
CryptoBytes
V O L U M E 1 , N U M B E R 1 � S P R I N G 1 9 9 5

CRYPTOGRAPHIC

RSA
L A B O R A T O R I E S

RESEARCH AND
CONSULTATION

R S A L A B O R A T O R I E S �

The technical newsletter of RSA Laboratories, a division of RSA Data Security, Inc.Contents

1

The Impending

Demise of RSA?

2

Welcome to

CryptoBytes

5

Message Authentication

with MD5

9

The RC5

Encryption Algorithm

11

News and Information

12

Announcements

Professor Gilles Brassard, Université de Montréal, is interested
in all aspects of cryptology but perhaps his best-known contribu-
tion is as a co-developer of Quantum Cryptography. He can be
contacted at brassard@iro.umontreal.CA. This essay was writ-
ten while the author was on sabbatical at the University of
Wollongong, Australia. Research supported in part by Canada’s
NSERC and Québec’s FCAR.

The increase in raw computing power during those
years cannot be discounted, nor can the fact that
hundreds of workstations around the world spent
all their otherwise idle cycles on the task for the
better part of one year. Indeed, the several thou-
sand MIPS-years that were spent on the calculation
might not have been available to poor academics
back in 1977. But in the Preface of my new text-
book Fundamental of Algorithmics, soon to be released
by Prentice-Hall with Paul Bratley as coauthor, I
am quick to point out that far more significant was
the discovery of more sophisticated factorization
algorithms. When I put on my hat as teacher of
algorithmics, I like to use this example to illustrate
that more efficient algorithms can produce much
more dramatic results than better hardware. To
make life more interesting, however, I am wearing
quite a different hat as I write this essay!

Even though the “double large prime multiple poly-
nomial variation of the quadratic sieve’’ algorithm
was successful in factoring the 129-figure number
relevant to the RSA challenge, the age of the Uni-
verse would still not suffice to factor a 500-figure
number by this or any other known classical algo-
rithm (such as the number field sieve) even if all
the world’s computers were put to contribution.
Therefore, one should not infer from the fate of the
1977 challenge that RSA has been broken: the les-
son is that bigger numbers should be used and that
overconfident claims should be avoided. Clearly,
even more remarkable advances in algorithmics will
be required if RSA is to fail completely or even if it
is to fail on keys merely twice the size used in the
Scientific American challenge. Progress in hardware

Gilles Brassard
Département d’informatique et de R.O.

Université de Montréal

C.P. 6128, Succursale Centre-Ville

Montréal (Québec)

CANADA H3C 3J7

In August 1977, Rivest, Shamir and Adleman is-
sued a ciphertext challenge worth one hundred dol-
lars to Scientific American readers when Martin
Gardner described their revolutionary RSA cryp-
tographic system in his monthly “Mathematical
Games” column. This sounded very safe because it
was estimated at the time that the fastest existing
computer using the most efficient known algorithm
could not earn the award until it had run without
interruption for millions of times the age of the Uni-
verse. This particular challenge involved the fac-
torization of a 129-figure number r, which appeared
to be so out-of-reach at the time that Martin
Gardner reported: “Rivest and his associates have
no proof that at some future time no one will dis-
cover a fast algorithm for factoring composites as
large as r [...]. They consider [the] possibility ex-
tremely remote.’’ Nevertheless, the $100 reward was
cashed last year—and donated to the Free Software
Foundation—after a mere eight months of inten-
sive computation led by Derek Atkins and Arjen
Lenstra. What happened?

The Impending Demise of RSA?

(continued on page 3)

2C R Y P T O B Y T E S S P R I N G 1 9 9 5 � T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

Much of the future success of CryptoBytes will depend
on input from outside of RSA Laboratories. Such
input might range from invited articles and research-
ers providing notification of recent results and
developments, through letters and opposite opinions
from readers. While RSA Laboratories will coordi-
nate CryptoBytes, the intention is for it to become
a useful resource for the whole cryptographic com-
munity. To help in this process, back issues of
CryptoBytes will be available free of charge via the
World-Wide Web.

We hope that you’ll agree that this first issue of
CryptoBytes is a step towards our goals. We would
very much like to thank the writers who have
contributed to this first issue, and we welcome any
comments, suggestions or proposals for future issues.

— Ron Rivest

Editor’s note: Suggestions and contributions for future issues
of CryptoBytes can be sent to bytes-ed@rsa.com or to RSA
Laboratories by any of the methods given below.

Welcome to CryptoBytes

Welcome to the first issue of CryptoBytes, the
technical newsletter on cryptography from RSA
Laboratories.

One of the nicest features of cryptographic research
is the speed with which developments occur. This is

a primary reason why so many
researchers find working in the field
so rewarding. More often than not,
however, new results or second-
hand accounts of someone’s valued
opinion circulate for months by
word of mouth or by E-mail before
appearing in journals or in con-
ference proceedings. In fact,
it might be convincingly argued
that a great deal of interesting
information is never actually

published, never cited, and never properly referred
to by other researchers.

A newsletter can alleviate this situation. The aim
would be to circulate interesting news as it happens,
thereby providing a reliable distribution method for
substantial ‘bites of crypto’. In addition, a newsletter
might provide a forum for results or opinions that,
while of great cryptographic interest, would not ap-
pear at any of the more classical outlets because of
their format.

