
CryptoBytes
CONTENTS

I. Fast Variants of RSA

II. How to Encrypt Properly
with RSA

III. Composite-Residuosity
Based Cryptography:
An Overview

RSA Laboratories

Volume 5, No. 1 Winter/Spring 2002

1

I. Fast Variants of RSA
Dan Boneh
dabo@cs.stanford.edu

Hovav Shacham
hovav@cs.stanford.edu

A B S T R A C T

We survey four variants of RSA designed to speed up RSA [12] decryption and sign-
ing. We only consider variants that are backwards compatible in the sense that
a system using one of these variants can interoperate with systems using standard RSA.

1 . I N T R O D U C T I O N

RSA is the most widely deployed public key cryptosystem. It is used for securing web
traffic, e-mail, and some wireless devices. Since RSA is based on arithmetic modulo
large numbers it can be slow in constrained environments. For example, 1024-bit
RSA decryption on a small handheld device such as the PalmPilot III can take as long
as 30 seconds. Similarly, on a heavily loaded web server, RSA decryption significantly
reduces the number of SSL requests per second that the server can handle. Typically,
one improves RSA’s performance using special-purpose hardware. Current RSA
coprocessors can perform as many as 10,000 RSA decryptions per second (using a
1024-bit modulus) and even faster processors are coming out.

In this paper we survey four simple variants of RSA that are designed to speed up
RSA decryption in software. We emphasize backwards compatibility: A system using
one of these variants for fast RSA decryption should be able to interoperate with
systems that are built for standard RSA. Moreover, existing Certificate Authorities
must be able to respond to a certificate request for a variant-RSA public key.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 2

Fast Variants of RSA cont’d from page 1

We begin the paper with a brief review of RSA. We
then describe the following variants for speeding up
RSA decryption:

• Batch RSA [8]: do a number of RSA decryptions for
approximately the cost of one

• Multi-factor RSA [7, 14]: use a modulus of the form
N = pqr or N = p2q

• Rebalanced RSA [16]: speed up RSA decryption by
shifting most of the work to the encrypter.

The security of these variants is an open research prob-
lem. We cannot show that an attack on these variants
would imply an attack on the standardized version of
RSA (as described, e.g., in ANSI X9.31). Therefore, when
using these variants, one can only rely on the fact that so
far none of them has been shown to be weak.

The RSA trapdoor permutation is used for both public key
encryption and digital signatures. Since the exact application
of RSA is orthogonal to the discussion in this paper we use
terminology consistent with the application to public key
encryption. All the RSA variants we discuss apply equally
well to digital signatures, where they speed up RSA signing.

1 .1 Rev iew of the bas i c RSA sys tem

We review the basic RSA public key system and refer to
[10] for more information. We describe three constituent
algorithms: key generation, encryption, and decryption.

Key generation: The key generation algorithm takes a secu-
rity parameter n as input. Throughout the paper we use
n =1024 as the standard security parameter. The algo-
rithm generates two (n/2)-bit primes, p and q, and sets
N ← pq. Next, it picks some small value e that is relatively
prime to ϕ (N) = (p-1)(q-1). The value e is called the
encryption exponent, and is usually chosen as e = 65537.
The RSA public key consists of the two integers 〈N,e〉.
The RSA private key is an integer d satisfying e ⋅d = 1
mod ϕ (N). Typically, one sends the public key 〈N,e〉 to a
certificate authority (CA) to obtain a certificate for it.

Ed i t o r ’s No t e

After a hiatus of over two years, RSA Laboratories is
pleased to resume publication of its newsletter.
CryptoBytes aims to present timely research articles and
surveys written by leading specialists on selected topics
in cryptography and data security. Ranging from the
highly accessible to the broadly technical, the articles in
CryptoBytes present information in an easily digestible
form to a wide audience consisting of specialists and
non-specialists from industry and academia. To software
engineers, students, IT professionals, scientists, and the
many other members of our readership, welcome back!

This year marks the 25th anniversary of the invention
of the RSA algorithm at M.I.T. by Profs. Rivest,
Shamir, and Adleman. We are devoting this, the
Winter/Spring 2002 issue of CryptoBytes, to a com-
memorative exploration of current research on RSA.

The most widespread current use of the RSA algo-
rithm is in the Secure Sockets Layer (SSL) protocol for
data protection on the Internet. In the first article in
this issue, Dan Boneh and Hovav Shacham discuss sev-
eral backwards compatible variants of RSA that speed
up RSA decryption and signing. From David
Pointcheval, we have a survey article guiding the reader
through the labyrinthine evolution of RSA-OAEP and
related schemes, all of which seek to provide rigorously
provable security guarantees to RSA encryption. Finally,
Pascal Paillier writes about a new encryption scheme of
his devising that makes use of an RSA modulus, i.e., the
product of two primes, as its basis, but possesses very
different properties. The Paillier encryption scheme is
especially attractive, for instance, for the design of elec-
tronic voting schemes.

As always, the input of our readers is important
to the future success of CryptoBytes. We welcome
comments, opinions, and proposals for future articles.
The CryptoBytes editor may be contacted at
cryptobytes editor@rsasecurity.com.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 3

Encryption: To encrypt a message X using an RSA public
key 〈N,e〉, one first formats the bit-string X to obtain an
integer M in ZN = {0 , . . . , N -1}. This formatting is
often done using the PKCS #1 standard [1, 9]. The
ciphertext is then computed as C ← Me mod N. (Other
methods for formatting X prior to encryption are
described elsewhere in this issue.)

Decryption: To decrypt a ciphertext C the decrypter uses
its private key d to compute an e’th root of C by comput-
ing M ← Cd mod N. Since both d and N are large num-
bers (each approximately n bits long) this is a lengthy
computation for the decrypter. The formatting operation
from the encryption algorithm is then reversed to obtain
the original bit-string X from M. Note that d must be
a large number (on the order of N) since otherwise the
RSA system is insecure [3, 16].

It is standard practice to employ the Chinese Remainder
Theorem (CRT) for RSA decryption. Rather than
compute M ← Cd (mod N), one evaluates:

Mp ← Cp
dp (mod p) Mq ← Cp

dq (mod q).

Here dp = d mod p -1 and dq = d mod q -1. Then one uses
the CRT to calculate M from Mp and Mq . This is approx-
imately four times as fast as evaluating Cd mod N
directly [10, p. 613].

2 . B A T C H R S A

Fiat [8] showed that, when using small public exponents
e1 and e2 for the same modulus N, it is possible to decrypt
two ciphertexts for approximately the price of one.
Suppose C1 is a ciphertext obtained by encrypting some
M1 using the public key 〈N, 3〉, and C2 is a ciphertext for
some M2 using 〈N, 5〉. To decrypt, we must compute
C1

1/3 and C2
1/5 mod N. Fiat observed that by setting

A = (C1
5 ⋅ C2

3)1/15 we obtain:

Hence, at the cost of computing a single 15th root and
some additional arithmetic, we are able to decrypt both
C1 and C2. Computing a 15th root takes the same time
as a single RSA decryption.

This batching technique is only worthwhile when the
public exponents e1 and e2 are small (e.g., 3 and 5).
Otherwise, the extra arithmetic required is too expensive.
Also, one can only batch-decrypt ciphertexts encrypted
using the same modulus and distinct public exponents. This
is essential — it is known [13, Appendix A] that one cannot
apply such algebraic techniques to batch the decryption of
two ciphertexts encrypted with the same public key (e.g.,
we cannot batch compute C1

1/3 and C2
1/3).

Fiat generalized the above observation to the decryption
of a batch of b RSA ciphertexts. We have b pairwise rela-
tively prime public keys e1 . . . , eb , all sharing a common
modulus N. Furthermore, we have b encrypted messages
C1 . . . ,Cb ,where Ci is encrypted using the exponent ei.
We wish to compute Mi =Ci

1/ei for i = 1, . . . , b.
Fiat describes this b-batch processing a binary tree. For
small values of b (b ≤ 8), one can use a direct generaliza-
tion of (1). One sets e ← ∏ i ei, and A0 ← ∏ iC i

e/ei

(where the indices range over 1, . . . ,b). Then one calculates
A ← A0

1/e = ∏ i
b
=1Ci

1/ei. For each i one computes Mi as:

This b-batch requires b modular inversions whereas Fiat ‘s
tree-based method requires 2b modular inversions, but
fewer auxiliary multiplications. Note that since b and the
ei ’s are small the exponents in (2) are also small.

A10 A6

Aα i
Mi = Ci

1/ei =
Ci

(αi
_1)/ei ⋅ ∏ j ≠ iCj

α i/ej

αi={ 1 mod ei

70 mod ej (for j ≠ i)
where

C1
1/3 =

C
1
3 ⋅ C

2
2

and C 2
1/5 =

C
1
2 ⋅ C

2
.

(1)

(2)

.

RSA Security Inc. 4

2 .1 Improv ing the pe r fo rmance o f ba t ch RSA

In [13] the authors show how to use batch RSA within the
Apache Web server to improve the performance of the SSL
handshake. This requires changing the web server architecture.
They also describe several natural improvements to batch RSA.
We mention a few of these improvements here.

Batch division: Modular inversion is much slower than
modular multiplication. Using a trick due to Montgomery we
compute all b inversions in the batch algorithm for the
cost of a single inversion and a few more multiplications.
The idea is to invert x and y by computing α ← (xy)-1

and setting x-1 ← y ⋅α and y-1 ← x⋅α. Thus we obtain the
inverses of both x and y at the cost of a single modular
inversion and three multiplications.

More generally, we use the following fact [6, p.481]:
Let x1, . . . , xn be elements of ZN. All n inverses
x

1
-1, . . . , xn

-1 can be obtained at the cost of one inversion and 3n
multiplications.

Consequently, only a single modular inversion is required
for the entire batching procedure.

Global Chinese Remainder: In Section 1.1 we mentioned
that RSA decryption uses the CRT to speed up the com-
putation of Cd mod N. This idea extends naturally to
batch decryption. We run the entire batching algorithm
modulo p, and again modulo q, then use the CRT on each
of the b pairs 〈Ci

1/ei mod p, Ci
1/ei mod q〉 to obtain the

b decryptions Mi=Ci
1/ei mod N.

Simultaneous Multiple Exponentiation: Simultaneous multiple
exponentiation [10, §14.6] is a method for calculating
au⋅ bv mod m without first evaluating au and bv. It requires
approximately as many multiplications as does a single
exponentiation with the larger of u or v as exponent. Such
products of exponents are a large part of the batching
algorithm. Simultaneous multiple exponentiation cuts the
time required to perform them by close to 30%.

