but this solution has well-
known security shortcomings if the initial exchange
between devices can be wiretapped [3, 8]. A more
detailed discussion of manual authentication can be
found in [3].

2 Using Diffie-Hellman

Perhaps the most straightforward solution to the im-
printing problem is to use the Diffie-Hellman key es-
tablishment protocol [1, 11]; this approach was first
proposed by Maher [10]. As discussed in [3], this is
also the solution proposed by Stajano and Anderson,
[12, 13]. We thus first describe such a solution.
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2.1 Procedure

The two devices first agree on (or are pre-programmed
with) a secure set of Diffie-Hellman parameters,
namely a large primep, a large primeq dividing p−1,
and a valueg of multiplicative orderq modp. In fact
the Diffie-Hellman parameters could be standardised,
or made the subject of an industry agreement. This
would make the task of equipping all devices with the
parameters very simple, and certainly much simpler
and cheaper than giving each device an individual key
pair and certificate.

The two devices,A andB say, then both generate a
random value between 1 andq−1 — call these values
a and b. A computesga mod p and sends it toB,
andB computesgb mod p and sends it toA (in both
cases using the wireless link). FinallyA computes the
shared keyK asK = (gb)a mod p andB computes
the same key as(ga)b mod p.

Of course, as is widely understood (see, for exam-
ple, [11]) this procedure does not provide mutual au-
thentication, since the transmitted Diffie-Hellman val-
ues could have been manipulated by an interceptor
acting as a man-in-the-middle (as above). Mutual au-
thentication can be achieved by the manual exchange
of checksums, i.e. using a ‘manual authentication’
technique, as follows. Note that, apart from the au-
thentication issue, the security of the Diffie-Hellman
protocol has been widely studied. If the parameters
are chosen appropriately, then it is believed to be se-
cure.

To provide the desired authentication, Maher [10]
proposed the following additional steps. After com-
pleting the Diffie-Hellman exchange, both devices in-
put the keyK to a one-way hash-functionh, e.g. SHA-
1 [5], to obtainh(K), which can be truncated to the
desired length by taking the leftmost bits of the output
(the choice for the length is discussed below). Sup-
pose now that one device has a display and the other
a keypad. The device with a display outputs the hash-

code, e.g. as a sequence of hexadecimal digits. The
user now enters this sequence into the second device
using its keypad. The second device compares the
input hash-code with its computed value and, if they
agree, provides a positive indication to the user. If this
positive indication is received, the user inputs a suc-
cess indication into the first device. This completes
the mutual authentication process, and both devices
also now have an authenticated key.

A similar procedure can be followed if both devices
have a display. In this case both devices output their
computed hash code, and the user is then simply re-
quired to compare the values output by the two de-
vices. If they agree then the user gives a positive indi-
cation to both devices.

If one of the devices possesses neither a display nor
a keypad, then it is difficult to apply the above method.
However, in the case of a device with an audio output,
e.g. a wireless headset, it may be possible for the head-
set to ‘speak’ the digits to the user, thus providing the
functions of a display.

2.2 Issues

The main problem with the above procedure is the
number of digits that need to be typed or examined
by the user. Typing in a large number of digits to
a small numeric keypad without making an error is
a non-trivial procedure, and one that many users are
likely to find too demanding to carry out. This is
bad news for manufacturers of consumer devices. If
the device cannot operate without completing the pro-
cedure then repeated failures to perform it correctly
will cause the user to be very frustrated with the sup-
plier. Alternatively, if the device can be used with-
out a secure imprinting process, then this is a situation
which could give rise to serious security vulnerabili-
ties, which could also seriously damage the supplier’s
reputation.
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One possible solution is to drastically truncate the
hash-code, e.g. to the first 16 or 32 bits — this would
mean that the user would only have to type in (or com-
pare) 4 or 8 hexadecimal digits, respectively. Whilst
this is attractive, it has serious security weaknesses, as
follows.

2.3 Attacking short hash-codes

Typically one device (sayA) will send its Diffie-
Hellman value first, and then wait for the response
from B. Suppose thatA first sendsga mod p to B.
Suppose also that an active interceptor of the wire-
less link, C say, prevents this from reachingB and
replaces it withga′ mod p, for some valuea′ chosen
by C.