Such a newsletter should be of interest to all those
involved in cryptography; from those implementing
cryptographic techniques and designing cryptographic
products to those in the academic development of
cryptographic knowledge. Often these groups are
viewed as being somewhat exclusive of each other;
instead we suggest that there is an important symbio-
sis. One goal of a newsletter on cryptography must be
the transfer of information across these artificial di-
vides. In this way researchers will hear about con-
tinuing efforts to implement the fruits of their research
efforts and implementers can keep track of the latest
cryptographic innovations.

With the first issue of CryptoBytes in your hands,
we are hoping to achieve some of these goals. We
are also hoping to provide a complement to current
newsletters such as IEEE’s Cipher, the IACR
newsletter and the TIS Data Security Letter, among
many others.

Prof. Ronald Rivest

is co-inventor of the

RSA public-key

cryptosystem, a

co-founder of RSA

Data Security Inc.

and a distinguished

associate of

RSA Laboratories.

RSA Laboratories is the research division of RSA Data Security,
Inc., the company founded by the inventors of the RSA public-key
cryptosystem. RSA Laboratories reviews, designs and implements
secure and efficient cryptosystems of all kinds. Its clients include
government agencies, telecommunications companies, computer
manufacturers, software developers, cable TV broadcasters,
interactive video manufacturers, and satellite broadcast companies,
among others.

Subscription Information

CryptoBytes is published four times annually;
printed copies are available for an annual
subscription fee of U.S. $90. To subscribe,
contact RSA Laboratories at:

RSA Laboratories
100 Marine Parkway, Suite 500
Redwood City, CA 94065
415/595-7703
415/595-4126 (fax)
rsa-labs@rsa.com

Back issues in electronic form are available
via the World-Wide Web at

http://www.rsa.com/rsalabs/cryptobytes/.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S � S P R I N G 1 9 9 5 3

will at best be a minor factor in the eventual success
of future attacks against RSA. Right? Wrong!

Quantum computing, an emerging branch of computer
science, may well prove the above conventional wis-
dom false. For the first time, revolutionary new con-
cepts may hold the key to a computer that would go
exponentially faster than conventional computers, at
least for some computational tasks. This means that
the speed-up would be increasingly spectacular as the
size of the input gets larger, which is precisely the
type of claim that had been the prerogative of algo-
rithmic improvements until now. In particular, build-
ing on the work of David Deutsch and Richard Jozsa,
Ethan Bernstein and Umesh Vazirani, Daniel Simon,
and Don Coppersmith, Peter Shor has discovered that
quantum computers can factor an n-figure number
in a time asymptotically proportional to n2+ε for arbi-
trarily small ε. This means that it would take about
the same time to crack an RSA key as to use it legiti-
mately! In other words, quantum computers spell
complete disaster on RSA. This has not (yet) forced
RSA Laboratories to file for Chapter 11 because there
are formidable technological difficulties before the
first quantum computer can be built, but the possi-
bility should not be underestimated.

What is a quantum computer? This theoretical
notion emerged from the work of Paul Benioff, Rich-
ard Feynman and David Deutsch in the first half of
the eighties. I cannot say much in this short essay
but I shall try to sketch the basic principles. For more
detail and references to the work mentioned here—
such as Peter Shor’s quantum factorization algo-
rithm—I invite you to read my forthcoming paper in
Current Trends in Computer Science, Jan van Leeuwen
(Ed.), Lecture Notes in Computer Science, Volume
1000 (special anniversary volume), Springer-Verlag,
1995. Until this volume has appeared, you may wish
to read my earlier account in Sigact News, Volume
25, number 4, December 1994, pp. 15 – 21.

Let us begin with a quantum bit, or qubit (a word
coined by Benjamin Schumacher). In classical digi-
tal computing, a bit can take either value 0 or value
1. Nothing in between is allowed. In quantum com-
puting, a qubit can be in linear superposition of the
two classical states. If we denote the classical states
by 0 and 1, then a qubit can be in state ψ = α
0 + β1 for arbitrary complex numbers α and β

subject to α2 + β2 = 1. The coefficients α and β
are called the amplitudes of 0 and 1, respectively.
A qubit is best visualized as a point on the surface of
a unit sphere whose North and South poles corre-
spond to the classical values. If state ψ is observed in
the sense that the qubit is asked to assume a classical
value, it will collapse onto 0 with probability α2

and onto 1 with complementary probability β2.
So far, it looks as if we have but reinvented analogue
computation. Things become more interesting when
we consider quantum registers composed of n qubits.
Such registers can be set to an arbitrary quantum su-
perposition of states Ψ = ℜx �X αxx subject to
ℜx �X αx2 = 1, where X denotes the set of all classi-
cal n-bit strings. If this register is asked to assume a
classical value, each x in X will be obtained with prob-
ability αx2, and the register will collapse onto the
observed value.

In principle, it is possible to compute on such regis-
ters. If a quantum computer is programmed to com-
pute some function ƒ : X ∅ Y and if it is started with
superposition Ψ = ℜx �X αxx in its input register,
then it will produce superposition Ψ' = ℜx�X αxƒ(x)
in its output register in the time needed to compute ƒ on
a single input. In other words, this provides for expo-
nentially many computations to take place simulta-
neously in a single piece of hardware, a phenomenon
known as quantum parallelism. We are far from ana-
logue computing now. The good news is that we have
obtained exponentially many answers for the price
of one. The bad news is that Heisenberg’s uncertainty
principle forbids us from looking at the output regis-
ter for fear of spoiling it! More precisely, if we ask
the output register to assume a classical value, it will
collapse to the value of ƒ(x) for an x randomly cho-
sen in X with probability αx2, and the quantum
superposition Ψ' will be destroyed by the measure-
ment. So far, it looks as if quantum computing is not
only impractical but useless as well.