2 .2 Pe r fo rmance o f ba t ch RSA

Table 1 lists the running time for stand-alone batch-RSA
decryption, using OpenSSL 0.9.5 on a machine with a
750 MHZ Pentium III and 256 MB RAM, running
Debian Linux. In all experiments, the smallest possible
values for the encryption exponents ei were used.

batch key size
size 768 1024 2048

(unbatched) 4.67 8.38 52.96
2 3.09 5.27 29.43
4 1.93 3.18 16.41
8 1.55 2.42 10.81

Table 1: RSA decryption time, in milliseconds, as a function of batch
and key size

With standard 1024-bit keys, batching improves per-
formance significantly. With b = 4, RSA decryption is
accelerated by a factor of 2.6; with b = 8, by a factor of
almost 3.5. Note that a batch size of more than eight is
probably not useful for common applications, since waiting
for many decryption requests to be queued can signifi-
cantly increase latency.

batch Server load
size 16 32 48

(unbatched) 105 98 98
2 149 141 134
4 218 201 187
8 274 248 227

Table 2: SSL handshakes per second as a function of batch size.
1024 bit keys.

RSA Laboratories’ Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 5

3 .1 Mu l t i -p r ime RSA : N = pqr

We begin with multi-prime RSA [7]. We describe key
generation, encryption, and decryption. We then discuss
the performance of the scheme and analyze its security.

Key generation: The key generation algorithm takes as
input a security parameter n and an additional parameter b.
It generates an RSA public/private key pair as follows:

Step 1: Generate b distinct primes p1,,pb each n/b-bits
long. Set N ← ∏ i

b
=1

p
i. For a 1024-bit modulus we can

use at most b = 3 (i.e., N = pqr), for security reasons dis-
cussed below.

Step 2: Pick the same e used in standard RSA public keys,
namely e = 65537. Then compute d = e -1 mod ϕ(N).
As usual, we must ensure that e is relatively prime to
ϕ(N) = ∏ i

b
=1 (pi -1). The public key is 〈N,e〉; the

private key is d.

Encryption: Given a public key 〈N,e〉, the encrypter
encrypts exactly as in standard RSA.

Decryption: Decryption is done using the Chinese
Remainder Theorem (CRT). Let ri = d mod pi - 1.
To decrypt a ciphertext C, one first computes Mi = Cri

mod pi for each i, 1 ≤ i ≤ b. One then combines the Mi’s
using the CRT to obtain M = Cd mod N. The CRT step
takes negligible time compared to the b exponentiations.

Performance. We compare the decryption work using the
above scheme to the work done when decrypting a normal
RSA ciphertext. Recall that standard RSA decryption
using CRT requires two full exponentiations modulo
n/2-bit numbers. In multi-prime RSA decryption
requires b full exponentiations modulo n/b bit numbers.
Using basic algorithms computing xd mod p takes time
O(log d log2p). When d is on the order of p the running
time is O(log3p). Therefore, the asymptotic speedup of
multi-prime RSA over standard RSA is simply:

2 ⋅ (n/2)3

b ⋅ (n/b)3

We also mention batch-RSA performance as a compo-
nent of a larger system — a web server handling SSL
traffic. An architecture for such a system is described in
[13]. Table 2 gives the number of full SSL handshakes
per second that the batch-RSA web server can handle,
when bombarded with concurrent HTTP HEAD
requests by a test client. Here “server load” is the number
of simultaneous connection threads the client makes to
the server. Under heavy load, batch RSA can improve the
number of full SSL handshakes per second by a factor of
approximately 2.5.

2 .3 The downs ide o f ba t ch RSA

Batch RSA can lead to a significant improvement in
RSA decryption time. Nevertheless, there are a few diffi-
culties with using the batching technique:

• When using batch RSA, the decryption server must
maintain at least as many RSA certificates as there are
distinct keys in a batch. Unfortunately, current Certificate
Authorities charge per certificate issued regardless of
the public key in the certificate. Hence, the cost of
certificates might outweigh the benefits in performance.

• For optimal performance, batching requires RSA public
keys with very small public exponents (e = 3,5,7,11,…) .
There are no known attacks on the resulting system,
but RSA as usually deployed uses a larger public
exponent (e = 65537).

3 . M U L T I - F A C T O R R S A

The second RSA variant is based on modifying the struc-
ture of the RSA modulus. Here there are two proposals.
The first [7] uses a modulus of the form N = pqr. When
N is 1024 bits, each prime is approximately 341 bits. We
refer to this as multi-prime RSA. The second proposal
[14] uses an RSA modulus of the form N = p2q and leads
to an even greater speedup. Both methods are fully back-
wards compatible since there is no known efficient algo-
rithm to distinguish such RSA public keys from standard
RSA keys (where N = pq). = b2/4.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 6

For 1024-bit RSA, we can use at most b = 3 (i.e.,
N = pqr), which gives a theoretical speedup of approx-
imately 2.25 over standard RSA decryption. Our
experiments (implemented using the GMP bignum
library) show that in practice we get a speedup of a factor
of 1.73 over standard RSA.

Security. The security of multi-factor RSA depends on
the difficulty of factoring integers of the form N = p1...pb
for b > 2. The fastest known factoring algorithm (the
number field sieve) cannot take advantage of this special
structure of N. However, one has to make sure that the
prime factors of N do not fall within the range of the
Elliptic Curve Method (ECM), which is analyzed in [15].
Currently, 256-bit prime factors are considered within the
bounds of ECM, since the work to find such factors is
within range of the work needed for the RSA-512
factoring project [5]. Consequently, for 1024-bit moduli
one should not use more than three factors.

3 .2 Mu l t i -power RSA : N = p2q

One can further speed up RSA decryption using a
modulus of the form N = pb-1q where p and q are n/b
bits each [14]. When N is 1024-bits long we can use at
most b = 3, i.e., N = p2q. The two primes p,q are then each
341 bits long.

Key generation: The key generation algorithm takes as
input a security parameter n and an additional parameter b.
It generates an RSA public/private key pair as follows:

Step 1: Generate two distinct n/b-bit primes, p and q,
and compute N ← pb-1 ⋅ q.

Step 2: Use the same public exponent e used in standard
RSA public keys, namely e = 65537. Compute d ← e -1

mod (p-1)(q-1).

Step 3: Compute r1 ← d mod p - 1 and r2 ← d mod q-1.
The public key is 〈N,e〉; the private key is 〈p,q,r1,r2〉.

Encryption: Same as in standard RSA.

Decryption: To decrypt a ciphertext c using the private key
〈p,q,r1,r2〉 one does:

Step 1: Compute M1 ← Cr1 mod p and M2 ← Cr2 mod q.
Thus M1

e = C mod p and M2
e = C mod q.

Step 2: Using Hensel lifting [6, p. 137] construct an M1′
such that (M1′)e = C mod pb-1. Hensel lifting is much
faster than a full exponentiation modulo pb-1.

Step 3: Using CRT, compute an M ∈ ZN such that
M = M1′ mod pb-1 and M = M2 mod q. Then M = C d mod N
is a proper decryption of C.

Performance. We compare the work required to decrypt
using multi-power RSA to that required for standard RSA.
For multi-power RSA, decryption takes two full exponen-
tiations modulo (n/b)-bit numbers, and b-2 Hensel lift-
ings. Since the Hensel-lifting is much faster than exponen-
tiation, we focus on the time for the two exponentiations.
As noted before, a full exponentiation using basic modular
arithmetic algorithms takes cubic time in the size of the
modulus. So, the speedup of multi-power RSA over
standard RSA is approximately:

For 1024-bit RSA, b should again be at most three
(i.e., N = p2q), giving a theoretical speedup of about 3.38
over standard RSA decryption. Our experiments (imple-
mented using GMP and taking e = 65537) show that
in practice we get a speedup by a factor of 2.30 over
standard RSA.

2 ⋅ (n/2)3

2 ⋅ (n/b)3
= b3/8

Security. The security of multi-power RSA depends
on the difficulty of factoring integers of the form
N = pb-1q. As for multi-prime RSA, one has to make sure
that the prime factors of N do not fall within the capa-
bilities of ECM (and the ECM improvement for N = p2q
[11]). Consequently, for 1024-bit moduli one can use at
most b = 3, i.e., N = p2q. In addition, we note that the
Lattice Factoring Method (LFM) [4], designed to factor
integers of the form N = pu ⋅ q for large u, cannot
efficiently factor integers of the form N = p2q when N is
1024 bits long.

4 . R E B A L A N C E D R S A

In standard RSA, encryption and signature verification are
much faster than decryption and signature generation. In
some applications, one would like to have the reverse
behavior. For example, when a cell phone needs to gener-
ate an RSA signature that will be later verified on a fast
server one would like signing to be easier than verifying.
Similarly, SSL web browsers (doing RSA encryption)
typically have idle cycles to burn whereas SSL web servers
(doing RSA decryption) are overloaded. In this section we
describe a variant of RSA that enables us to rebalance the
difficulty of encryption and decryption: we speed up RSA
decryption by shifting the work to the encrypter. This vari-
ant is based on a proposal by Wiener [16] (see also [2]).
Note that we cannot simply speedup RSA decryption by
using a small value of d since as soon as d is less than N0.292

RSA is insecure [16,3]. The trick is to choose d such that
d is large (on the order of N), but d mod p – 1 and d mod
q – 1 are small numbers. As before, we describe key gener-
ation, encryption, and decryption.

Key generation: The key generation algorithm takes two
security parameters n and k where k ≤ n/2. Typically
n = 1024 and k = 160. It generates an RSA key as follows:

Step 1: Generate two distinct (n/2)-bit primes p and q
with gcd(p – 1, q – 1) = 2. Compute N ← pq.

Step 2: Pick two random k-bit values r1 and r2 such that

gcd (r1,p – 1) = 1, and gcd(r2,q – 1) = 1 and r1 = r2 mod 2.

Step 3: Find a d such that d = r1 mod p – 1 and d = r2

mod q – 1.

Step 4: Compute e ← d –1 mod ϕ (N). The public key is
〈N,e〉; the private key is 〈p,q,r1,r2〉.

We need to explain how to find d in Step 3. One usually
uses the Chinese Remainder Theorem (CRT).
Unfortunately, p – 1 and q – 1 are not relatively prime
(they are both even) and consequently the theorem does
not apply. However, (p – 1)/2 is relatively prime to
(q – 1)/2. Furthermore, r1 = r2 mod 2. Let a = r1 mod
2. Then using CRT we can find an element d′ such that

Now, observe that the required d in Step 3 is simply
d = 2d′ + a. Indeed, d = r1 mod p – 1 and d = r2 mod q – 1.