B responds withgb mod p, andB simultaneously
computes the shared key asKB = ga′b mod p. Now
suppose thatC also interceptsgb mod p and prevents
it from reachingA. It is important to observe that,
becauseC chosea′, C is now able to compute the key
held byB, i.e.C knowsKB.

C next generates a series of random valuesb′, and
for each such value computesK ′ = (ga)b′ mod p and
h(K ′). C then compares the first 16 bits ofh(K ′)
with the first 16 bits ofh(KB). If they agree thenC
simply sendsgb′ mod p to A, who generates the key
KA = (gb′)a mod p. Because of the way in whichb′

was chosen byC, the truncated hashes computed byA
andB will match, although they do not share a secret
key. Moreover, worst of all,C will know the values of
the keys held byA andB.

This attack requires the attacker to perform a signif-
icant amount of work in a short time, i.e. beforeA and
B ‘time out’. Specifically, if the hash-function is trun-
cated tot bits, then on averageC will need to generate
2t−1 valuesb′ before one is found which yields the de-
sired hash-value. Thus fort = 16, t = 32 andt = 48
the attack requires 30,000, 2 billion and 150 trillion

trials respectively. If an attacker with significant com-
puting resources wished to attack the imprinting pro-
cess, then it might be feasible to perform one billion
trials in a second, and we might reasonably assume
the ‘time-out’ value to be at most 10 seconds, allow-
ing time for the attacker to perform 10 billion trials.

Thus using a hash-code of at least 48 bits appears to
be necessary to rule out the possibility of success in at-
tacking the imprinting process, given a well-equipped
‘man-in-the-middle’. 48 bits amounts to 12 hexadeci-
mal digits, which is already quite a significant number
for a user to enter in an error-free way, particularly
when using a very small keypad with no display to
enable the user to check the correctness of each key
depression.

Ideally we would like a solution in which such a
man-in-the-middle attack can be prevented without re-
quiring the users to type in or compare long strings of
digits. Such schemes form the focus of the remainder
of this paper.

3 Manual authentication using a
short check-value

We first describe an example of a scheme which uses
keyed check-functions having short check-values (e.g.
of around 16–20 bits) and using short keys (again
of 16-20 bits). These check-functions are essentially
MAC (Message Authentication Code) functions pro-
ducing short outputs. To maximise the provable per-
formance of the scheme, Gehrmann and Nyberg [3]
have proposed using a coding theory construction to
compute the check-values; this scheme is included in
the draft standard [6]. However, in practice, use of a
conventional MAC function (e.g. a CBC-MAC based
on use of a block cipher — see, for example, [11]) will
almost certainly be sufficiently secure (in such a case
the short key could be padded with a fixed string to
construct a block cipher key).
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3.1 The MANA I scheme

The scheme we describe, called MANA I (for MAN-
ual Authentication) in [3] and mechanism 1 in [6], is
designed for use in the situation where one device (A)
has a display and the other (B) has a keypad, although
a simple variant (MANA II) exists for the case where
both devices have a display. MANA I and MANA II
were originally published in [2].

We also assume that the two devices wish to agree
on the value of a public data stringD. This data string
could be the concatenation ofA’s andB’s public keys,
for some asymmetric cryptosystem. This could sup-
port the registration process for a small-scale PKI, or
could simply be used as the basis for subsequent se-
cure communications. In particular the public keys
could be used, e.g. as Diffie-Hellman public keys, to
provide the basis for an authenticated secret key estab-
lishment protocol, requiring no further intervention by
the user.

We writemK(X) for the check-value computed us-
ing keyK and data stringX. The scheme operates as
follows (see also Figure1).

1. A data stringD is agreed by some means be-
tweenA andB using the wireless channel. This
would typically occur via an exchange of (unpro-
tected) messages.

2. DeviceA generates a random keyK of length
appropriate for use with the check-function (i.e.
of 16–20 bits);A also generates the check-value
mK(D). The key and check-value are then out-
put to the display by deviceA.

3. The user enters the check-value and the keyK,
read from the display of deviceA, into deviceB
(using the keypad).

4. DeviceB uses the keyK provided by the user to
recomputemK(D), and compares this with the
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Figure 1:Manual authentication using a short check-
value

value entered by the user. The device outputs
an indication of success or failure, depending on
whether or not the check-values agree.