What makes quantum computing interesting is the
notion of quantum interference, which is exactly the
principle behind Young’s celebrated double-slit ex-
periment. In a classical probabilistic calculation, it
is possible to program the computer to select one of
several possible computation paths according to the
laws of probability. In any specific instance of the
calculation, however, only one of the potential paths
is actually taken, and what-could-have-happened-

Progress in

hardware will

at best be a

minor factor

in the eventual

success of

future attacks

against RSA.

Right? Wrong!

The Impending Demise of RSA?
Continued from page 1

Revolut ionary

new concepts

may hold the

key to a

computer that

would go

exponent ia l ly

faster than

conventional

computers.

4C R Y P T O B Y T E S S P R I N G 1 9 9 5 � T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

but-did-not has no influence whatsoever on the ac-
tual outcome. In contrast, it is possible to program a
quantum computer so that all potential computation
paths are taken simultaneously in quantum super-
position. What makes this so powerful—and myste-
rious—is the exploitation of constructive and
destructive interference phenomena, which allows for
the reinforcement of the probability of obtaining de-
sired results at the expense of the probability of ob-
taining spurious results. This happens because the
amplitude of reaching any given state is the sum of
the amplitudes of reaching this state by all possible
computation paths. Because amplitudes can be nega-
tive (even complex), the amplitude of reaching an
undesirable result from one path can be annihilated
by the amplitude of reaching it from another path.
In the words of Richard Feynman, “somehow or other
it appears as if the probabilities would have to go nega-
tive.” It is not easy to put such interference phenom-
ena to practical use, but Peter Shor’s tour de force
proves that it is possible, at least in principle.

The actual implementation of a quantum computer
will be very challenging. It may even turn out to re-
main forever out of reach of human technology. One
difficulty is to keep quantum coherence in the com-
puter. The problem is that coherent superpositions
are very fragile: they spontaneously turn into inco-
herent statistical mixtures—which are unsuitable for
quantum parallelism—because of residual interactions
with the environment. Consequently, quantum in-
formation disappears gradually from the computer.
Rolf Landauer has pointed out the additional prob-
lem that quantum computation may be susceptible
to spontaneous reversals, which would unpredictably
cause the computation to go backwards. Yet another
difficulty is that of error correction despite early work
by Asher Peres and more recent work by André
Berthiaume, David Deutsch and Richard Jozsa: in
classical digital computing, discrete states are con-
tinuously snapped back onto the proper voltages for
0 and 1; no similar process is available for quantum
computing even if the program is such that the le-
gitimate states have discrete amplitudes. As a result,
the computer may drift away from its intended state.

Nevertheless, Seth Lloyd has promising ideas on how
to build “a potentially realizable quantum computer.”
Furthermore, it was discovered by David DiVincenzo
that universal quantum computation can be based on

simple 2-bit quantum gates such as the natural quan-
tum extension of the classical exclusive-or. Experi-
mental physicists such as Serge Haroche and
Jean-Michel Raimond are already attempting to build
simple quantum gates based on atomic interferometry
and microwave cavities capable of trapping single
photons for a significant fraction of one second. Even
though a full-fledged quantum computer may take a
long time to come, I like to think that I shall see a
special-purpose quantum factorization device in my
lifetime. If this happens, RSA will have to be aban-
doned. Most other practical public-key systems will
be compromised as well because Peter Shor has also
devised a quantum algorithm for extracting discrete
logarithms.

But do not despair for the fate of cryptography: there
will always be quantum cryptography to come to the
rescue! Quantum cryptographic systems take advan-
tage of the uncertainty principle, according to which
measuring a quantum system in general disturbs it and
yields incomplete information about its state before
the measurement—which is precisely what makes
quantum computers difficult to program. When in-
formation is encoded with non-orthogonal quantum
states, any attempt from an eavesdropper to access
the information necessarily entails a probability of
spoiling it irreversibly, which can be detected by the
legitimate users. Using protocols that I have designed
with Charles H. Bennett, building on earlier work of
Stephen Wiesner, this phenomenon can be exploited
to implement a key distribution system that is secure
even against an eavesdropper with unlimited com-
puting power, indeed even against an eavesdropper
who has a quantum computer at her disposal! Sev-
eral prototypes have been built in recent years. In
particular, British Telecom announced in September
1994 the successful completion of their fully work-
ing apparatus, perfected by Paul Townsend, capable
of implementing quantum key distribution over 10
kilometres of ordinary optical fibre. For more infor-
mation on quantum cryptography, please consult my
article in the March 1995 sesquicentennial Anniver-
sary Edition of Scientific American on “The Computer
in the 21st Century” (reprinted with updates from
their October 1992 regular issue).

To paraphrase the Book of Job,
The quantum taketh away

and the quantum giveth back!

It is possible

to p rogra m

a quantum

computer so

that all potential

computat ion

paths are taken

simultaneously

in quantum

superposit ion.

I like to think

that I shall see a

special-purpose

quan tum

factor izat ion

device in my

l i fet ime.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S � S P R I N G 1 9 9 5 5

Burt Kaliski and Matt Robshaw
RSA Laboratories

100 Marine Parkway, Suite 500

Redwood City, CA 94065 USA

Message authentication is playing an important role
in a variety of applications, especially those related
to the Internet protocols and network management,
where undetected manipulation of messages can
have disastrous effects.

There is no shortage of good message authentication
codes, beginning with DES-MAC, as defined in
FIPS PUB 113 [7]. However, message authentication
codes based on encryption functions such as DES,
which were designed for hardware implementation,
may be somewhat limited in performance for soft-
ware, and there is also the question of U.S. export
restrictions on encryption functions.

