
Elliptic Curve DSA (ECDSA): An Enhanced DSA

Don B. Johnson

Certicom Corp.

200 Matheson Blvd. West, Suite 103

Mississauga, Ontario, Canada, L5R 3L7.

Email: djohnson@certicom.ca

Alfred J. Menezes

Department of C&O

University of Waterloo

Waterloo, Ontario, Canada N2L 3G1.

Email: ajmeneze@math.uwaterloo.ca

Abstract

The Elliptic Curve Digital Signature Algorithm
(ECDSA) is the elliptic curve analogue of the Digital
Signature Algorithm (DSA), and is under considera-
tion for standardization by the ANSI X9 committee.
Unlike the normal discrete logarithm problem and
the integer factorization problem, the elliptic curve
discrete logarithm problem has no subexponential-
time algorithm. For this reason, the strength-per-
key-bit is substantially greater in an algorithm that
uses elliptic curves. In this paper, we compare the
draft ANSI X9.62 ECDSA to the ANSI X9.30 DSA,
the latter of which is identical to FIPS 186 DSS.

1 Introduction

Since the introduction of the concept of public-key
cryptography by Whit�eld Di�e and Martin Hell-
man [11] in 1976, the cryptographic importance of
the well-studied discrete logarithm problem's appar-
ent intractability has been recognized. Taher ElGa-
mal [12] �rst described how this problem could be
utilized in public-key encryption and digital signa-
ture schemes. ElGamal's methods have been re�ned
and incorporated into various protocols to meet a va-
riety of applications, and one of its extensions forms
the basis for the U.S. government digital signature
algorithm (DSA).

We begin by introducing some basic mathematical
terminology. A group is an abstract mathematical
object consisting of a set G together with an opera-
tion � de�ned on pairs of elements of G. The oper-
ation must have certain properties, similar to those
with which we are familiar from ordinary arithmetic.
More precisely:

1. (closure) a � b 2 G for all a, b 2 G.

2. (associativity) a � (b � c) = (a � b) � c for all
a; b; c 2 G.

3. (existence of identity) There exists an element
e 2 G, called the identity, such that e � a =
a � e = a for all a 2 G.

4. (existence of inverses) For each a 2 G there is
an element b 2 G such that a � b = b � a = e.
The element b is called the inverse of a, and is
denoted by a�1.

A group G is said to be abelian if a � b = b � a for all
a; b 2 G. The order of a group G is the number of
elements in G.

For example, the integers modulo n, namely Zn =
f0; 1; 2; : : : ; n � 1g, form a group of order n under
the operation of addition modulo n. The (addi-
tive) identity of this group is 0. If p is a prime
number, then the non-zero elements of Zp, namely
Z
�

p = f1; 2; : : : ; p � 1g, form a group of order p � 1
under the operation of multiplication modulo p. The
(multiplicative) identity of this group is 1.

The order of a group element g 2 G is the least
positive integer n such that gn = 1. For example, in
the group Z�11, the element g = 3 has order 5, since

31 � 3 (mod 11);

32 � 9 (mod 11);

33 � 5 (mod 11);

34 � 4 (mod 11); and

35 � 1 (mod 11):

The discrete logarithm problem, as �rst employed
by Di�e and Hellman in their key agreement proto-
col, was de�ned explicitly as the problem of �nding
logarithms in the group Z�p: given g 2 Z�p of order n,
and given h 2 Z

�

p, �nd an integer x, 0 � x � n� 1,
such that gx � h (mod p), provided that such an
integer exists. The integer x is called the discrete

logarithm of h to the base g. For example, consider
p = 17. Then g = 10 is an element of order n = 16
in Z

�

17. If h = 11, then the discrete logarithm of h
to the base g is 13 because 1013 � 11 (mod 17).

These concepts can be extended to arbitrary
groups. Let G be a group of order n, and let �
be an element of G. The discrete logarithm problem

for G is the following: given elements � and � 2 G,
�nd an integer x, 0 � x � n� 1, such that �x = �,
provided that such an integer exists.
A variety of groups have been proposed for cryp-

tographic use. There are two primary reasons for
this. First, the operation in some groups may be
easier to implement in software or in hardware than
the operation in other groups. Second, the discrete
logarithm problem in the group may be harder than
the discrete logarithm problem in Z�p. Consequently,
one could use a groupG that is smaller than Z�p while
maintaining the same level of security. Such is the
case with elliptic curve groups, which were �rst pro-
posed for cryptographic use independently by Neal
Koblitz [19] and Victor Miller [25] in 1985. The
resulting elliptic curve cryptosystems (ECC) have
smaller key sizes, smaller bandwidth requirements,
less power consumption, and faster implementations.
These features are especially attractive for security
applications where computational power and inte-
grated circuit space is limited, such as smart cards,
PC cards, and wireless devices.