In Step 4, we must justify why d is invertible modulo
ϕ (N). Recall that gcd(r1, p – 1) = 1 and gcd(r2, q – 1) = 1.
It follows that gcd(d, p – 1) = 1 and gcd(d, q – 1) = 1.

Consequently, gcd(d, (p – 1)(q – 1)) = 1. Hence, d is
invertible modulo ϕ (N) = (p – 1)(q – 1).

For security reasons described below we take k = 160,
although other larger values are acceptable. Note that e is
very large — on the order of N. This is unlike standard
RSA, where e typically equals 65537. All Certificate
Authorities we tested were willing to generate certificates
for such RSA public keys.

Encryption: Encryption using the public key 〈N,e〉 is iden-
tical to encryption in standard RSA. The only issue is that
since e is much larger than in standard RSA, the encrypter
must be willing to accept such public keys. At the time of
this writing all browsers we tested were willing to accept
such keys. The only exception is Microsoft’s Internet
Explorer (IE) — IE allows a maximum of
32 bits for e.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 7

r1 – a
2

d′ = (mod)
p – 1

2
r2 – a

2
and d ′ = (mod) .

q – 1
2

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 8

5 . C O N C L U S I O N S

We surveyed four variants of RSA designed to speed up
RSA decryption and be backwards-compatible with stan-
dard RSA. Table 3 gives the decryption speedup factors
for each of these variants using a 1024-bit RSA modulus.
Batch RSA is fully backwards-compatible, but requires the
decrypter to obtain and manage multiple public keys and
certificates. The two multi-factor RSA techniques are
promising in that they are fully backwards-compatible.
The rebalanced RSA method gives a large speedup, but
only works with peer applications that properly imple-
ment standard RSA, and so are willing to accept RSA
certificates with a large encryption-exponent e. Currently,
Internet Explorer rejects all RSA certificates where e is
more than 32 bits long. Multi-factor RSA and rebalanced
RSA can be combined to give an additional speedup. All
these variants can take advantage of advances in algo-
rithms for modular arithmetic (e.g., modular multiplica-
tion and exponentiation) on which RSA is built.

Table 3: Comparison of RSA variants. Experimental speedup factors
for 1024-bit keys.

A C K N O W L E D G E M E N T S

The authors thank Ari Juels for his comments on prelim-
inary versions of this paper.

Decryption: To decrypt a ciphertext C using the private key
〈p,q,r1,r2〉 one does:

Step 1: Compute M1 ← C r1 mod p and M2 ← Cr2 mod q.

Step 2: Using the CRT compute an M ∈ ZN such that
M = M1 mod p and M = M2 mod q. Note that M = C d mod
N. Hence, the resulting M is a proper decryption of C.

Performance. We compare the work required to decrypt
using the above scheme to that required using standard
RSA. Recall that decryption time for standard RSA with
CRT is dominated by two full exponentiations modulo
(n/2)-bit numbers. In the scheme presented above, the
bulk of the decryption work is in the two exponentiations
in Step 1, but in each of these the exponent is only k bits
long. Since modular exponentiation takes time linear in
the exponent’s bit-length, we get a speedup of (n/2)/k
over standard RSA. For a 1024-bit modulus and 160-bit
exponent (k = 160), this gives a theoretical speedup of
about 3.20 over standard RSA decryption. Our experi-
ments (implemented using GMP) show that in practice
we get a speedup by a factor of 3.06 over standard RSA.

Security. It is an open research problem whether RSA using
values of d as above is secure. Since d is large, the usual
small-d attacks [16,3] do not apply. The best known attack
on this scheme is described in the following lemma [2].

Lemma. Let 〈N,e〉 be an RSA public key with N = pq. Let
d ∈ Z be the corresponding RSA private exponent satisfying
d = r1 mod p – 1 and d = r2 mod q – 1 with r1 < r2.
Then given 〈N,e〉 an adversary can expose the private key d
in time O(√r1 log r1).

The above attack shows that, to obtain security of 280, we
must make both r1 and r2 be at least 160 bits long.
Consequently, for security reasons k should not be less
than 160.

Method Speedup Comment
Batch RSA, b = 4 2.64 Requires multiple

certificates
Multi-prime, N = pqr 1.73
Multi-power, N = p2q 2.30 e = 65537
Rebalance, k = 160 3.06 Incompatible with

Internet Explorer

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 9

[9] RSA Labs. Public Key Cryptography Standards
(PKCS), Number 1 Version 2.0. Version 2.1 draft is
available at

http://www.rsalabs.com/pkcs/pkcs-1/index.html

[10] A. Menezes, P. Van Oorschot, and S. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[11] E. Okamoto, R. Peralta. “Faster Factoring of
Integers of a Special Form,” IEICE Transactions on
Fundamentals of Electronics, Communications, and
Computer Sciences, E79-A, n.4 (1996).

[12] R. Rivest, A. Shamir, and L. Adleman. “A Method
for Obtaining Digital Signatures and Public Key
Cryptosystems.” Commun. of the ACM 21(2):
120 –126. Feb. 1978.

[13] H. Shacham and D. Boneh. “Improving SSL
Handshake Performance via Batching.” In D.
Naccache, ed., Proceedings of RSA 2001 vol. 2020 of
LNCS, pp. 28 – 43. Springer-Verlag, 2001.

[14] T. Takagi. “Fast RSA-type Cryptosystem Modulo pk q.”
In H. Krawczyk, ed., Proceedings of Crypto ‘98,
vol. 1462 of LNCS, pp. 318–326. Springer-Verlag, 1998.

[15] R. Silverman and S. Wagstaff, Jr. “A Practical
Analysis of the Elliptic Curve Factoring Algorithm.”
Math. Comp. 61(203):445–462. Jul. 1993.

[16] M. Wiener. “Cryptanalysis of Short RSA Secret
Exponents.” IEEE Trans. on Info. Th. 36(3):553–558.
May 1990.

R E F E R E N C E S

[1] M. Bellare and P. Rogaway. “Optimal Asymmetric
Encryption.” In A. De Santis, ed, Proceedings of
Eurocrypt ‘94 vol. 950 of Lecture Notes in Computer Science
(LNCS), pp. 92–111. Springer-Verlag,1994.

[2] D. Boneh. “Twenty Years of Attacks on the RSA
Cryptosystem.” Notices of the American Mathematical
Society 46(2): 203–213, Feb. 1999.

[3] D. Boneh and G. Durfee. “Cryptanalysis of RSA
with Private Key d Less than n0.292.” IEEE Transactions
on Information Theory 46(4):1339–1349, Jul. 2000.
Early version in Proceedings of Eurocrypt ‘99

[4] D. Boneh, G. Durfee, and N. Howgrave-Graham.
“Factoring N = prq for Large r.”Proceedings of Crypto ‘99, vol.
1666 of LNCS, pp. 326–337. Springer-Verlag, 1999.

[5] S. Cavallar, B. Dodson, A. K. Lensra, W. Lioen,
P. Montgomery, B. Murphy, H. Riele, K. Aardal,
J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand,
F. Morain, A. Muffet, C. Putnam, P. Zimmermann,
“Factorization of a 512-Bit RSA Modulus,” Proceedings
of Eurocrypt 2000 vol.1807 of Lecture Notes in Computer
Science (LNCS), pp. 1–11, Springer-Verlag, 2000.

[6] H. Cohen. A Course in Computational Algebraic
Number Theory, vol. 138 of Graduate Texts in
Mathematics Springer-Verlag, 1996.

[7] T. Collins, D. Hopkins, S. Langford, and M. Sabin.
Public Key Cryptographic Apparatus and Method.
US Patent #5,848,159. Jan. 1997.

[8] A. Fiat. “Batch RSA.” In G.Brassard, ed., Proceedings
of Crypto ‘89, vol. 435 of (LNCS) pp. 175–185.
Springer-Verlag, 1989.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 10

1 . A S Y M M E T R I C E N C R Y P T I O N

In 1978, Rivest, Shamir, and Adleman proposed the first
candidate trapdoor permutation [RiShAd78]. A trapdoor
permutation primitive is a function f that anyone can
compute efficiently; however, inverting f is hard unless we
are also given some “trapdoor” information. Given the
trapdoor information, inverting f becomes easy. Naively,
a trapdoor permutation defines a simple public key encryp-
tion scheme: the description of f is the public key and the
trapdoor is the secret key. Unfortunately, encryption in
this naive public key system is deterministic and hence
cannot be secure, as discussed below.

Before we can claim that a cryptosystem is secure (or
insecure) we must precisely define what security actually
means. The formalization of security notions started
around the time when RSA was proposed and took sever-
al years to converge (see [Go97] for a survey on this
topic). Today, the accepted security requirement for an
encryption scheme is called “semantic security against an
adaptive chosen-ciphertext attack” [RaSi91] or
IND-CCA for short. To understand this concept we point
out that security is always defined in terms of two parameters:
(1) the attacker’s capabilities, namely what the attacker can
do during the attack, and (2) the attacker’s goals, namely
what the attacker is trying to do.

1. Attacker’s capabilities: The strongest attacker capability
in the standard model is called “adaptive chosen-cipher-
text attack” and is denoted by (CCA) [RaSi91]. This
means that the adversary has the ability to decrypt any
ciphertext of his choice except for some challenge cipher-
text (imagine the attacker is able to exploit a decryption
box that will decrypt anything except for some known
challenge ciphertext).

II. How to Encrypt Properly with RSA
David Pointcheval

Dépt d’Informatique, ENS – CNRS, 45 rue d’Ulm,
75230 Paris Cedex 05, France

David.Pointcheval@ens.fr
http://www.di.ens.fr/users/pointche

A B S T R A C T

In 1993, Bellare and Rogaway formalized the concept of
a random oracle, imported from complexity theory for
cryptographic purposes. This new tool allowed them to
present several asymmetric encryption and signature
schemes that are both efficient and provably secure (in the
random oracle model). The Optimal Asymmetric
Encryption Padding (OAEP) is the most significant
application of the random oracle model to date. It gives
an efficient RSA encryption scheme with a strong security
guarantee (semantic security against chosen-ciphertext
attacks). After Bleichenbacher’s devastating attack on
RSA-PKCS #1 v1.5 in 1998, RSA-OAEP became the
natural successor (RSA-PKCS #1 v2.0) and thus a
de facto international standard. Surprisingly, Shoup recently
showed that the original proof of security for OAEP is
incorrect. Without a proof, RSA-OAEP cannot be trusted
to provide an adequate level of security. Luckily, shortly
after Shoup’s discovery a formal and complete proof
was found in joint work by the author and others
that reaffirmed the strong level of security provided by
RSA-OAEP. However, this new security proof still does
not guarantee security for key sizes used in practice due to
the inefficiency of the security reduction (the reduction to
inverting RSA takes quadratic time). Recent alternatives
to OAEP, such as OAEP+, SAEP+, and REACT, admit
more efficient proofs and thus provide adequate security
for key sizes used in practice.