In standards efforts such as the Simple Network
Management Protocol [5] and proposals for Internet
Protocol security, a more practical solution seemed
to be to base the authentication codes not on DES
but on hash functions designed
for fast software implement-
ation which are widely avail-
able without restriction, such
as the MD5 message-digest
algorithm [9].

But how to do it? Hash func-
tions are intended to resist in-
version — finding a message
with a given hash value — and
collision — finding two mes-
sages with the same hash value. Message authentica-
tion codes, on the other hand, are intended to resist
forgery — computing a message authentication code
without knowledge of a secret key. Building a mes-
sage authentication code on an encryption function
thus seems a logical choice (and the security rela-
tionship has been recently settled — in work by
Mihir Bellare, Joe Kilian and Phillip Rogaway [3]).
Building one on a hash function, however, is not as
simple, because the hash function doesn’t have a key.

Message Authentication with MD5

A hash function can provide message authentication
in a most satisfying manner when combined with a
digital signature algorithm, which does have a key.
But typical digital signature schemes have some per-
formance overhead, which while acceptable for the
periodic setup of communications sessions, is often
too large on a message-by-message basis. Thus, the
focus is on message authentication based on a shared
secret key, which is ideally integrated into the hash
function in some manner.

As an illustration of the challenges, consider the
“prefix” approach where the message authentication
code is computed simply as the hash of the concat-
enation of the key and the message, where the key
comes first and which we denote as MD5 (k . m).

MD5 follows the Damgård/Merkle [4,6] iterative
structure, where the hash is computed by repeated
application of a compression function to successive
blocks of the message. (See Figure 1.) For MD5, the
compression function takes two inputs — a 128-bit
chaining value and a 512-bit message block — and
produces as output a new 128-bit chaining value,

which is input to the next iteration of the compres-
sion function. The message to be hashed is first pad-
ded to a multiple of 512 bits, and then divided into a
sequence of 512-bit message blocks. Then the com-
pression function is repeatedly applied, starting with
an initial chaining value and the first message block,
and continuing with each new chaining value and
successive message blocks. After the last message
block has been processed, the final chaining value is
output as the hash of the message.

Because of the iterative design, it is possible, from
only the hash of a message, to compute the hash of
longer messages that start with the initial message

Burt Kaliski is chief scientist and Matt Robshaw is a research scien-
tist at RSA Laboratories. They can be contacted at burt@rsa.com
or matt@rsa.com.

Figure 1.

Damgård/Merkle

iterative structure

for hash functions.

Compression
Function HashCompression

FunctionInitial Value Compression
Function

Message Block 1 Message Block 2
Last

Message
Part

Padding

A more practical

solution seemed

to be to base the

authent icat ion

codes [...] on

hash functions.

6C R Y P T O B Y T E S S P R I N G 1 9 9 5 � T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

and include the padding required for the initial mes-
sage to reach a multiple of 512 bits. Applying this to
the prefix approach, it follows that from MD5 (k . m),
one can compute MD5 (k . m’) for any m’ that starts
with m . p, where p is the padding on k . m. In other
words, from the message authentication code of m,
one can forge the message authentication code of
m . p . x for any x, without even knowing the key k,
and without breaking MD5 in any sense. This is called
a “message extension” or “padding” attack [10].

Other hash functions with an iterative design, such
as NIST’s Secure Hash Algorithm [8], are also vulner-
able to the message extension attack, and similar at-
tacks can also be mounted on tree-structured designs.

(Note also that if only part of the hash were output,
say only 64 bits, this attack would not be possible;
however, this is not a completely satisfying solution

because of other con-
cerns raised below. In
SNMP, the message ex-
tension attack is not a
problem because mes-
sages are a fixed length.
Another way to avoid
the attack is to include
an explicit length field
at the beginning of the
message.)

Because of the message
extension attack on
the prefix approach,
the “suffix” approach,
MD5 (m . k), would
seem to be preferred.
But another problem
arises: the key may be
vulnerable to crypt-
analysis, depending on
the properties of the
compression function.
This is because the
message authentica-
tion code is a function

of known values and the key, assuming the key is
passed entirely to the last iteration of the compres-
sion function. (The known values are the next-to-
last chaining value, which by assumption depends

only on the message; the last part of the message;
and the padding.)

An opponent who sees the message authentication
codes for many messages thus sees the result of
applying the compression function to many different
known values and the same key, which may reveal
information about the key. While our analysis
suggests MD5’s compression function is unlikely
to reveal information about the key, other hash
functions may not fare as well, and so we prefer a
more robust design.

The prefix approach is also affected by these issues,
but only when the message is very short and there is
only a single iteration of the compression function.

Recommendations
In joint work with Mihir Bellare and Hugo Krawczyk
of IBM, we have considered a number of approaches
to message authentication with MD5, settling on
three which we recommended to the Internet Proto-
col Security (IPSEC) working group:

1. MD5 (k1 . MD5 (k2 . m)), where k1 and k2 are in-
dependent 128-bit keys

2. MD5 (k . p . m . k), where k is a 128-bit key and
p is 384 bits of padding

3. MD5 (k . MD5 (k . m)), where k is a 128-bit key

The first and third approaches (see Figure 2) are
similar, and solve the message extension attack on
the prefix approach by the outer application of MD5,
which conceals the chaining value which is needed
for the attack. The outer MD5 also solves the con-
cerns of cryptanalysis of the suffix approach, because
the message authentication code is a function of the
unknown secret key and other varying values, which
are unknown. These approaches also approximate
certain “provably secure” constructions developed by
Bellare, Ran Canetti and Krawczyk [1].