2 The Digital Signature Algo-
rithm (DSA)

The DSA was proposed in August 1991 by the
U.S. National Institute of Standards and Technol-
ogy (NIST) and became a U.S. Federal Information
Processing Standard (FIPS 186) in 1993. The FIPS
186 standard is also referred to as the Digital Signa-
ture Standard (DSS). The DSA was the �rst digital
signature scheme accepted as legally binding by a
government. The algorithm is a variant of the ElGa-
mal signature scheme. It exploits small subgroups in
Z
�

p in order to decrease the size of signatures. The
key generation, signature generation, and signature
veri�cation procedures for DSA are given next.
DSA key generation. Each entity A does the fol-
lowing:

1. Select a prime q such that 2159 < q < 2160.
2. Select a 1024-bit prime number p with the prop-

erty that q j p� 1. (The DSS mandates that p
be a prime such that 2511+64t < p < 2512+64t

where 0 � t � 8. If t = 8 then p is a 1024-bit
prime.)

3. Select an element h 2 Z
�

p and compute g =

h(p�1)=q mod p; repeat until g 6= 1. (g is a gen-
erator of the unique cyclic group of order q in
Z
�

p.)

4. Select a random integer x in the interval [1; q�
1].

5. Compute y = gx mod p.

6. A's public key is (p; q; g; y); A's private key is
x.

DSA signature generation. To sign a message
m, A does the following:

1. Select a random integer k in the interval [1; q�
1].

2. Compute r = (gk mod p) mod q.

3. Compute k�1 mod q.

4. Compute s = k�1fh(m) + xrg mod q, where h
is the Secure Hash Algorithm (SHA-1).

5. If s = 0 then go to step 1. (If s = 0, then
s�1 mod q does not exist; s�1 is required in
step 3 of signature veri�cation.)

6. The signature for the message m is the pair of
integers (r; s).

DSA signature veri�cation. To verify A's signa-
ture (r; s) on m, B should:

1. Obtain an authentic copy of A's public key
(p; q; g; y).

2. Verify that r and s are integers in the interval
[1; q � 1].

3. Compute w = s�1 mod q and h(m).

4. Compute u1 = h(m)w mod q and u2 = rw mod
q.

5. Compute v = (gu1yu2 mod p) mod q.

6. Accept the signature if and only if v = r.

Since r and s are each integers less than q, DSA
signatures are 320 bits in size. The security of the
DSA relies on two distinct but related discrete loga-
rithm problems. One is the discrete logarithm prob-
lem in Z

�

p where the number �eld sieve algorithm
(see Gordon [17] and Schirokauer [32]) applies; this
algorithm has a subexponential running time. More
precisely, the running time of the algorithm is

O
�
exp

�
(c+ o(1))(ln p)1=3(ln ln p)2=3

��
; (1)

where c � 1:923, and lnn denotes the natural loga-
rithm function. If p is a 1024-bit prime, then the ex-
pression (1) represents an infeasible amount of com-
putation (see Section 5); thus the DSA is currently
not vulnerable to this attack. The second discrete
logarithm problem works to the base g: given p, q, g,
and y, �nd x such that y � gx (mod p). For large
p (e.g., 1024-bits), the best algorithm known for this
problem is the Pollard rho-method (see Section 5),
and takes about p

�q=2 (2)

steps. If q � 2160, then the expression (2) represents
an infeasible amount of computation (see Section 5);
thus the DSA is not vulnerable to this attack. How-
ever, note that there are two primary security pa-
rameters for DSA, the size of p and the size of q.
Increasing one without a corresponding increase in
the other will not result in an e�ective increase in
security.

3 Background in Elliptic
Curves

We proceed now to give a quick introduction to the
theory of elliptic curves. Chapter 6 of Koblitz's
book [21] provides an introduction to elliptic curves
and elliptic curve systems. For more details, consult
Menezes' book [23].
For simplicity, we shall restrict this discussion to

elliptic curves over Zp, where p is a prime greater
than 3. We mention though that elliptic curves can
more generally be de�ned over any �nite �eld. In
particular, the characteristic two �nite �elds F2m are
of special interest since they lead to the most e�cient
implementations of the elliptic curve arithmetic.
An elliptic curve E over Zp is de�ned by an equa-

tion of the form

y2 = x3 + ax+ b; (3)

where a; b 2 Zp, and 4a3 + 27b2 6� 0 (mod p), to-
gether with a special point O, called the point at

in�nity. The set E(Zp) consists of all points (x; y),
x 2 Zp, y 2 Zp, which satisfy the de�ning equation
(3), together with O.

Example 1 (elliptic curve over Z23) Let p = 23
and consider the elliptic curve E : y2 = x3 + x + 1
de�ned over Z23. (In the notation of equation (3),
we have a = 1 and b = 1.) Note that 4a3 + 27b2 =
4+27 = 31 � 8 (mod 23), so E is indeed an elliptic
curve. The points in E(Z23) areO and the following:

(0; 1) (0; 22) (1; 7) (1; 16) (3; 10)
(3; 13) (4; 0) (5; 4) (5; 19) (6; 4)
(6; 19) (7; 11) (7; 12) (9; 7) (9; 16)
(11; 3) (11; 20) (12; 4) (12; 19) (13; 7)
(13; 16) (17; 3) (17; 20) (18; 3) (18; 20)
(19; 5) (19; 18)

Addition Formula

There is a rule for adding two points on an elliptic
curve E(Zp) to give a third elliptic curve point. To-
gether with this addition operation, the set of points

E(Zp) forms a group with O serving as its identity.
It is this group that is used in the construction of
elliptic curve cryptosystems.
The addition rule is best explained geometrically.