2. Attacker’s goal: The standard security goal is called
“semantic security” [GoMi84] (also known as “indistin-
guishability of ciphertexts”), and is denoted by (IND).
Roughly speaking, the attacker’s goal is to deduce just one
bit of information about the decryption of some given
ciphertext. We say that a system is semantically secure if
no efficient attacker can achieve this goal. We note that
a deterministic encryption algorithm can never give
semantic security.

An encryption scheme that is semantically secure under an
adaptive chosen-ciphertext attack is said to be IND-CCA
secure. IND-CCA security implies that even with full-
access to the decryption oracle, the attacker is not able to
deduce one bit of information about the decryption of a
given challenge ciphertext. IND-CCA may seem very
strong, but such attacks are possible in some real world
scenarios. In fact, CCA-like attacks have been used to
break practical implementations, as we will see later.
Furthermore, semantic security is required for high confi-
dentiality, namely when the message space is limited (such
as “yes” or “no,” “buy” or “sell”). As a consequence,
IND-CCA is accepted as the required security level for
practical encryption schemes

One can obtain many other security notions by combin-
ing different attacker goals with various attacker capabili-
ties. For example, another security goal is called “non-
malleability” [DoDwNa00, BeSh99]. Here the attacker is
given some ciphertext and his goal is to build another
ciphertext such that the plaintexts are meaningfully relat-
ed. Non-malleability is known to be equivalent to seman-
tic-security under an adaptive chosen-ciphertext attack
[BeDePoRo98]. For this reason, IND-CCA security is
sometimes called non-malleability. Similarly, one can also
consider different attacker capabilities based on the ora-
cles given to the attacker [NaYu89, RaSi91, Bl98,
GoHaSc99, OkPo01]. As mentioned above, the most
powerful attacker capability in the “classical” model is the
decryption oracle itself, which decrypts any ciphertext
(except the challenge ciphertext). This “classical” model
gives the cryptographic engine to the adversary as a black

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 11

box to which he can make queries and receive correct
answers in constant time. It thus excludes timing attacks
[Ko96], simple and differential power analyses
[KoJaJu99] as well, and other differential fault analyses
[BiSh97, BoDeLi97].

2 . T H E R S A - B A S E D C R Y P T O S Y S T E M S

2 .1 The P la in -RSA

The RSA permutation, proposed by Rivest, Shamir and
Adleman [RiShAd78], is the most well known trapdoor
permutation. Its one-wayness is believed to be as strong as
integer factorization. The RSA setup consists of choosing
two large prime numbers p and q, and computing the RSA
modulus n = pq. The public key is n together with an
exponent e (relatively prime to ϕ (n)=(p–1)(q–1)). The
secret key d is defined to be the inverse of e modulo ϕ (n).
Encryption and decryption is defined as follows:

En,e(m) = me mod n Dn,d(c) = c d mod n.

This primitive does not provide by itself an IND-CCA
secure encryption scheme. Under a slightly stronger
assumption than the intractability of the integer factor-
ization, it gives a cryptosystem that is only one-way under
chosen-plaintext attacks — a very weak level of security.
Semantic security fails because encryption is determinis-
tic. Even worse, under a CCA attack, the attacker can fully
decrypt a challenge ciphertext C = me mod n using the
homomorphic property of RSA:

En,e(m1) En,e(m2) = En,e (m1 m2) mod n.

To decrypt C = me mod n using a CCA attack do:
(1) compute C ′ = C ⋅2e mod n, (2) give C’ (≠ C) to the
decryption oracle, and (3) the oracle returns 2m mod n
from which the adversary can deduce m.

To overcome RSA this simple CCA attack, practical
RSA-based cryptosystems randomly pad the plaintext
prior to encryption. This randomizes the ciphertext and
eliminates the homomorphic property.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 12

Bleichenbacher’s attack had an impact on many practical sys-
tems and standards bodies, which suddenly became aware of
the importance of formal security arguments. Nevertheless,
the weak PKCS #1 v1.5 padding is still used in the TLS
protocol [TLS]. The TLS specification now appears to
defend against Bleichenbacher’s attack using a technique for
which no proof of security has yet been published. Certain
simple attacks are still possible (for example, plaintext-
checking attacks [OkPo01] can be easily run, even if they
seem ineffective). The lesson here is that standards should
rely as much as possible on fully analyzed constructions and
avoid ad-hoc techniques.

3 . T H E O P T I M A L A S Y M M E T R I C

E N C R Y P T I O N P A D D I N G

For some time, people have tried to provide security
proofs for cryptographic protocols in the “reductionist”
sense [BIM84]. To do so, one presents an algorithm that
uses an effective adversary as a sub-program to break
some underlying hardness assumption (such as the
RSA assumption, or the intractability of the integer
factorization). Such an algorithm is called a “reduction.”
This reduction is said to be efficient, roughly speaking, if
it does not require too many calls to the sub-program.

3 .1 The Random Orac le Mode l

A few years ago, a new line of research started with the
goal of combining provable security with efficiency, still
in the “reductionist” sense. To achieve this goal, Bellare
and Rogaway [BeRo93] formalized a heuristic suggested
by Fiat and Shamir [FiSh86]. This heuristic consisted in
making an idealized assumption about some objects, such
as hash functions, according to which they were assumed
to behave like truly random functions. This assumption,
known as the “random oracle model,” may seem strong,
and lacking in practical embodiments. In fact, Canetti
et al. [CaGoHa98] gave an example of a signature scheme
which is secure in the random oracle model, but insecure
under any instantiation of the random oracle.

2 .2 The RSA-PKCS #1 v1 .5 Enc rypt ion

A widely deployed padding for RSA-based encryption is
defined in the PKCS #1 v1.5 standard: for any modulus
28(k-1) ≤ n < 28k, in order to encrypt an � byte-long
message m (for � ≤ k-11), one randomly chooses a
k-3-��byte-long random string r (with only non-zero bytes).
Then, one defines the k-byte long string M= 02||r||0||m
(see Figure 1) which is thereafter encrypted with the RSA
permutation, C = Me mod n. When decrypting a cipher-
text C, the decryptor applies RSA inversion by computing
M = C d mod n and then checks that the result M matches
the expected format 02||*||0||*. If so, the decryptor
outputs the last part as the plaintext. Otherwise, the
ciphertext is rejected.

Intuitively, this padding seems sufficient to rule out the
above weaknesses of the plain RSA system, but without
any formal proof or guarantee. Surprisingly, in 1998,
Bleichenbacher [Bl98] showed that a simple active attack
can completely break RSA-PKCS #1. This attack applies
to real systems such as a Web server using SSL v3.0. These
servers often output a specific “failure” message in case of
an invalid ciphertext. This enables an attacker to test
whether the two most significant bytes of a challenge
ciphertext C are equal to `02’. If so, the attacker learns the
following bound on the decryption of C:

2.208(k-2) ≤ C d mod n < 3.28(k-2).

Due to the random self-reducibility of the RSA permuta-
tion, in particular the homomorphism

C s e = Me s e = (Ms)e mod n,

the complete decryption of C can be recovered after a
relatively small number of queries. Only a few million
queries are needed with a 1024-bit modulus.

0 2 0non-zero bytes
more than 8 bytes

m

Figure 1: PKCS #1 v1.5 Format

However, one can also consider random-oracle-based
proofs under the assumption that the adversary is generic,
whatever the actual implementation of the hash function
or other idealized algorithms may be. In other words, we
may assume that the adversary does/can not use any
specific weakness of the hash functions used in practice.
Thanks to this ideal assumption, several efficient encryp-
tion and signature schemes have been analyzed [BeRo94,
BeRo96, PoSt00].

We emphasize that even formal analyses in the random
oracle model are not strong security proofs, because of the
underlying ideal assumption. They do, however, provide
strong evidence for security and can furthermore serve as
the basis for quite efficient schemes. Since people do not
often want to pay more than a negligible price for securi-
ty, such an argument for practical schemes is more useful
than formal security proofs for inefficient schemes.

3 .2 Desc r ip t ion o f OAEP

At the time Bleichenbacher published his attack on
RSA-PKCS #1 v1.5, the only efficient and “provably
secure” encryption scheme based on RSA was the
Optimal Asymmetric Encryption Padding (OAEP) pro-
posed by Bellare and Rogaway [BeRo94]. OAEP can be
used with any trapdoor permutation f. To encrypt a
message m using the encryption scheme f -OAEP, first
apply the OAEP procedure described in Figure 2.
Here r is a random string and G,H are hash functions.
The resulting values [s||t] are then encrypted using f,
namely C = f (s,t).

Bellare and Rogaway proved that OAEP padding used
with any trapdoor permutation f provides a semantically
secure encryption scheme. By adding some redundancy
(the constant value 0k1 at the end of the message, as shown
in Figure 2), they furthermore proved it to be weakly
plaintext-aware. Plaintext-awareness is a property of
encryption schemes in the random oracle model which
means that there exists a plaintext-extractor able to simu-
late the decryption oracle on any ciphertext (valid or not)
designed by the adversary. The weak part in the definition
proposed by Bellare and Rogaway was that the plaintext-
extraction was just required to work while the adversary
had not received any valid ciphertext from any source.
Unfortunately, the adaptive chosen-ciphertext attack
model gives the adversary a full-time access to the decryp-
tion oracle, even after receiving the challenge ciphertext
about which the adversary wants to learn information.
This challenge is a valid ciphertext. Therefore, semantic
security together with weak plaintext-awareness only
implies the semantic security against non-adaptive chosen-
ciphertext attacks (a.k.a. lunchtime attacks [NaYu89], or
indifferent chosen-ciphertext attacks), where the decryption
oracle access is limited until the adversary has received the
challenge ciphertext.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 13

m 0k1 r

ts

Figure 2: OAEP Padding

G

H

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 14

In 1998, Bellare, Desai, Rogaway and the author
[BeDePoRo98] corrected this initial definition of plain-
text-awareness, requiring the existence of a plaintext-
extractor able to simulate the decryption oracle on any
ciphertext submitted by the adversary, even after seeing
some valid ciphertexts not encrypted by the adversary
himself. This stronger definition is a more accurate model
of the real world, where the adversary may have access to
ciphertexts via eavesdropping. We furthermore proved
that this new property (which can only be defined in the
random oracle model) actually provides the encryption
scheme with the strongest security level, namely semantic
security against (adaptive) chosen-ciphertext attacks
(IND-CCA). However, no one ever provided OAEP with
such a new plaintext-extractor. Therefore, even if every-
body believed in the strong security level of OAEP, it had
never been proven IND-CCA under the one-wayness of
the permutation alone.

