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1. Introduction

Buffer overflow problems are responsible for a large number of security 
vulnerabilities. Of the 44 CERT advisories published between 1997 and 1999, 24 
were related to buffer overflow issues. [13]

Buffer overflow problems are caused by programming errors. In theory, if every 
programmer learned to write better, more defensive code, the problem would go 
away. In practice this is not likely to occur. Human beings are error-prone and 
experience shows that it is highly unrealistic to expect programmers to produce bug 
free code.

The purpose of this document is to examine to what extent automated tools can be 
used to reduce the risk of buffer overflow vulnerabilities. We look at the possible 
ways of dealing with buffer overflows, survey the existing tools and compare the 
tradeoffs they make between security and efficiency. We also discuss whether 
there are any good buffer overflow prevention techniques that have not yet been 
automated.

2. Buffer Overflow Attacks

To understand how we can defend against buffer overflow attacks, we must first 
understand how these attacks work.

The term  refers to an allocated chunk of memory, such as a pointer, array or 
string. In C and C++ there is no automatic bounds checking on buffers, which 
means that it is easy for the programmer to write past the end of the buffer. The 
code below shows an example:

buffer

void f() {
�int a[10];
�a[20] = 3;
}

In most cases, writing past the end of the buffer causes the program to crash with a 
segmentation fault error, but does not result in a security vulnerability. For a 
security vulnerability to occur, two conditions must be fulfilled:

1. The attacker must be able to control the data written into the buffer. 
2. There must be security sensitive variables stored after the buffer in memory. 

For example, consider the following example:

int main(int argc, char *argv[]) {
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�char passwd_ok = 0;
�char passwd[8];
�strcpy(passwd, argv[1]);
�if (strcmp(passwd, "niklas")==0)
��passwd_ok = 1;

�if (passwd_ok) {
��...
}

The layout in memory looks something like this:

The  function makes no check that  contains at most 8 characters, 
so an attacker that passes a longer string can overflow the  buffer. If the 
string is long enough, the  flag will be overwritten and the password will 
be accepted by the program, no matter what it is.

strcpy argv[1]
passwd

passwd_ok

Since  does not take any parameter that specifies the size of the destination 
buffer it has for long been recognized as especially vulnerable to buffer overflow 
attacks. Other vulnerable functions of the same type are , ,  and

.

strcpy

gets sprintf scanf
strcat

Security flags, as the one above, are not the only sensitive variables. A more 
common, but less obvious vulnerability is caused by the use of function pointers. 
The code below shows an example:

int main(int argc, char *argv[]) {
�void (*func)() = f;
�char buffer[100];
�gets(buffer);
�func();
�...
}

Since  does not check the length of the buffer, an attacker can overflow it and 
overwrite . Later, when  is called, the program will jump to a memory 
location determined by the attacker. The attacker can jump to a function in the 
program or one of its libraries, or he can be even more clever and jump into the 
buffer that he himself has supplied.

gets
func func
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Since the attacker determines the content of this buffer, he can get the program to 
execute arbitrary code. (Well, not completely arbitrary. The code cannot contain 
any bytes since that would terminate the  function.)\n gets

The good news for the attacker is that there is  a function pointer to overwrite, 
whether one has been declared or not. To understand why, we must look at what 
happens (on most computer platforms) when a C function is called.

always

When a function is called in C, the caller begins by pushing the function parameters 
to the stack. Thereafter, the caller pushes the address of its next instruction --- the 
address where execution should continue when the function returns --- to the stack 
and jumps to the function. The callee, in turn, makes room on the stack for its local 
variables. In most computer architectures the stack grows from high memory 
addresses to low, so the memory layout after the call will look something like this:

By overflowing a buffer in the local variables, the attacker can overwrite the return 
address. This means that when the function is done, it will not return to the caller, 
instead it will jump to an address determined by the attacker. Thus, the effect is 
similar to overwriting a function pointer as in the previous example.