5. The user copies this success/failure indication
back into deviceA.

3.2 Analysis of the scheme

First note that the key and check-value are not avail-
able to any would-be attacker, who only sees the data
D. The only possible strategy for the attacker is to try
to persuadeA andB to agree on different data strings
DA andDB respectively, with the property that

mK(DA) = mK(DB)

for the largest possible number of secret keysK. In
the coding theory construction for the check-function
m (as in [3]) this largest number of keys is known.
From it an upper bound on the success probability of
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the attacker can be determined. However to carry out
such a substitution attack, and to reach the largest suc-
cess probability, would require a lot of computation.
In practice an attacker cannot do significantly better
than choose arbitrary stringsDA and DB and hope
that the check-values computed with the key that is
unknown to the attacker will be the same. Even if
a check-value construction based on a conventional
CBC-MAC is used, it is very unlikely that the at-
tacker will be able to do much better than with the
coding theory construction, given thatA andB choose
parts ofDA andDB, respectively. If a guess fails, no
off-line computation can help the attacker any further.
Once the parties have agreed on a key, it is no longer
possible to attack the manual authentication scheme or
to persuade either party to accept an incorrect valueD.
The only possible remaining vulnerability would be in
any subsequent key exchange process based on use of
the authenticated valueD, e.g. a Diffie-Hellman key
agreement (which, as we have discussed previously, is
believed to be secure).

In summary, and assuming that the coding theory
construction is used for the check-function, the prob-
ability of a successful attack (whereA andB agree
on different data values) is less than2−13, i.e. 1 in
8,000, for 16-bit keys and check-values and less than
2−17, i.e. 1 in 130,000, for 20-bit keys and hash-codes.
More details are given in [3, 6].

3.3 Variants of the scheme

Since the data stringD is generated byA, it does not
need to be sent toB until after step 2. In fact, the
data transfer can be delayed indefinitely, and the key
and check-value transferred manually toB can act as
a ‘certificate’ for the subsequently exchanged dataD.
This might be useful, for example, where a newly pur-
chased device is ‘manually authenticated’ as soon as
it is switched on, but where public keys are only gen-
erated and exchanged at some later time.

Finally note that a variant of the above mechanism,
known as MANA II in [3] and mechanism 2 in [6],
can be devised to cover the situation where both de-
vicesA andB have a display, but neither of them has
a keypad (although they must both possess a means of
indicating successful completion of the protocol).

Briefly, in this case, the first two steps are as in
MANA I. However, in addition to displaying the key
and check-value, deviceA also sends the key to de-
viceB via the wireless channel (and hence in this case
the key is available to an attacker). DeviceB uses
the received key to recompute the check-value on its
version of the data string, and finally displays the key
received fromA together with the check value it has
computed. The user completes the process by com-
paring the values displayed by the two devices. Only
if the key and check-value agree completely does the
user give a ‘success’ indication to both devices.

4 Manual authentication using a
MAC function

A different class of manual authentication protocols
can be constructed using a conventional MAC func-
tion, such as HMAC [4] or a block cipher based CBC-
MAC.

4.1 The MANA III scheme

The scheme we describe is MANA III from [3] (it is
also specified as mechanism 3a in ISO/IEC CD 9798-
6 [6]). It is designed for use in the situation where
both devices have a keypad, although a simple variant
exists for the case where one device has a display (see
below). As previously, we assume that the two devices
wish to agree on the value of a public data stringD,
whereD could be used for agreeing public keys, as
described in section 3.1.
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We writemK(X) for the MAC computed using key
K and data stringX. The scheme operates as follows
(see also Figure2).

 

 

Receive MAC1. 

Output: Data D ready 

User verifies: Both components ready. 
User enters R in both devices. 

 

Generate K1, compute MAC1, 
and transmit MAC1 to B 

Output: Data D ready 

Receive K2 and verify MAC2.  
If accept, output OK. 
Output K and MAC 

User verifies that both A and B accepted, in which case user enters OK in 
both A and B.  Else, user enters REJECT in both A and B. 
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to B 

Receive K1 and verify MAC1. 
If accept, transmit K2 to A and 
output OK 

A 
simple 
output 

B 
simple 
output 

Figure 2:Manual authentication using a MAC

1. A data stringD is agreed betweenA andB using
the wireless channel.

2. The user generates a short random bit-stringR,
e.g. of 16–20 bits, and enters it into both devices.

3. Device A generates a random MAC key
K1 and computes the MAC valueM1 =
mK1(IA||D||R), whereIA is an identifier forA
and || denotes concatenation of data items. De-
viceA sendsM1 to B via the wireless link.