Let P = (x1; y1) and Q = (x2; y2) be two distinct
points on an elliptic curve E. Then the sum of P and
Q, denoted R = (x3; y3), is de�ned as follows. First
draw the line through P and Q; this line intersects
the elliptic curve in a third point. Then R is the
reection of this point in the x-axis. This is depicted
in Figure 1. The elliptic curve in the �gure consists
of two parts, the ellipse-like �gure and the in�nite
curve.

R = (x3; y3)

x

y

P = (x1; y1)

Q = (x2; y2)

Figure 1: Geometric description of the addition of two

distinct elliptic curve points: P +Q = R.

If P = (x1; y1), then the double of P , denoted
R = (x3; y3), is de�ned as follows. First draw the
tangent line to the elliptic curve at P . This line
intersects the elliptic curve in a second point. Then
R is the reection of this point in the x-axis. This
is depicted in Figure 2.
The following algebraic formulae for the sum of

two points and the double of a point can now be
derived from the geometric description.

1. P +O = O + P = P for all P 2 E(Zp).

2. If P = (x; y) 2 E(Zp), then (x; y)+(x;�y) = O.
(The point (x;�y) is denoted by �P , and is
called the negative of P ; observe that �P is
indeed a point on the curve.)

3. Let P = (x1; y1) 2 E(Zp) and Q = (x2; y2) 2
E(Zp), where P 6= �Q. Then P +Q = (x3; y3),
where

x3 = �2 � x1 � x2;

y3 = �(x1 � x3)� y1;

x

y

R = (x3; y3)

P = (x1; y1)

Figure 2: Geometric description of the doubling of an

elliptic curve point: P + P = R.

and

� =

8>>><
>>>:

y2 � y1
x2 � x1

if P 6= Q

3x21 + a

2y1
if P = Q:

Observe that the addition of two elliptic curve
points in E(Zp) requires a few arithmetic opera-
tions (addition, subtraction, multiplication, and in-
version) in the underlying �nite �eld Zp.

Example 2 (elliptic curve addition) Consider the
elliptic curve de�ned in Example 1.

1. Let P = (3; 10) and Q = (9; 7). Then P +Q =
(x3; y3) is computed as follows:

� =
7� 10

9� 3
=
�3
6

=
�1
2

= �2�1 = 11 2 Z23:

Note that 2�1 = 12 since 2 � 12 � 1 (mod 23).
Finally,

x3 = 112 � 3� 9 = 109

� 17 (mod 23);

and

y3 = 11(3� 17)� 10 = �164
� 20 (mod 23):

Hence P +Q = (17; 20).

2. Let P = (3; 10). Then 2P = P + P = (x3; y3)
is computed as follows:

� =
3(32) + 1

20
=

5

20
=

1

4
= 4�1 = 6 2 Z23:

Note that 4�1 = 6 since 4 � 6 � 1 (mod 23).
Finally,

x3 = 62 � 6 = 30 � 7 (mod 23);

and

y3 = 6(3� 7)� 10 = �34
� 12 (mod 23):

Hence 2P = (7; 12).

Hasse's theorem states that the number of points
on an elliptic curve is #E(Zp) = p + 1 � t where
jtj � 2

p
p; #E(Zp) is called the order of the elliptic

curve. In other words, the order of an elliptic curve
E(Zp) is roughly equal to the size p of the underly-
ing �eld. There is a polynomial-time algorithm, due
to Schoof [33], for counting the number of points on
an elliptic curve. Although this algorithm is quite
cumbersome in practice, several improvements have
been proposed in recent years which make the algo-
rithm practical. For some recent work in this area,
see Lercier [22].
For historical reasons, the group operation for an

elliptic curveE(Zp) has been called addition. In con-
trast, the group operation in Z

�

p is multiplication.
The di�erences in the resulting additive notation
and multiplicative notation can sometimes be con-
fusing. Table 1 shows the correspondence between
notation used for the two groups Z�p and E(Zp).

4 The Elliptic Curve Dig-
ital Signature Algorithm
(ECDSA)

ECDSA is the elliptic curve analogue of the DSA.
That is, instead of working in a subgroup of order
q in Z

�

p, we work in an elliptic curve group E(Zp).
The ECDSA is currently being standardized within
the ANSI X9F1, IEEE P1363, and ISO SC27 stan-
dards committees. Table 2 shows the correspon-
dence between some math notation used in DSA
and ECDSA. Using Tables 1 and 2, the analogies
between the DSA and ECDSA should be more ap-
parent.
The key generation, signature generation, and sig-

nature veri�cation procedures for ECDSA are given
next.
ECDSA key generation. Each entity A does the
following:

1. Select an elliptic curve E de�ned over Zp. The
number of points in E(Zp) should be divisible
by a large prime n.

Group Z
�

p E(Zp)

Group elements Integers f1; 2; : : : ; p� 1g Points (x; y) on E plus O
Group operation Multiplication modulo p Addition of points

Notation Elements: g, h Elements: P , Q

Multiplication: g � h Addition: P +Q

Inverse: g�1 Negative: �P
Division: g=h Subtraction: P �Q

Exponentiation: ga Multiple: aP

Discrete Logarithm Given g 2 Z�p and Given P 2 E(Zp) and

Problem h = ga mod p, �nd a Q = aP , �nd a

Table 1: Correspondence between Z�p and E(Zp) notation.