It should be noted that the attacker does not only control the address that is jumped 
to, but also the entire content of the stack. Since the stack is where function 
parameters are stored, this means that the attacker can in fact call any function in 
the program or in the libraries used by it, and specify arbitrary parameters. (Again, 
not completely arbitrary. Many overflows are stopped by a zero byte. If that is the 
case, the only place where the attacker will be able to insert a zero byte is at the 
very end of the parameter list.) Thus, it is not necessary for the attacker to inject his 
own code into the buffer, since he can usually find an existing function with 
sufficiently devastating effects. 

We will use the name  to refer to attacks where the target is the return 
address on the stack. Attacks where other sensitive variables are overwritten will be 
referred to as . (Sometimes attacks of this type are called 

 but that is a bit confusing, because the sensitive variables could be stored 
on the stack as well as on the heap.)

stack attack

variable attacks heap 
attacks

3. Countermeasures

As we have seen, a buffer overflow attack requires two things. First, a buffer overflow 
must occur in the program. Second, the attacker must be able to use the buffer 
overflow to overwrite a security sensitive piece of data (a security flag, function 
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pointer, return address, etc).

If we want to prevent buffer overflows completely we must stop one of these two 
things, i. e. either:

1. Prevent all buffer overflows or
2. Prevent all sensitive information from being overwritten 

Both these solutions are costly in terms of efficiency and many programs therefore 
settle for a partial goal, such as:

Prevent use of dangerous functions: , , etc. gets strcpy
Prevent return addresses from being overwritten 
Prevent data supplied by the attacker from being executed (stops the attacker 
from jumping into his own buffer) 

There are several possible levels where a defense mechanism can be inserted. At 
the  we can make changes to the C language itself to reduce the 
risk of buffer overflows. At the  we can use static or dynamic 
source code analyzers to check our code for buffer overflow problems. At the

 we can change the compiler so that it does bounds checking or 
protects certain addresses from overwriting. At the  we can 
change the rules for which memory pages that should be allowed to hold executable 
content.

language level
source code level

compiler level
operating system level

In the following sections, we will look at each of these options in turn.

3.1 Language Tools

The simplest solution at the language level is to switch to a language that provides 
automatic bounds checking of buffers, such as Java, Perl or Python. However, in 
most projects this is not an option.

A better solution is to use a library module that implements "safe", bounds-checked 
buffers, such as the standard C++  module or . There are two 
problems with this solution. First, it requires a complete rewrite of all the source 
code for the project. This alone makes the solution improper for anything but 
recently started projects. Second, most programs have to interface with prewritten 
library code. Since this code will use the ordinary "unsafe" buffers, the program will 
not be able to completely avoid them. Instead it will constantly have to convert 
between "safe" and "unsafe" buffers. Whenever a buffer is in the "unsafe" mode, 
buffer overflow problems can occur. There is also a risk that programmer's will forget 
to convert buffers back to the "safe" mode.

string libmib [9]

An alternative to making every buffer access safe is to target only those specific 
functions in C which are known to be dangerous, e. g. , ,  and

. This takes care of buffer overflows caused by these functions, but doesn't 
handle buffer overflows caused by other code, such as user written functions.

strcpy strcat gets
sprintf

The simplest solution to securing the dangerous function is to disallow them. They 
all have "safe" counterparts that can be substituted, such as  and

, which in addition to the buffers also take a size parameter. (Of course, 
these functions are only "safe" if the size parameter is specified correctly.) 
Replacing the functions with safe calls is probably the best solution provided that 
the source code to the program is available. To make sure that the unsafe versions 
are not used by mistake, their prototypes can be removed from the header files.

strncpy
snprintf
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The  library from Bell Labs provides a way of securing calls to these 
functions, even if the source code is not available . It does this by replacing the 
implementation of the dangerous functions in the shared libc library with safe 
versions.

libsafe
[1]

libsafe makes use of the fact that stack frames are linked together by frame 
pointers (this is implementation dependent, but many C compilers on many 
platforms use this solution). When a buffer is passed as argument to one of the 
unsafe functions, libsafe follows the frame pointers to find the stack frame where the 
buffer was allocated (if it is not found, it is assumed that the buffer resides on the 
heap). It then checks the distance to the closest return address on the stack. When 
the function executes it makes sure that this address is not overwritten. If an 
attempt to overwrite this address is made, the program terminates with a 
vulnerability warning.