3 .3 The OAEP Secur i ty Ana lyses

In fact, the only formally proven security result about OAEP
was its semantic security against lunchtime attacks, assum-
ing the one-wayness of the underlying permutation. Until
very recently OAEP was widely believed to also be IND-CCA.

3 .3 .1 Shoup ’s Resu l t

Shoup [Sh01] recently showed that it was quite unlikely
that OAEP is IND-CCA assuming only the one-wayness
of the underlying trapdoor permutation. In fact, he
showed that if there exists a trapdoor one-way permuta-
tion g for which it is easy to compute g(x ⊕a) from
g(x) and a, then OAEP cannot be IND-CCA secure for
an arbitrary trap-door permutation f. Referring to this
special property of g as “XOR malleability,” let us briefly
present Shoup’s counter-example. Let s||t denote the
output of the OAEP transformation on a plaintext
message m. Define the one-way permutation f as f (s||t) =
s || g(t). Then encrypting m using f -OAEP gives the
ciphertext C = [s || g(t)].

What Shoup showed is that under these conditions the
adversary can use C to construct a ciphertext C ’ of a
plaintext message m’ that is closely related to the message m.
In particular, for any string δ, the adversary can
construct C ’ which is the encryption of m’= m⊕δ. Thus,
the scheme is malleable and hence not IND-CCA —
giving C’ to the decryption oracle will reveal m’ = m ⊕ δ,
from which the adversary can obtain m.

m 0k1 r

ts

Figure 3: Shoup’s Attack

G

H

m 0k1 r

ts

G

H

⊕ ∆

⊕ ∆ ⊕ H(s) ⊕ H(s′)

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 15

To construct C ’, the idea is for the adversary to exploit
the explicit appearance of s in the ciphertext C. The
adversary first computes s’ = s ⊕ ∆, where ∆ = δ||0k1;
essentially, ∆ is simply a padded rendering of δ. The
adversary then computes D = H(s) ⊕ H(s’) using explicit
knowledge of s and s’ and access to the random oracle for H.
Finally, by exploiting the “XOR malleability” of g,
the adversary computes g(t’), where t’ = t ⊕ D. It is easy
to see now that C’ = s’||g (t’) is a valid encryption of
the message m’. Hence, the non-malleability of f-OAEP
is broken.

This observation shows that it is unlikely that one can
prove that f-OAEP is IND-CCA secure for arbitrary trap-
door permutations f by assuming only the one-wayness of f.

3 .3 .2 Repa i r ing the OAEP P roof o f Secur i ty

To construct a valid ciphertext C’ in the above attack it
seems that the adversary has to query the hash function H
at H(s). But this seems to imply that given C the adversary
can figure out the value s used to create C (recall that s is the
left hand side of f -1(C)). Thus, it appears that in order
to mount Shoup’s attack the adversary must be able
partly to invert f – given f (s, t), the adversary must be able
to expose s.

We say f is partial-domain one-way if no efficient algorithm
can deduce s from C = f (s, t). For such trapdoor permuta-
tions f, one could hope that Shoup’s attack will fail and that
f-OAEP is IND-CCA secure. Fujisaki, Okamoto, Stern and
the author [FuOkPoSt01] formally proved this fact: If f is
partial-domain one-way, then f-OAEP is IND-CCA secure.
We note that partial-domain one-wayness is a stronger prop-
erty than one-wayness: a function might be one-way but still
not partial-domain one-way.

Fortunately, the homomorphic properties of RSA enable
us to prove that the RSA permutation is partial-domain
one-way if and only if RSA is one-way. More precisely, an
algorithm that can expose half of RSA-1(C) given C can
be used to completely invert the RSA permutation.
Altogether, this proves the widely believed IND-CCA
security of RSA-OAEP assuming that RSA is a trapdoor
permutation. For security parameters ε and t (whose
formal definitions are omitted here), we obtain the fol-
lowing result [FuOkPoSt01]:

Let A be a CCA-adversary against the “semantic secu-
rity” of RSA-OAEP with running time bounded by t
and advantage ε. Then, the RSA function can be
inverted with probability greater than approximately
ε2/4 within time bound 2 t.

Unfortunately, the security reduction from an RSA-inver-
sion into an attack is quite inefficient for practical sizes
(more precisely, it is quadratic in the number of oracle
queries). Hence, this reduction is meaningless unless one
uses a modulus large enough so that the RSA-inversion
(or the factorization) requires much more than 2150 com-
putational effort. With current factorization techniques
[LeLe93, CaDoLe00], one needs to use a modulus of
length more than 4096 bits to make the reduction mean-
ingful (see [LeVe00] for complexity estimates of the most
efficient factoring algorithms). Viewed another way, this
reduction shows that a 1024-bit modulus just provides a
provable security level of 240, which is clearly inadequate
given currently prevalent levels of computing power. (We
note, however, that this does not meant that there is an
attack with this low complexity, only that one cannot be
ruled out by the available proofs of security.)

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 16

4 . O A E P A L T E R N A T I V E S

4 .1 The OAEP+ Padd ing

Shoup also proposed a formal security proof of
RSA-OAEP with a much more efficient security reduction,
but in the particular case where the encryption exponent e is
equal to 3. However, many people believe that the RSA trap-
door permutation with exponent 3 may be weaker than with
greater exponents. Therefore, he also proposed a slightly
modified version of OAEP, called OAEP+ (see Figure 4),
which can be proven secure under the one-wayness of the
permutation alone. It uses the variable redundancy R(m,r)
instead of the constant 0k1. It is thus a bit more intricate
than the original OAEP. The security reduction for OAEP+
is efficient, but still runs in quadratic time.

4 .2 SAEP+ Padd ing

Boneh [Bo01] recently proposed a new padding scheme,
SAEP+, to be used with the Rabin primitive [Ra78] or
RSA. It is simpler than OAEP, hence the name Simplified
Asymmetric Encryption Padding: whereas OAEP is a
two-round Feistel network, SAEP+ is a single-round.
SAEP+ has a linear time reduction for the Rabin system

(i.e., e = 2). For larger exponents, SAEP+ has a quadrat-
ic time reduction. Hence, for larger exponents (e > 2),
SAEP+ does not guarantee security for practical parameters
(less than two thousand bits).

4 .3 The REACT Cons t ruc t ion

Another alternative to OAEP is the REACT construc-
tion, proposed by Okamoto and the author [OkPo01]
(see Figure 5). It provides an IND-CCA encryption
scheme from any weakly secure one (more precisely, a
one-way primitive, against plaintext-checking attacks),
such as the RSA primitive. Therefore, the RSA-REACT
scheme is IND-CCA secure under the RSA assumption.

Furthermore, the security reduction is very efficient, since
it is in linear time without any loss in the success proba-
bility, whatever the exponent. Consequently, it guarantees
perfect equivalence with RSA inversion for moduli which
require just a bit more than 270 effort to be factored. This
is the case for 1024 bit-long moduli, the minimal cur-
rently advised key size. In comparison to previous pro-
posals, REACT is a full scheme and not just a pure
padding applied to the message before the RSA function.

m

R(m,r)

r

r

ts

R(m,r)

R

G

H

G

R

m

m

m R(m,r)

s

r

r

r

OAEP+ padding SAEP+ padding

Figure 4: OAEP+ and SAEP+ padding

Consequently, the ciphertext is a bit longer. However, even
when used for key transport, it allows integration of a
symmetric encryption scheme (SymE) to achieve very
high encryption rates, as shown in the hybrid construc-
tion. In the specific case of RSA, REACT can be
optimized, as explained below.

4 .4 S imp le RSA

In an ISO report [Sh01b], Shoup suggested a possible alter-
native, based on ideas from Bellare and Rogaway [BeRo93]
that provide a secure encryption scheme from any trapdoor
one-way permutation f. Roughly speaking, “simple RSA,”
as it is called, consists of first encrypting a random string
r using f to obtain C0 (thus C 0 = r e mod n), and then
parsing G(r) as k0 || k1, where G is some hash function
(modeled by a random oracle). Thereafter, one encrypts the
message m using a symmetric encryption scheme with the
key k0 to get C1 (e.g., C1 = m ⊕ k0), and authenticates the
ciphertext with a MAC function H using the key k1 to
get a tag T = H(k1,C1). The ciphertext is the triple
(C0, C1, T).This construction is a special case of REACT,
optimized for RSA, and hence is IND-CCA under the
RSA assumption. It provides a very efficient linear time
reduction. Moreover, thanks to the random self-reducibility
of RSA (which can only be used with this latter

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 17

construction, but cannot with the OAEP and SAEP
variants), this construction provides a high security level
even when encrypting many plaintexts [BaPoSt00, BeBoMi00].

5 . C O N C L U S I O N

RSA-OEP is a practical RSA encryption scheme with
provable security in the random oracle model. For practical
security, the cost of the reductions cannot simply be
shown to be polynomial time (as in asymptotical analyses),
since the reduction efficiency directly impacts the security
parameters needed for the scheme. Hence, when evaluating
cryptographic constructions, one must take into account
the efficiency of the security proof. Inefficient proofs
of security do not give security guarantees for real world
parameters.

Only OAEP with exponents 2 or 3, SAEP+ with expo-
nent 2, and RSA-REACT (or the optimization “simple
RSA”) with any exponent, admit formal proofs with lin-
ear time reductions in the random oracle model. Hence
only these schemes guarantee semantic security against
chosen-ciphertext attacks for practical modulus sizes
(even less than 1024 bits). The provable security for other
padding schemes is meaningful only for much larger moduli
(more than 4096 bits).

r m

C1 C2 C3

RSA

G H

r m

C1 C2 C3

RSA

G HSymE

Basic encryption Hybrid encryption

Figure 5: REACT

A C K N O W L E D G E M E N T S

I warmly thank my co-authors, Mihir Bellare, Anand
Desai, Eiichiro Fujisaki, Tatsuaki Okamoto, Phil Rogaway
and Jacques Stern for the interesting works we did on
asymmetric encryption, as well as Dan Boneh, Pierre-
Alain Fouque, Victor Shoup and Yves Verhoeven for the
fruitful discussions we had.