DSA notation ECDSA notation

q n

g P

x d

y Q

Table 2: Correspondence between DSA and ECDSA

notation.

2. Select a point P 2 E(Zp) of order n.

3. Select a statistically unique and unpredictable
integer d in the interval [1; n� 1].

4. Compute Q = dP .

5. A's public key is (E;P; n;Q); A's private key is
d.

ECDSA signature generation. To sign a mes-
sage m, A does the following:

1. Select a statistically unique and unpredictable
integer k in the interval [1; n� 1].

2. Compute kP = (x1; y1) and r = x1 mod n.
(Here x1 is regarded as an integer, for example
by conversion from its binary representation.)
If r = 0, then go to step 1. (This is a security
condition: if r = 0, then the signing equation
s = k�1fh(m)+drg mod n does not involve the
private key d.)

3. Compute k�1 mod n.

4. Compute s = k�1fh(m) + drg mod n, where h
is the Secure Hash Algorithm (SHA-1).

5. If s = 0, then go to step 1. (If s = 0, then
s�1 mod n does not exist; s�1 is required in
step 3 of signature veri�cation.)

6. The signature for the message m is the pair of
integers (r; s).

ECDSA signature veri�cation. To verify A's
signature (r; s) on m, B should:

1. Obtain an authentic copy of A's public key
(E;P; n;Q).

2. Verify that r and s are integers in the interval
[1; n� 1].

3. Compute w = s�1 mod n and h(m).

4. Compute u1 = h(m)w mod n and u2 = rw mod
n.

5. Compute u1P +u2Q = (x0; y0) and v = x0 mod
n.

6. Accept the signature if and only if v = r.

ANSI X9.62 mandates that n > 2160. To obtain a
security level similar to that of the DSA (with 160-
bit q and 1024-bit p), the parameter n should have
about 160 bits. If this is the case, then DSA and
ECDSA signatures have the same size (320 bits).
Instead of each entity generating its own elliptic

curve, the entities may elect to use the same curve
E over Zp, and point P of order n; these quantities
are then called system parameters or domain param-

eters. (In DSA, the analogous system parameters
would be p, q and g.) In this case, an entity's pub-
lic key consists only of the point Q. This results in
public keys of smaller sizes.
ECDSA has a number of consistencies with the

DSA. The important ones are:

1. Both algorithms are based on the ElGamal sig-
nature scheme and use the same signing equa-
tion: s = k�1fh(m) + drg mod n.

2. In both algorithms, the values that are rela-
tively di�cult to generate are the system pa-
rameters (p, q and g for the DSA; E, P and n
for the ECDSA) which are public { their gener-
ation can be audited and independently checked
for validity. This helps show that they were not
produced to meet some secret (e.g., trapdoor)
criteria. Generating a private key, given a set
of system parameters, is relatively simple and

generating the associated public key is straight-
forward. Contrast this with the RSA algorithm,
where the values that are di�cult to generate
(the primes p and q) must be kept private or
destroyed { public auditing of the correct gen-
eration of p and q is not feasible without opening
the private key.

3. In their current version, both DSA and ECDSA
use the SHA-1 as the sole cryptographic hash
function. This may be modi�ed in the future
by, for example, allowing a hash function which
o�ers output values of variable lengths.

However, there are some signi�cant di�erences
and advantages of ANSI X9.62 ECDSA over the
DSS, as follows:

1. ANSI X9.62 ECDSA speci�es the steps of a pro-
cedure to validate the generated system param-
eters, while DSS does not explicitly state them.
In one common scenario, a user would be given
the DSA system parameters by a trusted third
party where there is no need to validate the sys-
tem parameters. However, another useful sce-
nario is where one party has generated its own
personal system parameters. In the latter sce-
nario one may wish to verify that the supplied
system parameters actually meet all security re-
quirements before using them. Such a system
parameter validation procedure could be added
to the DSS.

2. In the DSS, the use of a canonical seeded one-
way hash function to generate the system pa-
rameters veri�ably at random is mandated, in
order to ensure the system parameters do not
meet some hidden trap-door criteria that might
be hard to discern from examination of the sys-
tem parameters by themselves. Given the input
seed, anyone can validate that the DSA system
parameters were indeed generated randomly. In
the ECDSA, the analogous attacks on weak sys-
tem parameters do not apply. This allows use
of special elliptic curves with advantageous per-
formance, such as Koblitz curves [20]. How-
ever, ANSI X9.62 also speci�es a method for
generating elliptic curves veri�ably at random.
Given the input seed to this method, anyone
can validate that the elliptic curve was indeed
generated randomly. Use of this random gen-
eration method can help mitigate concerns re-
garding the possible future discovery of new and
rare classes of weak elliptic curves, as such rare
curves would essentially never be generated.

3. ANSI X9.62 ECDSA speci�es a public key val-
idation routine. This allows anyone at any
time to validate that a claimed ECDSA public
key actually conforms to the arithmetic require-
ments for such a key. Namely, given a valid set
of system parameters E, P and n, and a pur-
ported public key Q, one veri�es that Q is a
point on E, that Q 6= O, and that nQ = O. As
the validation is 100%, successful execution of
the routine demonstrates that an associated pri-
vate key can logically exist, although, of course,
it does not demonstrate that the private key
actually does exist nor that the claimed owner
actually owns the private key. Public key val-
idation is a useful service that can help assure
the owner of the associated private key that the
public key output by a system is plausible, i.e.,
that no subtle undetected errors occurred dur-
ing key generation. It is also a useful service for
a potential user of a public key to perform { if a
public key is bogus, it should not be used. Such
a public key validation routine could be added
to the DSS.