Finding the correct stack frame and protecting the return address requires some 
overhead which depends on how deep on the stack buffers are buried and how many 
calls to unsafe functions the program makes. Usually the overhead is quite small.

libsafe can only protect against stack attacks, not variable attacks, and only 
against vulnerabilities caused by one of the dangerous functions. Also, it is only 
really useful when we don't have access to the source code (otherwise, it is better 
to replace the unsafe calls). Thus, it is typically used by end users who want to add 
an extra measure of safety and not by programmers who want to make sure that 
their code is correct.

3.2 Source Code Tools

A source code tool analyzes the source code of a program and tries to determine 
whether it contains any dangerous constructions that could lead to buffer overflows.

We cannot expect a source code tool to be able to detect all possible instances of 
buffer overflow while at the same time yielding no false positives, since that is a task 
of the same difficulty as solving the halting problem. Constructing good source code 
tools will therefore always be a heuristic task.

The source code tools available today make only a limited, local analysis of the 
code and are therefore heavily restricted in the types of buffer overflow problems that 
they can detect.

 is a source code tool that checks for the use of dangerous function. It is a bit 
smarter than a plain  search in that it can rule out some cases where the use 
of a dangerous function usually does not pose a problem. 

its4
grep

[3]

L0pht Heavy Industries have a web page advertising , a source code analyzer 
capable of detecting some buffer overflow problems . However, it seems to be 
vaporware. L0pht does not give any information about what the program does or 
what classes of errors it is able to detect and people who have tried to order the 
product have been told that it is not ready yet .

slint
[7]

[6]

An analyzer that could perform more extensive, cross-function analysis would be a 
valuable tool in a security audit. Constructing such a tool would however be a major 
undertaking. The tool would have to try to keep track of the size of all buffers and 
the possible ranges of variables to be able to detect when a buffer overflow might 
occur.

Dynamic analysis tools such as are an alternative to static analysis toolspurify
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. A dynamic analysis tool analyzes the memory use of a program as it is run. 
Dynamic analysis tools can detect buffer overflow problems if they occur in a test 
run of a program. However, errors that occur in test runs can usually be detected 
even without an analysis tools, since they typically cause the program to crash. The 
main advantage of dynamic analyzers is that they allow for the error to be swiftly 
located once it has been detected.

[12]

3.3 Compiler Tools

A compiler tool changes the way a program is compiled, so that protection against 
buffer overflow is automatically compiled in with the program. No changes to the 
program's source code are thus necessary.

Buffer overflows can be prevented by adding bounds checking to all buffers. To do 
this, the compiler must add code for keeping track of the size of buffers and for 
checking that every buffer access falls within the allocated size. Herman ten Brugge 
has written a patch that adds bounds checking to the gcc compiler . Another 
project for adding bounds checking to gcc is managed by Greg McGary .

[2]
[8]

The problem with adding bounds checking to every pointer is that it results in a 
great performance hit. Code size and execution time may grow by 200 % or more.

Instead of preventing all buffer overflows we might try to protect the return address 
from being overwritten. This does not protect against variable attacks, only against 
the more common stack attacks.

One possible way of doing this is to write the return address to a "safe" place (far 
from the local buffers) at the start of a function and then restore it just before the 
function returns. Since the function can call other functions which in turn need to 
store their return addresses we will need a stack to keep track of all the stored 
return addresses. In practice this solution thus means separating the stack used for 
return addresses from the stack used for local variables. This requires a lot of 
changes to the compiler. A program called implements this approach, 
but is still in beta .

StackShield
[15]

Instead of moving the return address, we can move the buffers. For example, we 
could allocate all buffers in heap space instead of in stack space. The disadvantage 
of this solution is that the heap is substantially slower than the stack. I do not know 
of anyone who has implemented this solution, but the idea has circulated .[11]

A slightly different approach is taken by the  program . StackGuard 
does not prevent the return address from being overwritten, instead it tries to detect 
when it happens and take the appropriate action (terminating the program before 
any damage is done). 