R E F E R E N C E S

[BaPoSt00] O. Baudron, D. Pointcheval, and J. Stern.
Extended Notions of Security for Multicast Public Key
Cryptosystems. In Proc. of the 27th ICALP, LNCS 1853,
pages 499-511. Springer-Verlag, Berlin, 2000

[BeBoMi00] M. Bellare, A. Boldyreva, and S. Micali.
Public-key Encryption in a Multi-User Setting: Security
Proofs and Improvements. In Eurocrypt ‘00, LNCS 1807,
pages 259-274. Springer-Verlag, Berlin, 2000.

[BeDePoRo98] M. Bellare, A. Desai, D. Pointcheval, and
P. Rogaway. Relations among Notions of Security for
Public-Key Encryption Schemes. In Crypto ‘98, LNCS
1462, pages 26-45. Springer-Verlag, Berlin, 1998.

[BeRo93] M. Bellare and P. Rogaway. Random Oracles
Are Practical: a Paradigm for Designing Efficient
Protocols. In Proc. of the 1st CCS, pages 62-73. ACM
Press, New York, 1993.

[BeRo94] M. Bellare and P. Rogaway. Optimal
Asymmetric Encryption — How to Encrypt with RSA.
In Eurocrypt ‘94, LNCS 950, pages 92-111. Springer-
Verlag, Berlin, 1995.

[BeRo96] M. Bellare and P. Rogaway. The Exact Security
of Digital Signatures — How to Sign with RSA and
Rabin. In Eurocrypt ‘96, LNCS 1070, pages 399-416.
Springer-Verlag, Berlin, 1996.

[BeSh99] M. Bellare and A. Sahai. Non-Malleable
Encryption: Equivalence between Two Notions, and an
Indistinguishability-Based Characterization. In Crypto
‘99 , LNCS 1666, pages 519-536. Springer-Verlag,
Berlin, 1999.

[BiSh97] E. Biham and A. Shamir. Differential Fault
Analysis of Secret Key Cryptosystems. In Crypto ‘97, LNCS
1294, pages 513-525. Springer-Verlag, Berlin, 1997.

[Bl98] D. Bleichenbacher. A Chosen Ciphertext Attack
against Protocols based on the RSA Encryption Standard
PKCS #1. In Crypto ‘98, LNCS 1462, pages 1-12.
Springer-Verlag, Berlin, 1998.

[B1M84] M. Blum, S. Micali. How to Generate
Cryptographically Strong Sequences of Pseudo Random
Bits, SIAM Journal on Computing, Vol.13, pages 850-864, 1984.

[Bo01] D. Boneh. Simplified OAEP for the RSA and
Rabin Functions. In Crypto ‘01, LNCS 2139, pages 275-
291. Springer-Verlag, Berlin, 2001.

[BoDeLi97] D. Boneh, R. DeMillo, and R. Lipton. On
the Importance of Checking Cryptographic Protocols for
Faults. In Eurocrypt ‘97, LNCS 1233, pages 37-51.
Springer-Verlag, Berlin, 1997.

[CaGoHa98] R. Canetti, O. Goldreich, and S. Halevi. The
Random Oracles Methodology, Revisited. In Proc. of the
30th STOC, pages 209-218. ACM Press, New York, 1998.

[CaDoLe00] S. Cavallar, B. Dodson, A. K. Lenstra, W.
Lioen, P. L. Montgomery, B. Murphy, H. te Riele, K.
Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand,
F. Morain, A. Muffett, C. Putnam, C. Putnam, and P.
Zimmermann. Factorization of a 512-bit RSA Modulus.
In Eurocrypt ‘00, LNCS 1807, pages 1-18. Springer-
Verlag, Berlin, 2000.

[DoDwNa00] D. Dolev, C. Dwork, and M. Naor. Non-
Malleable Cryptography. SIAM Journal on Computing,
30(2):391-437, 2000.

[FiSh86] A. Fiat and A. Shamir. How to Prove Yourself:
Practical Solutions of Identification and Signature
Problems. In Crypto ‘86, LNCS 263, pages 186-194.
Springer-Verlag, Berlin, 1987.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 18

[FuOkPoSt01] E. Fujisaki, T. Okamoto, D. Pointcheval,
and J. Stern. RSA-OAEP is Secure under the RSA
Assumption. In Crypto ‘01, LNCS 2139, pages 260-274.
Springer-Verlag, Berlin, 2001.

[Go97] O. Goldreich. On the Foundations of Modern
Cryptography. In Crypto ‘97, LNCS 1294, pages 46-74.
Springer-Verlag, Berlin, 1997. Also appeared in
CryptoBytes, 3(2):1-5, Autumn 1997.

[GoMi84] S. Goldwasser and S. Micali. Probabilistic
Encryption. Journal of Computer and System Sciences,
28:270-299, 1984.

[GoHaSc99] C. Hall, I. Goldberg, and B. Schneier.
Reaction Attacks Against Several Public-Key
Cryptosystems. In Proc. of ICICS ‘99, LNCS, pages 2-
12. Springer-Verlag, 1999.

[Ko96] P. C. Kocher. Timing Attacks on Implementations
of Diffie-Hellman, RSA, DSS, and Other Systems. In
Crypto ‘96, LNCS 1109, pages 104-113. Springer-
Verlag, Berlin, 1996.

[KoJaJu99] P. C. Kocher, J. Jaffe, and B. Jun. Differential
Power Analysis. In Crypto ‘99, LNCS 1666, pages 388-
397. Springer-Verlag, Berlin, 1999.

[LeLe93] A. Lenstra and H. Lenstra. The Development of
the Number Field Sieve, volume 1554 of Lecture Notes in
Mathematics. Springer-Verlag, 1993.

[LeVe00] A. Lenstra and E. Verheul. Selecting
Cryptographic Key Sizes. In PKC ‘00, LNCS 1751,
pages 446-465. Springer-Verlag, Berlin, 2000.

[NaYu89] M. Naor and M. Yung. Universal One-Way
Hash Functions and Their Cryptographic Applications.
In Proc. of the 21st STOC, pages 33-43. ACM Press,
New York, 1989.

[OkPo01] T. Okamoto and D. Pointcheval. REACT:
Rapid Enhanced-security Asymmetric Cryptosystem
Transform. In CT-RSA ‘01, LNCS 2020, pages 159-
175. Springer-Verlag, Berlin, 2001.

[PoSt00] D. Pointcheval and J. Stern. Security
Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology, 13(3):361-396, 2000.

[Ra78] M. O. Rabin. Digitalized Signatures. In R. Lipton and
R. De Millo, editors, Foundations of Secure Computation, pages
155-166. Academic Press, New York, 1978.

[RaSi91] C. Rackoff and D. R. Simon. Non-Interactive
Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext Attack. In Crypto ‘91, LNCS 576, pages
433-444. Springer-Verlag, Berlin, 1992.

[RiShAd78] R. Rivest, A. Shamir, and L. Adleman. A
Method for Obtaining Digital Signatures and Public Key
Cryptosystems. Communications of the ACM, 21(2):120-126,
February 1978.

[Sh01] V. Shoup. OAEP Reconsidered. In Crypto ‘01,
LNCS 2139, pages 239-259. Springer-Verlag, Berlin, 2001.

[Sh01b] V. Shoup. Editor’s Contribution on Public Key
Encryption. ISO/IEC JTC 1/SC27. February 13, 2001.

[TLS] T. Dierks and C. Allen. The TLS Protocol, January
1999. RFC 2246.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 19

III . Composi t e-Res iduos i ty
Based Cryptography: An Overview
Pascal Paillier

Cryptography Group, Gemplus

pascal.paillier@gemplus.com

1 . I N T R O D U C T I O N

There are three main families of public key cryptosystems
based on computational number theory. The first family
includes RSA and related variants (Rabin-Williams,
LUC, Dickson, elliptic curve embodiments of RSA-like
KMOV). The trapdoor for these relies on the extraction
of roots over finite Abelian groups of some secret order.
Root extraction is easy when the group order is known,
but believed to be hard without that knowledge. Finding
the group order is as hard as factoring a large integer.

The second family is based on Diffie-Hellman-type
schemes (ElGamal and variants, Cramer-Shoup) which
exploit properties of exponentiation over finite cyclic
groups. Here, the trapdoor depends on the knowledge of
the discrete logarithm of some public group element and
again, computing this secret information from the
description of the group alone is believed to be hard.

Finally, the third family is based on high degree residuosity
classes (Goldwasser-Micali, Benaloh, Naccache-Stern,
Okamoto-Uchiyama and variants). The trapdoor in these
schemes combines the extraction of residuosity classes over
certain groups with the intractability of computing their
order. Because residuosity classes are additive, such cryp-
tosystems look like discrete-log based ones, but the trap-
door is closer in nature to those for factoring-based systems.

We review here one particular cryptosystem belonging to
this last family that was proposed by the author of this
paper at Eurocrypt ‘99. The system, based on composite
residuosity classes, has recently gained a certain degree of
popularity mainly as a building block for cryptographic
protocols. We summarize some of these constructions
and provide state-of-the-art references to composite-
residuosity-based cryptographic tools.

2 . D E S C R I P T I O N O F T H E S C H E M E

We first briefly recall basic facts on composite residues,
referring the reader to [8] for more details.

• We set n = pq where p and q are large primes and denote
by φ(n) and λ = λ(n) the Euler and Carmichael
functions of n respectively. Then φ(n) = (p-1)(q-1) and
λ = lcm(p-1, q-1).

• It is a well-known fact that the group Zn2
∗ has

φ(n2) = nφ(n) elements. Furthermore, w λ = 1 mod n
and w nλ = 1 mod n2 for any element w ∈ Zn2

∗ .

• We say that an integer z is an n-residue modulo n2

if there exists some y ∈ Zn2
∗ such that z = yn mod n2. The

set of n-residues forms a subgroup of Zn2
∗ of order φ(n).

Each n-residue in Zn2
∗ has exactly n roots of degree n.

• We denote by B the set of elements of order nα for
some α ∈ [1, λ].

• Let g ∈ Zn2
∗ and consider the mapping over Zn × Zn2

∗

defined by:

(x,y) �→ g x yn mod n2.