4. In ANSI X9.62 ECDSA, a method called point

compression allows for a point on the elliptic
curve (e.g., a public key Q) to be compactly
represented by one �eld element and one addi-
tional bit, rather than two �eld elements. Thus,
for example, if p � 2160 (so elements in Zp are
160-bit strings), then public keys can be rep-
resented as 161-bit strings. This can lead to a
substantial reduction in the size of a public-key
certi�cate, on the order of 25% when compared
with other asymmetric algorithms.

5. At Crypto '96, Serge Vaudenay [38] demon-
strated a theoretical weakness in DSA based on
his insight that the actual hash function used in
the DSA is SHA-1 mod q, not just SHA-1, where
q is the 160-bit prime. This weakness allows the
selective forgery of one message if the adversary
can select the system parameters. This weak-
ness does not exist in the DSA if the system
parameters are selected as speci�ed in the DSS.
The ECDSA analog for q is n, the order of the
base point P . If n > 2160, then such an attack
is not possible.

6. In the DSA, there is an optional check during
signature generation on the components of the
digital signature (r and s) are non-zero. This
results in an extremely low probability that a
conforming system which did not do the bounds
check could generate a signature that would not

verify. However, this means that generically
written code (i.e., code that does not take into
account knowledge of the underlying DSA im-
plementation) must verify the generated signa-
ture itself, if there must be 100% assurance that
the signature will verify. The analogous bounds
check has been made mandatory in ECDSA;
100% of the digital signatures that are gener-
ated will verify. Note, however, that there still
may be situations where it is wise to explicitly
verify a just-generated digital signature, such
as when it is anticipated that the signature will
be distributed widely. Explicit veri�cation will
help detect inadvertent implementation and ap-
plication errors.

7. The private key d and the per-signature value k
in ECDSA are de�ned to be statistically unique

and unpredictable rather than merely random as
in DSA. This is an important clari�cation and is
a better statement of the security requirements.
If k can be determined or if k repeats then an
adversary can recover d, the private key. Of
course, the use of a random value is explicitly
stated as being allowed; however architecturally
it is preferable to state the requirements rather
than mandate a particular way to meet the re-
quirements. For example, giving the require-
ments allows a high security implementation to
�lter the k values to ensure there are no repeats.
This possibility is not allowed if k is required
to be random. Also, stating the requirements
gives more guidance to implementers and users
regarding what constitutes a security concern.

5 Security Issues

The basis for the security of elliptic curve cryptosys-
tems such as the ECDSA is the apparent intractabil-
ity of the following elliptic curve discrete logarithm

problem (ECDLP): given an elliptic curve E de�ned
over Zp, a point P 2 E(Zp) of order n, and a point
Q 2 E(Zp), determine the integer l, 0 � l � n � 1,
such that Q = lP , provided that such an integer
exists.
Over the past thirteen years, the ECDLP has re-

ceived considerable attention from leading mathe-
maticians around the world, and no signi�cant weak-
nesses have been reported. An algorithm due to
Pohlig and Hellman [28] reduces the determination
of l to the determination of l modulo each of the
prime factors of n. Hence, in order to achieve the
maximum possible security level, n should be prime.
The best algorithm known to date for the ECDLP in

general is the Pollard rho-method [29] which takes
about

p
�n=2 steps, where a step here is an ellip-

tic curve addition. In 1993, Paul van Oorschot and
Michael Wiener [27] showed how the Pollard rho-
method can be parallelized so that if r processors
are used, then the expected number of steps by each
processor before a single discrete logarithm is ob-
tained is (

p
�n=2)=r.

Menezes, Okamoto and Vanstone [24] and Frey
and R�uck [16] showed how the ECDLP can be re-
duced to the DLP in extension �elds of Zp, for which
subexponential-time algorithms are known. How-
ever, this reduction algorithm is only known to be
e�cient for a very special class of curves known as
supersingular curves. There is a simple test to en-
sure that an elliptic curve is not vulnerable to this
attack; through this test, these curves are prohibited
by ANSI X9.62 ECDSA.

Another weak class of elliptic curves are the so-
called anomalous curves. These are curves E de�ned
over Zp for which #E(Zp) = p. The attack on these
curves was discovered independently by Semaev [35],
Smart [36], and Satoh and Araki [31], and general-
ized by R�uck [30]. As with supersingular curves,
there is a simple test to ensure that an elliptic curve
is not vulnerable to this attack; through this test,
these curves are prohibited by ANSI X9.62 ECDSA.

It should be emphasized that the elliptic curves
that succumb to one of the above two attacks are
very rare. A prudent way then to guard against
these attacks, and similar attacks against special
classes of curves that may be discovered in the fu-
ture, is to select the elliptic curve E at random (sub-
ject to the condition that #E(Zp) be divisible by a
large prime).