(As a disclaimer, we can imagine hash functions for
which this construction still doesn’t solve the
cryptanalytic problems because information from the
inner application leaks to the outer one, but this
seems more of a pathological case.)

The third approach may be more vulnerable to at-
tack than the first since there is only one key and so

MD5

Key 2

Key 1 Intermediate
Hash

Message

MD5

MAC

Figure 2.

A recommended

approach to

message authentica-

tion with MD5.

Here, the keys are

each 128 bits long.

They may be the

same, although

different keys are

preferable.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S � S P R I N G 1 9 9 5 7

any information revealed from the outer application
of the hash function compromises security, but we
know of no such attack on MD5.

Although the third approach has a shorter key size
than the first, the first could also be implemented
with a 128-bit key, without
any apparent loss in security.
For instance, the keys k1

and k2 could be derived
from a single 128-bit key
k as k1 = MD5 (k . α) and
k2 = MD5 (k . β), where α
and β are distinct constants.

The second approach (see
Figure 3) is somewhat like
triple encryption, where the
first and third keys are the
same (the second key is the
message). The padding on
the key at the beginning en-
sures that overall, there are at least two iterations of
the compression function. Message extension in the
prefix approach is solved by the key at the end, and
the cryptanalysis of the suffix approach is solved by
the key at the beginning. (Without the padding, very
short messages might be vulnerable.)

It remains to be seen which, if any, of these three
approaches is adopted.

Interestingly, one of the approaches we had been pre-
viously promoting is not among the three we recom-
mended to the IPSEC working group, based on our
concerns about key exposure. That approach, MD5
(k . MD5(m)), had the advantages that the inner
MD5 is applied to the message in the familiar way —
as a hash function — and the outer MD5 is applied
to a fixed-length value, thereby avoiding message
extension. However, since MD5 (m) is known, the
door is open for possible cryptanalysis of the outer
MD5 to recover the key k. While we once again do
not have an attack that recovers the key, we felt as a
general design principle that the key should be bet-
ter concealed.

(Another concern with this approach, observed by
some, is that collisions in MD5 — two messages with
the same hash — result in collisions in the message

authentication code. We do not consider this an in-
trinsic problem with this option, since MD5 is de-
signed to resist collisions, at least to a certain level
of difficulty. Nevertheless, we have no objection if
the design of a message authentication code raises
that level even further.)

Yet another approach that we considered was
MD5(MD5 (k . m)), which again applies MD5 in a
familiar way. However, in terms of “provability”
under certain assumptions it is less attractive than
the three we recommended. (This does not mean
that the approach is insecure, simply that the
assumptions required for it to be secure are more
complicated.)

As the IBM team has pointed out to us, all of the
approaches are vulnerable to a chosen message at-
tack involving about 264 chosen messages. This gen-
eral attack exploits the iterative structure of the mes-
sage authentication code and applies to MACs based
on encryption functions as well. The basic idea is
that if two messages ai . b and aj . b have the same
MAC, then it is possible that the “collision” occured
before b was processed, so that for any c, ai . c and
aj . c have the same MAC. Having found two mes-
sages ai . b and aj . b with the same MAC, the oppo-
nent asks for the MAC of ai . c for some c, thereby
obtaining (fraudulently) the MAC of aj . c.

As chosen message attacks go, 264 is quite a large
number, and we know of no general way to extend
the attack to known messages, except when the
known messages are all the same length and end with
the same suffix. Full details are given in [1].

Key Key Padding

MD5

MAC

Message Key

Figure 3.

Another recom-

mended approach

to message

authentication

with MD5.

Here, the key is

128 bits long and

the key padding

is 384 bits long.

8C R Y P T O B Y T E S S P R I N G 1 9 9 5 � T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

are a consequence of the fact that the key is pro-
cessed only once, or maybe twice. As a result, the
key is isolated, and information about it can be
obtained, or other parts of the message can be ma-
nipulated independent of the key. By contrast, in
message authentication codes based on encryption
functions, such as DES-MAC, the key is processed
at every step. In Bellare et al’s techniques, the key is
processed at every step.

We expect that MD5’s compression function or a
variant of it may be a suitable pseudorandom func-
tion for Bellare et al’s techniques, something which
further research will determine.

References
[1] M. Bellare, R. Canetti and H. Krawczyk. Keying MD5 —

Message authentication via iterated pseudorandomness.

In preparation.

[2] Mihir Bellare, Roch Guérin and Phillip Rogaway. XOR

MACs: New methods for message authentication using block

ciphers. Accepted to Crypto ’95.

[3] Mihir Bellare, Joe Kilian and Phillip Rogaway. The

security of cipher block chaining. In Yvo G. Desmedt,

editor, Advances in Cryptology — Crypto ’94, volume 839

of Lecture Notes in Computer Science, pages 341-358.

Springer-Verlag, New York, 1994.

[4] I.B. Damgård. A design principle for hash functions. In

G. Brassard, editor, Advances in Cryptology: Proceedings

of Crypto ’89, volume 435 of Lecture Notes in Computer

Science, pages 416-427. Springer-Verlag, New York, 1990.

[5] J. Galvin and K. McCloghrie. RFC 1446: Security

Protocols for version 2 of the Simple Network Management

Protocol (SNMPv2). Trusted Information Systems and

Hughes LAN Systems, April 1993.