4. Device B generates a random MAC key
K2 and computes the MAC valueM2 =
mK2(IB||D||R), whereIB is an identifier forB.
DeviceB sendsM2 to A via the wireless link.

5. When deviceA receivesM2 from B (and not be-
fore),A sendsB the keyK1.

6. When deviceB receivesM1 from A (and not be-
fore),B sendsA the keyK2.

7. On receipt ofK2, A uses it to recomputeM2,
where the data employed in the computation con-
sists of its stored value ofD, the expected iden-
tifier IB, and the random valueR input by the
user. If the recomputedM2 agrees with the value
received fromB thenA indicates success.

8. On receipt ofK1, B uses it to recomputeM1,
where the data employed in the computation con-
sists of its stored value ofD, the expected iden-
tifier IA, and the random valueR input by the
user. If the recomputedM1 agrees with the value
received fromA thenB indicates success.

9. If (and only if) both devices indicate success, the
user indicates success to both devices.

Finally note that steps 2/3 and also 4/5 may be con-
ducted in parallel.

4.2 Analysis of the scheme

The MANA III scheme is a slightly modified version
of a protocol called SHAKE [9]. Informally, the se-
curity of the scheme relies on the fact thatR remains
secret to the attacker (it is never sent over the air) and
both A and B release a commitment (i.e. the MAC
value) to the dataD before releasing the key used to
compute this commitment.

In order for the scheme to work, the last step must
be performed, since it is indeed easy for a forgery to
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make a full (not successful) exchange withA, calcu-
lateR by exhaustive search, and then make a success-
ful exchange withB. However, such an attack will be
detected by the double check in the last step. Hence,
the interceptor’s only hope of attacking the scheme is
to determineR from the MAC values, but in the ab-
sence of the keys this is infeasible.

Thus the best approach for the attacker is to guess
R. The likelihood of a successful attack is thus2−r,
for anr-bit valueR, i.e. the odds against a successful
attack are 1 in 70,000 for a 16-bit random valueR,
and 1 in a million for a 20-bitR.

Of course, this calculation assumes thatR is cho-
sen at random from all possibler-bit values. In prac-
tice, if R is chosen by a human, then some values will
be more likely than others. This can be exploited by
an attacker whose best strategy is simply to guess the
most likely r-bit value. However, this is unlikely to
drastically reduce the security of the system unless the
attacker understands well the behaviour of the user be-
ing attacked. Also, ifR is instead chosen by one of
the devices, as in the variant scheme described imme-
diately below, then the risks associated with a poor
choice ofR are avoided.

4.3 Variants of the scheme

Two variants of the scheme exist, both of which are
included in the draft standard [6].

The first variant (originally proposed by Jakobsson
[7] and listed as mechanism 3b in [6]) involves a to-
tal of r ‘rounds’, wherer is the number of bits inR.
In each round, one bit ofR is used, and the devices
exchange MACs and keys as in the scheme described
above. While this increases significantly the amount
of data exchanged between the devices, it removes the
need for the user to give success indications to the de-
vices at the end of the protocol.

The second variant (mechanism 4 in [6]) applies to
the case where one device has a display and the other
has a keypad. In this case, step 2 is modified so that
the device with the display generates the random value
R and displays it to the user, who then enters it into
the other device. All other steps of the scheme remain
unchanged.

5 Concluding remarks

The schemes described in this paper meet the ob-
jective of enabling two wireless devices to securely
authenticate one another and agree on a shared data
string. This is achieved without the need for the user
to enter or compare long strings of digits. The user is
typically only required to type in (or compare) around
32 binary digits (e.g. in the form of eight hexadecimal
digits).

Mechanism MANA III further improves on the sit-
uation and only requires the user entry of 16 bits, al-
though these digits must be entered into both devices
or read from one device and typed into the other.
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