Some other research on the ECDLP and related
problems that has been reported in the literature
include the following:

1. V. Miller [25].

2. L. Adleman, J. DeMarrais and M. Huang [1].

3. D. Boneh and R. Lipton [9].

4. A. Stein [37].

5. R. Balasubramanian and N. Koblitz [7].

6. R. Zuccherato [40].

7. R. Flassenberg and S. Paulus [15].

8. J. Voloch [39].

To encourage further research, Certicom Corp. has
launched an ECC Challenge [10]. Prizes ranging in
value up to $100,000 are being o�ered for solutions
to speci�c instances of the ECDLP.

Software Attacks

We assume that a MIPS (Million Instructions Per
Second) machine can perform 4� 104 elliptic curve
additions per second. This estimate is indeed high {
an application-speci�c integrated circuit (ASIC) for
performing elliptic curve operations over the �eld
F2155 described in [3] has a 40 MHz clock-rate and
can perform roughly 40,000 elliptic additions per sec-
ond. Also, the software implementation by Schroep-
pel et al. [34] on a SPARC IPC (rated at 25 MIPS)
performs 2,000 elliptic curve additions per second.
Then, the number of elliptic curve additions that
can be performed by a 1 MIPS machine in one year
is

(4� 104) � (60� 60� 24� 365) � 240:

Table 3 shows, for various values of n, the comput-
ing power required to compute a single elliptic curve
discrete logarithm using the Pollard rho-method. A
MIPS year is equivalent to the computational power
of a computer that is rated at 1 MIPS and utilized
for one year.

Field size Size of n
p
�n=2 MIPS years

(in bits) (in bits)

163 160 280 9:6 � 1011

191 186 293 7:9 � 1015

239 234 2117 1:6 � 1023

359 354 2177 1:5 � 1041

431 426 2213 1:0 � 1052

Table 3: Computing power to compute elliptic curve

logarithms with the Pollard rho-method.

As an example, if 10,000 computers each rated at
1,000 MIPS are available, and n � 2160, then a sin-
gle elliptic curve discrete logarithm can be computed
in 96,000 years. That is, a single private key can be
recovered from a single public key. Andrew Odlyzko
[26] has estimated that if 0.1% of the world's com-
puting power were available for one year to work on a
collaborative e�ort to break some challenge cipher,
then the computing power available would be 108

MIPS years in 2004 and 1010 to 1011 MIPS years in
2014.

To put the numbers in Table 3 into some per-
spective, Table 4 (due to Odlyzko [26]) shows the
estimated computing power required to factor in-
tegers with current versions of the general number
�eld sieve. (This is also roughly equal to the time
it takes to compute discrete logarithms modulo a
1024-bit prime p.)

Size of integer MIPS years

to be factored

(in bits)

512 3 � 104

768 2 � 108

1024 3� 1011

1280 1� 1014

1536 3� 1016

2048 3� 1020

Table 4: Computing power required to factor integers

using the general number �eld sieve.

Hardware Attacks

A more promising attack (for well-funded attackers)
on elliptic curve systems would be to build special-
purpose hardware for a parallel search using the Pol-
lard rho-method. Van Oorschot andWiener [27] pro-
vide a detailed study of such a possibility. In their
1994 study, they estimated that if n � 1036 � 2120,
then a machine with m = 325; 000 processors that
could be built for about $10 million would compute
a single elliptic curve discrete logarithm in about 35
days. This is not a threat to secure implementations
since ANSI X9.62 mandates that n > 2160.

Discussion

It should be emphasized that in the software and
hardware attacks described above, the computation
of a single elliptic curve discrete logarithm has the
e�ect of revealing a single user's private key. The
same e�ort must be repeated in order to determine
another user's private key.
Blaze et al. [8] reported on the minimum key

lengths required for secure symmetric-key encryp-
tion schemes (such as DES and IDEA). Their report
comes to the following conclusion:

To provide adequate protection against the

most serious threats { well-funded commer-

cial enterprises or government intelligence

agencies { keys used to protect data today

should be at least 75 bits long. To pro-

tect information adequately for the next 20

years in the face of expected advances in

computing power, keys in newly deployed

systems should be at least 90 bits long.

Extrapolating these conclusions to the case of elliptic
curves, we see that n should be at least 150 bits for
short-term security and at least 180 bits for medium-
term security. This extrapolation is justi�ed by the
following considerations:

1. Exhaustive search through a k-bit symmetric-
key cipher takes about the same time as the Pol-
lard rho-algorithm applied to an elliptic curve
having a 2k-bit parameter n.

2. Exhaustive searches with a symmetric-key ci-
pher and the Pollard rho-algorithm can both
be parallelized with a linear speedup.

3. A basic operation with elliptic curves (addition
of two points) is computationally more expen-
sive than a basic operation in a symmetric-key
cipher (encryption of one block).

4. In both symmetric-key ciphers and elliptic curve
systems, a \break" has the same e�ect: it recov-
ers a single private key.

6 Implementation Issues

Since the elliptic curve discrete logarithm problem
appears to be harder than the discrete logarithm
problem in Z

�

p (or the problem of factoring a com-
posite integer n), one can use an elliptic curve group
that is signi�cantly smaller that Z�p (respectively, n).
For example, an elliptic curve E(Zp) with a point
P 2 E(Zp) whose order is a 160-bit prime o�ers ap-
proximately the same level of security as DSA with
a 1024-bit modulus p and RSA with a 1024-bit mod-
ulus n.
In order to get a rough idea of the computational

e�ciency of elliptic curve systems, let us compare
the times to compute:

(i) kP where P 2 E(Zp), E is an elliptic curve,
p � 2160, and k is a 160-bit integer (this is an
operation in ECDSA); and

(ii) gk mod p, where p is a 1024-bit prime and k is
a 160-bit integer (this is an operation in DSA).