[6] R. Merkle. One way hash functions and DES. In G. Bras-

sard, editor, Advances in Cryptology: Proceedings of Crypto

’89, volume 435 of Lecture Notes in Computer Science,

pages 428-446. Springer-Verlag, New York, 1990.

[7] National Institute of Standards and Technology (formerly

National Bureau of Standards). FIPS PUB 113: Computer

Data Authentication. May 30, 1985.

[8] National Institute of Standards and Technology. FIPS

PUB 180: Secure Hash Standard (SHS). May 11, 1993.

[9] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm.

RSA Data Security, Inc., April 1992.

[10] Gene Tsudik. Message authentication with one-way hash

functions. ACM Computer Communications Review,

22(5):29-38, 1992.

Starting over
So far, our research has focused on adapting an exist-
ing hash function to message authentication, which
is a practical solution, since MD5 is already trusted,
and software for MD5 is widely available. For the
long term, designing a message authentication code
from scratch is perhaps a better solution.

Mihir Bellare, Roch Guérin and Phillip Rogaway [2]

describe techniques for such message authentication
that are “provably secure,” under certain assumptions
about the underlying functions. Their techniques are
also highly parallelizable, a feature that the iterative
approach lacks by definition.

Bellare et al’s techniques assume the existence of a
pseudorandom function, which takes two inputs, a
key and a message block, and produces one output.
By assumption, if the key input is fixed and un-
known, it is difficult to distinguish the pseudoran-
dom function on the message block from a truly
random one in any reasonable amount of time.
(This is similar to the idea that it is difficult to find
collisions for a hash function — although it is pos-
sible because they exist, the amount of time required
is large.)

The message authentication code is computed by
combining, perhaps by bit-wise exclusive-or, the out-
puts of the pseudorandom function applied to the
blocks of the message. To maintain the ordering of
the different blocks, each block is tagged with its
position in the message. A random block is also
included for technical reasons.

Bellare et al show that if an opponent can forge mes-
sage authentication codes, even with the opportu-
nity to request message authentication codes on
many different messages, then the opponent can also
distinguish the pseudorandom function from a truly
random one. Thus, under the assumption that it is
difficult to distinguish the pseudorandom function
from a truly random one, the message authentication
code is secure.

The independent processing of the message blocks
leads to the parallelizability of this approach.

It seems that many of the concerns about designing
a message authentication code from a hash function

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S � S P R I N G 1 9 9 5 9

Ronald L. Rivest
MIT Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139 USA

Introduction
RC5 is a fast symmetric block cipher suitable for hard-
ware or software implementations. A novel feature
of RC5 is the heavy use of data-dependent rotations.
RC5 has a variable-length secret key, providing flex-
ibility in its security level.

RC5 is a parameterized algorithm, and a particular
RC5 algorithm is designated as RC5-w/r/b. We
summarize these parameters below:

w The word size, in bits. The standard value is 32
bits; allowable values are 16, 32, and 64. RC5
encrypts two-word blocks: plaintext and
ciphertext blocks are each 2w bits long.

r The number of rounds. Allowable values are
0, 1, ..., 255.

b The number of bytes in the secret key K. Allow-
able values of b are 0, 1, ..., 255.

RC5 uses an “expanded key table” S, derived from the
user’s supplied secret key K. The size t of table S depends
on the number r of rounds: S has t = 2(r+1) words.

It is not intended that RC5 be secure for all possible
parameter values. On the other hand, choosing the
maximum parameter values would be overkill for most
applications.

We provide a variety of parameter settings so that
users may select an encryption algorithm whose
security and speed are optimized for their application,
while providing an evolutionary path for adjusting
their parameters as necessary in the future. As an
example, RC5-32/16/7 is an RC5 algorithm with the
number of rounds and the length of key equivalent to

The RC5 Encryption Algorithm *

DES. Unlike unparameterized DES, however, an RC5
user can easily upgrade the above choice to an 80-bit
key by moving to RC5-32/16/10.

As technology improves, and as the true strength of
RC5 algorithms becomes better understood through
analysis, the most appropriate parameters can be cho-
sen. We propose RC5-32/12/16 as providing a “nomi-
nal” choice of parameters. Further analysis is needed
to analyze the security of this choice.

Overview of the Algorithm
RC5 consists of three components: a key expansion
algorithm, an encryption algorithm, and a decryption
algorithm. These algorithms use the following three
primitive operations (and their inverses).

1. Two’s complement addition of words, denoted by
“+”. This is modulo-2w addition.

2. Bit-wise exclusive-OR of words, denoted by ≥.
3. A left-rotation (or “left-spin”) of words: the

rotation of word x left by y bits is denoted x <<< y.
Only the lg(w) low-order bits of y are used to
determine the rotation amount, so that y is
interpreted modulo w.

Encryption and Decryption
We assume that the input block is given in two w-bit
registers A and B. We also assume that key-expan-
sion has already been performed, so that the array
S[0...t-1] has been computed. Below is the encryp-
tion algorithm in pseudo-code. The output is also
placed in registers A and B.

A = A + S[0];
B = B + S[1];
FOR i = 1 TO r DO

A = ((A ≥ B) <<< B) + S[2*i];
B = ((B ≥ A) <<< A) + S[2*i+1];

We note the exceptional simplicity of this five-line
algorithm. We also note that each RC5 round up-
dates both registers A and B, whereas a “round” in
DES updates only half of its registers. An RC5 “half-
round” (one of the assignment statements updating
A or B in the body of the loop above) is thus perhaps
more analogous to a DES round.

The decryption algorithm can be easily derived from
the encryption algorithm.