Then, when g ∈ B, this map is one-to-one.

• Let g ∈ B. We define the n-residuosity class of an
element w ∈ Zn2

∗ with respect to g as the unique integer
x ∈ [1, n] for which there exists y ∈ Zn2

∗ s.t. w = g xy n

mod n2.

Following the notation of Benaloh [2], we denote the
class of w by [w]g . Note that [w]g = 0 if and only if
w is an n-residue. Additionally,

∀w1,w2, [w1 ⋅ w2]g = [w1]g + [w2]g .
Hence, the class function w �→ [w]g is an additive
homomorphism for any g ∈ B.

• Consider the subgroup of Zn2 defined by
Sn = {u : u = 1 mod n}. For u ∈ Sn define:

L(u) = (u – 1)/n .

Then for u ∈ Sn we have L(ur)/L(u) = r. Hence,
discrete-log is easy in the group Sn.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 20

The n-Residuosity Class Problem in base g, denoted
Class[n, g], is defined as the problem of computing the
class function in base g. This is exactly the problem of
decrypting a given ciphertext in the cryptosystem above.

As before, one can show that Class[n, g], is random self-
reducible over its inputs. Moreover, for any w ∈ Zn2

∗ and
g
1
,g

2
∈ B, we have

[w]g1 = [w]g
2

[g2]g
1

mod n

which implies that Class[n, g] is also random self-reducible
over g ∈ B. Hence, Class [n] is a computational number-
theoretic problem which only depends on n, very much
like factorization for instance. The Class problem is relat-
ed to other standard hard number theoretic problems. For
example, the decryption procedure shows that:

Hence, if we can factor n and obtain λ then we can solve
Class[n]. Therefore, we write:

Class[n] ⇐ Fact[n].

One can show a slightly stronger statement. Class[n] can
be solved just given the ability to compute n’th roots in Zn.
Computing n’th roots in Zn is called the RSA problem with
public exponent e = n and is denoted by RSA[n,n].
Therefore, we have:

Class[n] ⇐ RSA [n,n].

In summary, the computational hierarchy behind compos-
ite residuosity is

CR[n] ⇐ Class[n] ⇐ RSA[n,n] ⇐ Fact[n].

We conjecture that Class[n] is polynomial-time
intractable; by analogy with the DCRA, this conjecture is
called Computational Composite Residuosity
Assumption (CCRA for short). We know that if the
DCRA is true then the CCRA is true, but the converse
implication remains open.

We are now ready to define the composite residuosity
cryptosystem. Let n = pq and g ∈ B. The public key is the
pair (n, g) while the factors (p,q) are the private key. The
cryptosystem is as follows.

Encryption:
Plaintext: 0 ≤ m < n
select a random 0 < r < n
Ciphertext: c = gmrn mod n2

Decryption:
Ciphertext: 0 < c < n2

Plaintext: m = mod n

We discuss the security of this system below. This
cryptosystem is useful for distributed computations due
to its additive homomorphism. That is, for all m1, m2 :

D (E(m1)⋅E(m2) mod n2) = m1+m2 mod n

In other words, given the two ciphertexts E(m1), E(m2) it
is easy to construct the encryption of m1 + m2.

The additive property is particularly useful when design-
ing threshold crypto-systems and distributed protocols in
general. It also allows full self-randomization of encryp-
tions in the sense that any ciphertext can be transformed
into another without affecting the plaintext.

3 . T H E C L A S S P R O B L E M

We discuss several complexity assumptions needed for the
security of the above cryptosystem.

The problem of distinguishing the set of n-residues from
non n-residues in Zn2 is denoted by CR[n]. This problem
has a random-self reduction in Zn2 (reduce CR[n] for a
worst case element x ∈ Zn2 to a random element). The
assumption that CR[n] is polynomial-time intractable is
referred to as the Decisional Composite Residuosity
Assumption (DCRA).

The cryptosystem above is semantically secure (against
chosen-plaintext attacks) assuming the DCRA assumption.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 21

L(cλ mod n2)

L(gλ mod n2)

L(wλ mod n2)

L(gλ mod n2)
=[w]g mod n.

A careful study of CR[n] and Class[n] is essential in
future research, because very few things are known about
these problems today. We note that the encryption scheme
shown above is one-way relative to the CCRA and seman-
tically secure (against chosen-plaintext attacks) relative to
the DCRA.

In [4], Catalano, Gennaro and Howgrave-Graham exam-
ined the bit security of our scheme. They showed that
given a random element w ∈ Zn2

∗ , predicting the least
significant bit of [w]g is as hard as computing [w]g com-
pletely. Moreover, they proved that the scheme simultane-
ously hides |n|– b bits of [w] g under the assumption that
computing classes remains hard over {w : [w]g < 2b}. By
encrypting random-padded messages, the authors
deduced from their results a way to construct the first
encryption scheme hiding O(|n|) plaintext bits. Note that
although their modified version of the class problem
seems to remain hard in this context, further research on its
connections with the original class problem (as well as on
possible breakthroughs) is required to validate this approach.

4 . C R Y P T O G R A P H I C A P P L I C A T I O N S

We now give some cryptographic applications of com-
posite residuosity. Without being exhaustive, composite
residuosity finds applications in such different fields as
encryption, signatures, distributed protocols such as vot-
ing schemes and ZK proofs. It is worthwhile noting that
among all residuosity-based schemes, taking g = 1+kn for
some k leads to higher encryption rates as gm = 1+kmn.
Because of random self-reducibility, this choice does not
affect the security level.

4 .1 A Subgroup Var iant

We give here a slightly modified encryption scheme in
which the ciphertext space is restricted to the subgroup 〈g〉.
Indeed, assuming that g is of order nα, we have for any
w ∈ 〈g〉,

[w]g =

This motivates the following cryptosystem.

Encryption:
Plaintext: 0 ≤ m < n
select a random 0 < r < n
ciphertext: c = gm+rnmod n2

Decryption:
Ciphertext: 0 < c < n2

Plaintext: m =

This time, the secret key is α instead of λ . The most
expensive operation while decrypting is the modular expo-
nentiation ca mod n2, which can be accelerated arbitrarily
by an adequate selection of α. In practice, α should be
typically set to a 320-bit divisor of λ such that α = α pα q

where αp divides p-1 but not q-1 and αq divides q-1
but not p-1. This can be met using an appropriate key
generation algorithm.

In this subgroup variant, one-wayness does not rely on
the composite residuosity class problem, because the
ciphertext is known to lie in 〈g〉. The problem consisting
in computing residuosity classes in this context is called
Partial Discrete Logarithm Problem and is a weaker
instance of the class problem. Similarly, we call Decisional
Partial Discrete Logarithm Problem the problem of
distinguishing n-residues given the public information.
The semantic security of the encryption scheme is equiv-
alent to this problem.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 22

L(wα mod n2)

L(gα mod n2)
mod n.

L(cα mod n2)

L(gα mod n2)
mod n

4 .2 Ex tended Var iant

In [15], Damgård and Jurik introduced a modified cryp-
tosystem in which computations are performed modulo
ns+1 where s ≥ 1. Clearly, the original scheme is contained
by setting s = 1. Damgård and Jurik’s extended scheme
relies on the observation that for any g ∈ Z

n
∗

s+1 such that
ns divides the order of g modulo n s+1, the function
defined over Zns x Zn

∗ by

(x,y) �→ gxyns
mod ns+1

is one-to-one. As a result, ns-residuosity classes are
easily definable in this context and present the same
features than in the original system. The particular choice
g = 1 + n (it is easily shown that the order of 1 + n
modulo ns+1 is ns) provides the advantage of reducing the
key size without modifying the system’s properties
(including security). The final observation is that
computing m from w = (1 + n)m mod n s+1 is easy. Define
like in the original setting L(x) = (x – 1)/n. Clearly,

L((1+n)m mod ns+1) = (m + (2
m)n +⋅⋅⋅+ (s

m) ns+1)mod ns

Damgård and Jurik then give an inductive method to
compute mi = m mod ni for successive values of i ∈[1,s].
A simple alternative to their method is obtained by
observing that (1 + n)ni

= 1 + ni+1 mod ni+2 for any i, so
we actually have the more direct induction

mi+1 = mi + L(w(1+n)-mi mod ni+2),

which also allows us to recover m = ms. Damgård and
Jurik’s cryptosystem is described as follows.

Key Generation: choose an RSA modulus n = pq. The
public key is n while the secret key is (p,q).

Encryption: given a plaintext m < ns, choose a random
r < n s+1 and let the ciphertext be

c = (1 + n)mrns
mod n s+1.

Decryption: compute d such that d = 1 mod n s and
d = 0 modλ (this may also be saved as some secret key
material). Given the encryption c, compute c d = (1+n)m

mod n s+1 and apply the above algorithm to recover m.

The one-wayness of this scheme is based on the assump-
tion that the class function is hard to compute in this con-
text without knowledge of (p,q). Similarly, semantic secu-
rity is achieved if and only if distinguishing n s-residues in
Z

n
∗

s+1 is intractable. These assumptions were called
Generalised (Decisional) Composite Residuosity
Assumption or G(D)CRA and conjectured true by the
authors. It is easily seen that original assumptions imply
Damgård and Jurik’s generalized assumptions.

4 .3 D ig i ta l S ignatures

Trapdoor permutations are extremely rare objects: we refer
the reader to [12] for an exhaustive documentation on
these. Here, we show how composite residuosity allows to
design a trapdoor permutation. As before, n stands for the
product of two large primes and g ∈ B.

Encryption:
plaintext m < n2

split m into m =m1+nm2

ciphertext c = gm1m2
n mod n2

Decryption:
ciphertext c < n2

compute m1 =

compute c′ = cg -m1 mod n,
compute m2 = c′n-1mod λ mod n,
plaintext m = m1 + nm2 .

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 23

L(cλ mod n2)

L(gλ mod n2)
mod n,

As easily seen in the decryption procedure, we require
the extraction of an n-root modulo n. Because of this
additional step, we get that this permutation is one-way if
and only if RSA[n,n] is hard. Like with any other trapdoor
permutation, digital signatures are obtained by using the
cryptosystem backwards : denoting by µ: {0,1}∗

�→ {0,1}k

some padding function with k = |n2|, we obtain a signature
scheme as follows. For a given message m, the signer com-
putes the signature (s1, s2) where

s1 = mod n,

s2 = (µ (m)g–s1) n- l modλ mod n

and the verifier checks that

µ(m) = gs1 s2
n mod n2.