Let us assume that a �eld multiplication in Zp,
where log2 p = l, takes l2 bit operations; then a mod-
ular multiplication in (ii) takes (1024=160)2 � 41
times longer than a �eld multiplication in (i). Now,
computing kP by repeated doubling and adding re-
quires, on average, 160 elliptic curve doublings and
80 elliptic curve additions. From the addition for-
mula we see that an elliptic curve addition or dou-
bling requires 1 �eld inversion and 2 �eld multiplica-
tions. (The cost of �eld addition is negligible, as is
the cost of a �eld squaring if the �eld F2m is used in-
stead of Zp.) Assume also that the time to perform a
�eld inversion is roughly equivalent to that of 3 �eld
multiplications. (This is what has been reported in
practice for the case of F2m .) Then, computing kP
requires the equivalent of 1200 �eld multiplications,
or 1200=41 � 29 1024-bit modular multiplications.

On the other hand, computing gk mod p by repeated
squaring and multiplying requires, on average, 240
1024-bit modular multiplications. Thus, the oper-
ation in (i) can be expected to be about 8 times
faster than the operation in (ii). It must be empha-
sized that such a comparison is indeed very rough,
as it does not take into account the various enhance-
ments that are possible for each system. Since mul-
tiplication in F2m is in fact substantially faster than
modular multiplication in Z�p, even more impressive
speedups can be realized in practice.

Another important consequence of using a smaller
group in elliptic curve systems is that low-cost and
low-power consumption implementations are feasible
in restricted computing environments, such as smart
cards and wireless devices.

Another advantage of elliptic curve systems is that
the underlying �eld (Zp or F2m) and a representa-
tion for its elements can be selected so that the �eld
arithmetic (addition, multiplication, and inversion)
can be optimized. This is not the case for systems
based on discrete log (respectively, integer factoriza-
tion), where the prime modulus p (respectively, the
composite modulus n) should not be chosen to have
a special form because this might render the under-
lying problem easy.

Summary

We have shown how ECDSA has many advantages
over DSA besides the obvious one of being based on
a harder problem. As ECDSA is based on DSA, we
anticipate both increased understanding of the new
elliptic curve technology and its advantages, and in-
creased acceptance of the algorithm.

Acknowledgements

We thank Scott Vanstone for proposing ECDSA. We
thank the ANSI X9.F1 and IEEE P1363 working
groups for their work on ECDSA. We also thank
Uri Blumenthal, IBM Research, for his perceptive
questions of a review draft.

References

[1] L. Adleman, J. DeMarrais and M. Huang,
\A subexponential algorithm for discrete log-
arithms over the rational subgroup of the ja-
cobians of large genus hyperelliptic curves over
�nite �elds", Algorithmic Number Theory, Lec-

ture Notes in Computer Science, 877 (1994),
Springer-Verlag, 28-40.

[2] G. Agnew, R. Mullin, I. Onyszchuk and S. Van-
stone. \An implementation for a fast public-
key cryptosystem", Journal of Cryptology, 3
(1991), 63-79.

[3] G. Agnew, R. Mullin and S. Vanstone, \An
implementation of elliptic curve cryptosystems
over F2155", IEEE Journal on Selected Areas in

Communications, 11 (1993), 804-813.

[4] ANSI X9.30-1, \American National Standard
for Financial Services { Public Key Cryptog-
raphy Using Irreversible Algorithms for the Fi-
nancial Services Industry { Part 1: The Digital
Signature Algorithm (DSA)", ASC X9 Secre-
tariat { American Bankers Association, 1995.

[5] ANSI X9.30-2, \American National Standard
for Financial Services { Public Key Cryptogra-
phy Using Irreversible Algorithms for the Fi-
nancial Services Industry { Part 2: The Se-
cure Hash Algorithm (SHA) Revision 1", ASC
X9 Secretariat { American Bankers Associa-
tion, 1996.

[6] ANSI X9.62, \American National Standard for
Financial Services { Public Key Cryptography
Using Irreversible Algorithms for the Financial
Services Industry { The Elliptic Curve Digi-
tal Signature Algorithm (ECDSA)", draft, ASC
X9 Secretariat { American Bankers Associa-
tion, December 1997.

[7] R. Balasubramanian and N. Koblitz, \The im-
probability that an elliptic curve has subexpo-
nential discrete log problem under the Menezes{
Okamoto{Vanstone algorithm,", to appear in
Journal of Cryptology.

[8] M. Blaze, W. Di�e, R. Rivest, B. Schneier,
T. Shimomura, E. Thompson, and M.
Wiener, \Minimal key lengths for sym-
metric ciphers to provide adequate com-
mercial security", January 1996, available
from http://theory.lcs.mit.edu/�rivest/
publications.html

[9] D. Boneh and R. Lipton, \Algorithms for black-
box �elds and their applications to cryptog-
raphy", Advances in Cryptology { CRYPTO

'96, Lecture Notes in Computer Science, 1109
(1992), Springer-Verlag, 283-297.