* RC5 and
RSA-RC5 are
registered
trademarks of
RSA Data
Security, Inc.
Patent pending.

Professor Ronald L. Rivest is associate director of MIT’s
Laboratory for Computer Science. He can be contacted at
rivest@theory.lcs.mit.edu.
A complete paper on RC5 was presented at the Leuven Algorithms
Workshop in December 1994. An on-line version of the complete
paper can be obtained by ftp or web. FTP: under pub/rivest/rc5 on
theory.lcs.mit.edu; WEB: under http://theory.lcs.mit.edu/~rivest.
Parts of this article originally appeared in Dr. Dobb’s Journal,
Copyright © 1995 Miller Freeman Inc.

As technology

improves, and

as the true

strength of

RC5 algorithms

becomes better

understood

through analysis,

the most

appropr ia te

parameters

can be chosen.

1 0C R Y P T O B Y T E S S P R I N G 1 9 9 5 � T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

Key Expansion
The key-expansion routine expands the user’s secret
key K to fill the expanded key array S, so that S re-
sembles an array of t = 2(r+1) random binary words
determined by K. The key expansion algorithm uses
two “magic constants” and consists of three simple
algorithmic parts.

The key-expansion algorithm uses two word-size
binary constants Pw and Qw. They are defined for
arbitrary w as follows:

Pw = Odd((e-2)2w)
Qw = Odd((φ-1)2w)

where
e = 2.718281828459... (base of natural logarithms)
φ = 1.618033988749... (golden ratio),

and where Odd(x) is the odd integer nearest to x
(rounded up if x is an even integer, although this won’t
happen here).

The first algorithmic step of key expansion is to copy
the secret key K[0...b-1] into an array L[0...c-1] of
c = ∉b/u÷ words, where u=w/8 is the number of bytes/
word. This operation is done in a natural manner,
using u consecutive key bytes of K to fill up each suc-
cessive word in L, low-order byte to high-order byte.
Any unfilled byte positions of L are zeroed.

The second algorithmic step of key expansion is to
initialize array S to a particular fixed (key-indepen-
dent) pseudo-random bit pattern, using an arithmetic
progression modulo 2w determined by the “magic con-
stants” Pw and Qw. Since Qw is odd, the arithmetic
progression has period 2w.

S[0] = Pw;
FOR i = 1 TO t-1 DO

S[i] = S[i-1] + Qw;

The third algorithmic step of key expansion is to mix
in the user’s secret key in three passes over the arrays
S and L. More precisely, due to the potentially differ-
ent sizes of S and L, the larger array will be processed
three times, and the other may be handled more times.

i = j = 0;
A = B = 0;

DO 3*max(t,c) TIMES:
A = S[i] = (S[i] + A + B) <<< 3;
B = L[j] = (L[j] + A + B) <<< (A+B);
i = (i + 1) mod(t);
j = (j + 1) mod(c);

The key-expansion function has a certain amount of
“one-wayness”: it is not so easy to determine K from S.

Speed
The encryption algorithm is very compact, and can
be coded efficiently in assembly language on most
processors. The table S is accessed sequentially, mini-
mizing issues of cache size. The RC5 encryption
speeds obtainable are yet to be fully determined. For
RC5-32/12/16 on a 90MHz Pentium, a preliminary
C++ implementation compiled with the Borland
C++ compiler (in 16-bit mode) performs a key-setup
in 220 microseconds and performs an encryption in
22 microseconds (equivalent to 360,000 bytes/sec).
These timings can presumably be improved by more
than an order of magnitude using a 32-bit compiler
and/or assembly language—an assembly-language
routine for the ‘486 can perform each round in eight
instructions.

Security
A distinguishing feature of RC5 is its heavy use of data-
dependent rotations—the amount of rotation performed
is dependent on the input data, and is not predeter-
mined.

The encryption/decryption routines are very simple.
While other operations (such as substitution opera-
tions) could have been included in the basic round
operations, our objective is to focus on the data-de-
pendent rotations as a source of cryptographic strength.

Some of the expanded key table S is initially added to
the plaintext, and each round ends by adding expanded
key from S to the intermediate values just computed.
This assures that each round acts in a potentially dif-
ferent manner, in terms of the rotation amounts used.
The xor operations back and forth between A and B
provide some avalanche properties, causing a single-
bit change in an input block to cause multiple-bit
changes in following rounds.

The use of variable rotations helps defeat differential
cryptanalysis (Biham/Shamir [1]) and linear crypt-

The encryption

algorithm is

very compact,

and can be

coded efficiently

in assembly

language

on most

processors.

A distinguishing

feature of RC5

is its heavy

use of data-

dependent

rotat ions

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S � S P R I N G 1 9 9 5 1 1

analysis (Matsui [3]), since bits are rotated to “ran-
dom” positions in each round; Kaliski and Yin ana-
lyze the security of RC5 against both types of crypt-
analysis [2]. For the standard word size w = 32, their
differential attack can be applied to RC5 with less
than 12 rounds and their linear attack can be applied
to RC5 with less than six rounds. An assessment of
the RC5 encryption algorithm will appear in the Sum-
mer issue of CryptoBytes; meanwhile, I invite the
reader to help determine the strength of RC5.

References
[1] E. Biham and A. Shamir. Differential Cryptanalysis of the Data

Encryption Standard. Springer-Verlag, New York, 1993.

[2] B. S. Kaliski Jr. and Y. L. Yin. On differential and linear

cryptanalysis of the RC5 encryption algorithm. Accepted to

Crypto ’95.