4 .4 A D i s t r ibuted Ver s ion

In [15], Damgård and Jurik devised a distributed cryp-
tosystem allowing threshold decryption among a set of
servers. Fouque, Poupard and Stern independently pro-
posed a similar technique in [6]. This threshold variant is
an adaptation of Shoup’s distributed RSA [17] whose
main part allows a set of servers to collectively and
efficiently raise an input number to a secret exponent
modulo an RSA modulus. On input c, each server returns
a share of the result, together with a proof of correctness.
Given sufficiently many correct shares, these can be
efficiently combined to compute c d mod n, where d is the
secret exponent. Damgård and Jurik transplanted
this method in the case of a shared exponentiation
modulo n s +1.

Assume that there are l decryption servers, and that a mini-
mum of k of these are needed to make a correct decryption.

Key Generation: pick a pair of primes p and q satisfying
p = 2p′+1 and q = 2q′+1 for primes p′ and q′. Set
n = pq, m = p′q′ and decide on some s > 0, so that the
plaintext space is Zns. Then pick an number d to satisfy
d = 1 mod n s and d = 0 mod m. Now choose a polynomial

f (X) = Σk-1 ai X
i mod nsm

by picking random coefficients ai ∈ Znsm for i ranging
from 1 to k–1 and a 0 = d. The secret share of server i is
si = f (i) for i ∈ [1, l] while the public key is n. To verify
the actions of the decryption servers, the system requires
the following fixed public values: v, generating the cyclic
group of squares in Zns+1

∗ and for each decryption server a
verification key vi = v ∆ si mod ns+1 where ∆ = l !. The entire
key setup may be executed by a trusted party, or distrib-
uted among servers using suitable multiparty computation
techniques.

Encryption: to encrypt a message m, a random r < n s+1 is
picked and the ciphertext is computed as c = (1 + n)mrn s

mod ns+1.

Share Decryption: the server i computes ci = c 2 ∆ si where c is
the ciphertext and provides a zero-knowledge proof that
log

c 4 (c i
2) = log v(vi) which shows that he has indeed raised

c to his secret exponent si.

Share Combining: given a subset S of k (or more) shares
with a correct proof, the result is obtained by combining
the shares into

.

We then get

c′ = c 4∆2
f (0) = c 4∆2

d = (1 + n)4∆2
m mod ns+1.

The plaintext m is retrieved by applying the induction
formula described in the extended variant and multiplying
the result by (4∆2) -1 mod ns.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 24

L(µ (m)λ mod n2)

L(gλ mod n2)

c′ = ∏ci
2λ

0
s, i mod ns+1 where λ

0, i
s

= ∆∏
i∈S j∈S–i

–i
i–j

i=0

The authors then showed that this threshold version is as
secure as their extended variant in the random oracle
model, provided that some trusted player performs the
share combining stage. More recently, Damgård and
Koprowski proposed a new threshold RSA technique [16]
applicable mutatis mutandis to the present setting. Its main
advantage over [15] resides in that no trusted dealer is needed.

4 .5 Other App l i ca t ions

Boneh and Franklin [3] introduced a traitor tracing
scheme in which black box tracing is achieved using the
subgroup variant.

Pointcheval and the author of these lines [10] proposed
security-enhanced cryptosystems provably semantically
secure against chosen-ciphertext attacks in the random
oracle model.

In [14], Poupard and Stern use the subgroup encryption
scheme to devise proofs of knowledge for the factoriza-
tion of a public composite integer. In [13], the same
authors further achieve fair encryption of secret keys, a
clever and efficient approach to key recovery systems.

Yung and I considered self-escrowed public-key infra-
structures [11], in which a joint use of Paillier and
ElGamal encryption schemes leads to a simplified implan-
tation of PKI properties.

Cramer, Damgård and Nielsen [5] propose a way of bas-
ing multiparty computation protocols on homomorphic
threshold crypto-systems instead of using secret sharing
schemes. Their general construction is shown to reach a
better efficiency in that fewer bits are needed to be trans-
mitted between parties, while security against cheating is
preserved for any minority of cheaters.

Galbraith [7] recently showed how to securely design a
composite-residuosity-based encryption scheme on non-
specific elliptic curves over rings. This implicitly provided
an answer to the quest of [9].

More recently, Baudron and Stern [1] exploited our
scheme’s homomorphic property to design a new auction
protocol where bids are submitted non-interactively and
bidders are not required to interact with each other.

Even more recently, Cramer and Shoup used our scheme
to propose an encryption scheme secure against active
adversaries in the standard model [6]. They based their
scheme’s security on the decisional composite residuosity
assumption.

5 . I M P L E M E N T A T I O N I S S U E S

5 .1 E ff i c i ency

The reader may find in [8] some tips about practical
aspects of computations required by composite residuos-
ity-based cryptosystems, as well as various implementa-
tion strategies for increased performance. We just recall
here the main tricks: decryption allows Chinese remain-
dering; preprocessing can be used advantageously in both
encryption and decryption; small values for g or setting
g = 1+n (which does not affect security at all) would
greatly improve encryption rates, provided that g ∈ B still
holds. In the same spirit as with RSA, simple randomiza-
tion techniques may help protect hardware or software
implementations against side-channel attacks.

R E F E R E N C E S

1. Olivier Baudron and Jacques Stern. Non-interactive
private auctions. In Financial Crypto’01, Lecture
Notes in Computer Science, pages 300-313.
Springer-Verlag, 2001.

2. Josh Cohen Benaloh. Verifiable Secret-Ballot
Elections. PhD thesis, Yale University, 1988.

3. Dan Boneh and Matthew Franklin. An efficient
public key traitor tracing scheme. In Crypto ‘98,
Lecture Notes in Computer Science. Springer-
Verlag, 1998.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 25

4. Dario Catalano, Rosario Gennaro, and Nick
Howgrave-Graham. The bit security of Paillier’s
encryption scheme and its applications. In Birgit
Pfitzmann, editor, Eurocrypt ‘01, volume 2045 of
Lecture Notes in Computer Science, pages 229-243.
Springer-Verlag, 2001.

5. Ronald Cramer, Ivan Damgård, and Jesper B. Nielsen.
Multiparty computation from threshold homomor-
phic encryption. In Bart Preneel, editor, Eurocrypt ‘00,
volume 1807 of Lecture Notes in Computer Science,
pages 280-300. Springer-Verlag, 2000.

6. Ronald Cramer and Victor Shoup. Universal hash
proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. Available on IACR
ePrint Archive

(http://eprint.iacr.org/2001/085).

7. Pierre-Alain Fouque, Guillaume Poupard, and Jacques
Stern. Sharing decryption in the context of voting or
lotteries. In Financial Cryptography 2000, Lecture Notes
in Computer Science. Springer-Verlag, 2000.

8. Steven D. Galbraith. Elliptic curve Paillier schemes.
Journal of Cryptology, 2001. to appear.

9. Pascal Paillier. Public-key cryptosystems based on dis-
crete logarithms residues. In Eurocrypt ‘99, volume
1592 of Lecture Notes in Computer Science, pages
223-238. Springer-Verlag, 1999. European patent
number 9900341.

10. Pascal Paillier. Trapdooring discrete logarithms on
elliptic curves over rings. In T. Okamoto, editor,
Asiacrypt’00, volume 1976 of Lecture Notes
in Computer Science, pages 573-584. Springer-
Verlag, 2000.

11. Pascal Paillier and David Pointcheval. Efficient
public-key cryptosystems provably secure against
active adversaries. In K. Y. Lam and E. Okamoto,
editors, Asiacrypt ‘99, volume 1716 of Lecture Notes
in Computer Science, pages 165-179. Springer-
Verlag, 1999.

12. Pascal Paillier and Moti Yung. Self-escrowed public-
key infrastructures. In JooSeok Song, editor, ICICS
‘99, volume 1787 of Lecture Notes in Computer
Science, pages 257-268. Springer-Verlag, 1999.

13. Jacques Patarin and Louis Goubin. Trapdoor one-way
permutations and multivariate polynomials. In ICICS
‘97, volume 1334 of Lecture Notes in Computer
Science, pages 356-368. Springer-Verlag, 1997.

14. Guillaume Poupard and Jacques Stern. Fair
encryption of RSA keys. In Bart Preneel, editor,
Eurocrypt ‘00, volume 1807 of Lecture Notes
in Computer Science, pages 172-189. Springer-
Verlag, 2000.

15. Guillaume Poupard and Jacques Stern. Short proofs
of knowledge for factoring. In PKC ‘00, volume 1751
of Lecture Notes in Computer Science, pages 147-
166. Springer-Verlag, 2000.

16. Ivan Damgård and Mads Jurik. A generalisation,
a simplification and some applications of Paillier’s
probabilistic public-key system. In Kwangjo
Kim, editor, PKC ‘01, volume 1992 of Lecture Notes
in Computer Science, pages 119-136. Springer-
Verlag, 2001.

17. Ivan Damgård and Maciej Koprowski. Practical
threshold RSA signatures without a trusted dealer. In
Bart Preneel, editor, Eurocrypt ‘00, volume 1807 of
Lecture Notes in Computer Science, pages 152-165.
Springer-Verlag, 2000.

18. Victor Shoup. Practical threshold signatures. In Bart
Preneel, editor, Eurocrypt ‘00, volume 1807 of Lecture
Notes in Computer Science, pages 207-220.
Springer-Verlag, 2000.

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 26

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 27

Read e r ’s n o t e s

RSA Laboratories Cryptobytes
Volume 5, No.1 — Winter/Spring 2002

RSA Security Inc. 28

About RSA Laboratories

An academic environment within a commercial
organization, RSA Laboratories is the research
center of RSA Security Inc., the company founded
by the inventors of the RSA public-key crypto-
system. Through its research program, standards
development, and educational activities,
RSA Laboratories provides state-of-the-art
expertise in cryptography and security technology
for the benefit of RSA Security and its customers.

Please see www.rsasecurity.com/rsalabs for more
information.

Newsletter Availability and Contact Information

CryptoBytes is a free publication and all issues,
both current and previous, are available at
www.rsasecurity.com/rsalabs/cryptobytes. While
print copies may occasionally be distributed, pub-
lication is primarily electronic.

For more information, please contact:

cryptobytes-editor@rsasecurity.com.

©2002 RSA Security Inc. All rights reserved.

RSA and RSA Security are registered trademarks of RSA Security Inc. All other trademarks are the

property of their respective owners.

CRYPTOBYTES VOLUME 5, NO. 1 0202