[10] Certicom ECC Challenge, November 1997,
http://www.certicom.com

[11] W. Di�e and M. Hellman, \New directions in
cryptography", IEEE Transactions on Informa-

tion Theory, 22 (1976), 644-654.

[12] T. ElGamal, \A public key cryptosystem and a
signature scheme based on discrete logarithms",
IEEE Transactions on Information Theory, 31
(1985), 469-472.

[13] FIPS 186, \Digital signature stan-
dard", National Institute for Standards
and Technology, 1993. Available from
http://csrc.ncsl.nist.gov/fips/

[14] FIPS 180-1, \Secure Hash Standard", National
Institute for Standards and Technology, 1995
(supersedes FIPS PUB 180). Available from
http://csrc.ncsl.nist.gov/fips/

[15] R. Flassenberg and S. Paulus, \Sieving in func-
tion �elds", preprint, 1997.

[16] G. Frey and H. R�uck, \A remark concerning
m-divisibility and the discrete logarithm in the
divisor class group of curves", Mathematics of

Computation, 62 (1994), 865-874.

[17] D. Gordon, \Discrete logarithms in GF (p) us-
ing the number �eld sieve", SIAM Journal on

Discrete Mathematics, 6 (1993), 124-138.

[18] IEEE P1363, \Standard speci�cations for
public-key cryptography", draft, 1997. Avail-
able from http://stdsbbs.ieee.org/

[19] N. Koblitz, \Elliptic curve cryptosystems",
Mathematics of Computation, 48 (1987), 203-
209.

[20] N. Koblitz, \CM-curves with good crypto-
graphic properties", Advances in Cryptology {

CRYPTO '91, Lecture Notes in Computer Sci-
ence, 576 (1992), Springer-Verlag, 279-287.

[21] N. Koblitz, A Course in Number Theory and

Cryptography, 2nd edition, Springer-Verlag,
1994.

[22] R. Lercier, \Finding good random elliptic
curves for cryptosystems de�ned F2n", Ad-

vances in Cryptology { EUROCRYPT '97, Lec-
ture Notes in Computer Science, 1233 (1997),
Springer-Verlag, 379-392.

[23] A. Menezes, Elliptic Curve Public Key Cryp-

tosystems, Kluwer Academic Publishers, 1993.

[24] A. Menezes, T. Okamoto and S. Vanstone, \Re-
ducing elliptic curve logarithms to logarithms in
a �nite �eld", IEEE Transactions on Informa-

tion Theory, 39 (1993), 1639-1646.

[25] V. Miller, \Uses of elliptic curves in cryptog-
raphy", Advances in Cryptology { CRYPTO

'85, Lecture Notes in Computer Science, 218
(1986), Springer-Verlag, 417-426.

[26] A. Odlyzko, \The future of integer factoriza-
tion", CryptoBytes { The technical newslet-

ter of RSA Laboratories, volume 1, number
2, Summer 1995, 5-12. Also available from
http://www.rsa.com/

[27] P. van Oorschot and M. Wiener, \Parallel colli-
sion search with cryptanalytic applications", to
appear in Journal of Cryptology.

[28] S. Pohlig and M. Hellman, \An improved algo-
rithm for computing logarithms overGF (p) and
its cryptographic signi�cance", IEEE Transac-

tions on Information Theory, 24 (1978), 106-
110.

[29] J. Pollard, \Monte Carlo methods for index
computation mod p", Mathematics of Compu-

tation, 32 (1978), 918-924.

[30] H. R�uck, \On the discrete logarithm in the di-
visor class group of curves", preprint, 1997.

[31] T. Satoh and K. Araki, \Fermat quotients and
the polynomial time discrete log algorithm for
anomalous elliptic curves", preprint, 1997.

[32] O. Schirokauer, \Discrete logarithms and local
units", Philosophical Transactions of the Royal
Society of London A, 345 (1993), 409-423.

[33] R. Schoof, \Elliptic curves over �nite �elds and
the computation of square roots mod p", Math-

ematics of Computation, 44 (1985), 483-494.

[34] R. Schroeppel, H. Orman, S. O'Malley and
O. Spatscheck, \Fast key exchange with ellip-
tic curve systems", Advances in Cryptology {

CRYPTO '95, Lecture Notes in Computer Sci-
ence, 963 (1995), Springer-Verlag, 43-56.

[35] I. Semaev, \Evaluation of discrete logarithms
on some elliptic curves", to appear in Mathe-

matics of Computation.

[36] N. Smart, \Announcement of an attack on the
ECDLP for anomalous elliptic curves", 1997.

[37] A. Stein, \Equivalences between elliptic curves
and real quadratic congruence function �elds",
presented at Pragocrypt '96.

[38] S. Vaudenay, \Hidden collisions on DSS", Ad-
vances in Cryptology { CRYPTO '96, Lec-
ture Notes in Computer Science, 1109 (1996),
Springer-Verlag, 83-88.

[39] J. Voloch, \The discrete logarithm problem on
elliptic curves and descents", preprint, 1997.

[40] R. Zuccherato, \The equivalence between ellip-
tic curve and quadratic function �eld discrete
logarithms in characteristic 2", preprint, 1996.