[3] M. Matsui. The first experimental cryptanalysis of the Data

Encryption Standard. In Y. G. Desmedt, editor, Advances in

Cryptology — Crypto’94, volume 839 of Lecture Notes in Com-

puter Science, pages 1-11, Springer-Verlag, New York, 1994.

Cryptoki [...]
is expected to
combine nicely
with interfaces
at the algorithm-
independent,
secur ity-service-
or iented layer.

X9F1 Considers Triple-DES Standard
The ANSI-accredited X9F1 working group has be-
gun work on a standard for bulk data encryption for
financial services based on so-called triple-DES, a
method of extending the security of the Data Encryp-
tion Standard by encrypting three times with DES.

While triple-DES has been a standard mechanism for
several years for encrypting keys as part of ANSI
X9.17, attention has turned recently to triple-DES
for bulk data encryption, in response to the decreas-
ing security of DES’s 56-bit key and the shortage of
trusted alternatives to DES.

The specifics of the standard are yet to be determined,
but two recommendations by cryptography experts
are likely to have strong influence: that the three en-
cryptions involve three different keys (X9.17 involves
only two, where the first and third encryption is with
the same key), and that modes of operation for bulk
data encryption, such as cipher block chaining, be
built around triple-DES as a primitive.

Modes involving single-DES instead of triple-DES as
a primitive, such as encrypting three times with single-
DES in cipher block chaining mode, have been shown
by Eli Biham in the past year to be potentially no
stronger than single-DES against certain attacks. En-
crypting with triple-DES in cipher block chaining
mode is not vulnerable to those attacks.

And while two-key triple-DES is significantly stron-
ger than single-DES, it has a certain “certificational
weakness” observed by Merkle and Hellman in 1980
which was revealed in 1990 as a known-plaintext at-

tack by Wiener and van Oorschot. No such attacks are
known for three-key triple-DES.

Balloting of the standard is expected in 1996.

RSA Laboratories Publishes PKCS #11
Culminating a year of development, RSA Laborato-
ries has published the latest in its series of Public-Key
Cryptography Standards, PKCS #11: Cryptographic
Token Interface Standard (Cryptoki).

PKCS #11 specifies an application programming in-
terface (API) called Cryptoki to devices which hold
cryptographic information and perform cryptographic
functions, such as ISO smart cards, PCMCIA cards,
and the SmartDisk. Cryptoki isolates applications from
the device technology, presenting a common, logical
view of the device called a “cryptographic token.”

The interface supports a wide range of cryptographic
mechanisms, including RSA, DSA, Diffie-Hellman,
DES, triple-DES, RC2, RC4, MD2, MD5, and SHA;
tokens are expected to support subsets of these mecha-
nisms according to application profiles.

Cryptoki is at the algorithm-specific, technology-
independent layer in the current cryptographic API
standardization effort, and is expected to combine
nicely with interfaces at the algorithm-independent,
security-service-oriented layer such as the Generic Se-
curity Services API (GSSAPI).

Copies of PKCS #11 and other PKCS standards can be
obtained by anonymous FTP to ftp.rsa.com in the pub/
pkcs directory, or by E-mail to pkcs@rsa.com.

Modes involving
single-DES
instead of triple-
DES as primitive
[...] have been
shown to be
potentially no
stronger than
single-DES
against cer tain
attacks.

N E W S A N D I N F O R M A T I O N

1995 RSA Laboratories
Seminar Series
RSA Laboratories is pleased to announce
details of the 1995 Seminar Series. Now in its
third year, the Seminar Series has been
expanded again and will now be presented at
two US locations.

The Seminar Series is an intensive three-day
presentation on all aspects of cryptography.
In a slight departure from previous years, the
first day of the Seminar Series will be a self-
contained overview of the basic ideas and cryp-
tographic techniques that are used today.
Building on this introduction, the remainder of
the seminar series will provide detailed analy-
sis on many of the algorithms, techniques and
theoretical foundations which dominate cur-
rent cryptographic thinking.

The East Coast Seminar Series will be held at
the Columbia Inn in Columbia, MD, from July

A N N O U N C E M E N T S

19-21; the West Coast Seminar Series will be
held at the Hotel Sofitel in Redwood Shores,
CA, from August 23-25. Contact RSA Labora-
tories for more information on how to register.

RSA Laboratories Technical Reports
The RSA Laboratories Technical Reports are
now available via a subscription service. These
reports offer detailed summaries of current
research on a variety of topics and they bring
together information from a wide variety of
sometimes obscure sources. Subscription to the
Technical Reports will be at one of two levels;
individual or corporate. As well as receiving all
previously written reports, subscribers will
receive new reports as they appear as well as
current research notes on items of major
significance.

Contact RSA Laboratories for more informa-
tion about the Technical Report subscription
service.

Coming in the

Summer 1995

CryptoBytes:

• Elliptic curve

cryptosystems

• RSA key size

recommendations

• RC5 update

CRYPTOGRAPHIC

RSA
L A B O R A T O R I E S

RESEARCH AND
CONSULTATION

100 MARINE PARKWAY

R E D W O O D C I T Y

C A . 9 4 0 6 5 - 1 0 3 1

T E L 4 1 5 / 5 9 5 - 7 7 0 3

F A X 4 1 5 / 5 9 5 - 4 1 2 6

rsa- labs@rsa.com

PRESORT
FIRST CLASS
U.S. POSTAGE

PAID
MMS, INC

For subscription

in for mat ion ,

see page 2 of

this newsletter.

Copyright © 1995 RSA Laboratories, a division of RSA Data Security, Inc. All rights reserved.