StackGuard [4]

StackGuard accomplishes this in an ingenious way. Whenever a function is called, 
code is added for pushing a small value, called a "canary" value, to the stack. This 
value thus ends up between the local variables and the return address.

When the function exits it checks that the canary value has not been modified 
before returning. The idea is that a buffer overflow in one of the local variables cannot 
overwrite the return address without simultaneously destroying the integrity of the 
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canary value. It thus becomes possible to detect whether a buffer overflow has 
occurred before the function returns.

For this to work, the attacker must not be able to guess the canary value. If the 
attacker can correctly guess the canary value, he can overwrite the return address 
without being detected. StackGuard can set the canary value in one of two possible 
ways. A random value may be used, which is hard for the attacker to guess or the 
value 0 may be used, which is easy to guess but hard for the attacker to put into his 
buffer (since most sensitive buffer operations, such as string copying, are 
terminated by a zero value).

StackGuard can only protect against stack attacks, not against variable attacks, 
but there is ongoing work to add canary values to function pointers too, since they 
are also a vulnerable target. The added canary checks increase function call and 
return times with 40 - 80 %. If the program contains many small function calls and 
inlining is not used, the total overhead can be in this range. If the program does not 
contain as many function calls, the overhead will be smaller.

3.4 Operating System Tools

Some people have tried to solve the buffer overflow problem at the level of the 
operating system. The OS can impose some restrictions which make buffer overflow 
attacks harder.

Solar Designer has created a patch for Linux that makes the stack non-executable
. This means that the attacker can no longer inject his own code into the stack 

and run it. The patch also maps  to the  memory range, so that it is 
impossible to call  functions without having a zero in the buffer. It does not, 
however, prevent the attacker from calling arbitrary functions in the program with 
arbitrary arguments. Usually, by making the right calls, the attacker can achieve the 
desired effect , but the required effort will be greater than on a system 
where the patch is not used.

[5]
libc 0x00...

libc

[17] [14]

The disadvantage of having a non-executable stack is that some legitimate 
programs (though not very many) actually execute content on the stack. These 
programs will cease to work if the patch is applied.

4. Conclusions

No tool can completely solve the buffer overflow problem, but tools can increase the 
probability that a buffer overflow is detected and reduce the attacker's chance of 
successfully exploiting a vulnerability.

The Solar Designer patch makes attacks slightly harder for the attacker without 
reducing the program's performance. Its main drawback is that it is incompatible 
with a small number of programs. For a typical server machine that only runs a 
small fixed set of programs, this is not a big issue, because it is easy to check all 
programs for incompatibilities. Thus, I would recommend all Linux servers to run the 
Solar Designer patch. However, it is important not to be lulled in to a false sense of 
security, since its protection mechanisms can easily be bypassed.

For the same reason it makes sense to run libsafe on server machines. 
Performance before and after its installation should be measured and compared.

StackGuard is capable of stopping many types of buffer overflow attacks, but there 
is a performance penalty in using it. Depending on the type of application this may 
or may not be acceptable. There is also a psychological penalty involved. Releasing 
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a program under StackGuard is equivalent to admitting that there might be security 
related bugs in the application and this could have a negative effect on a company's 
image. This drawback is shared by all compiler tools, especially those with a non-
negligible performance cost. In this respect, source code and operating system 
tools are superior.

There are at least three possible areas of future development for buffer overflow tools:

1. Many of the compiler patches and libraries only support Linux or other Unix 
derivatives and the gcc compiler. There is a need for developing similar tools 
with support for other compilers and operating systems. 

2. There is a need for a powerful source analyzer to assist security auditors in 
locating potential buffer overflow problems. This is a major programming 
project. 

3. The possibility of allocating all buffers on the heap should be investigated. In 
particular, it should be examined how this affects the performance of real-world 
programs. 
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