
RSA Worldwide

 > > > CountermeasuresRSA Security Home RSA Laboratories Tech Notes

Bulletins

Challenges

Crypto FAQ

CryptoBytes

RSA Algorithm

PKCS

Advanced
Encryption
Standard

Tech Notes

Staff &
Associates

Standards

Countermeasures against Buffer Overflow Attacks

Niklas Frykholm (nfrykholm@rsasecurity.com)
30 November, 2000

1. Introduction

Buffer overflow problems are responsible for a large number of security
vulnerabilities. Of the 44 CERT advisories published between 1997 and 1999, 24
were related to buffer overflow issues. [13]

Buffer overflow problems are caused by programming errors. In theory, if every
programmer learned to write better, more defensive code, the problem would go
away. In practice this is not likely to occur. Human beings are error-prone and
experience shows that it is highly unrealistic to expect programmers to produce bug
free code.

The purpose of this document is to examine to what extent automated tools can be
used to reduce the risk of buffer overflow vulnerabilities. We look at the possible
ways of dealing with buffer overflows, survey the existing tools and compare the
tradeoffs they make between security and efficiency. We also discuss whether
there are any good buffer overflow prevention techniques that have not yet been
automated.

2. Buffer Overflow Attacks

To understand how we can defend against buffer overflow attacks, we must first
understand how these attacks work.

The term refers to an allocated chunk of memory, such as a pointer, array or
string. In C and C++ there is no automatic bounds checking on buffers, which
means that it is easy for the programmer to write past the end of the buffer. The
code below shows an example:

buffer

void f() {
�int a[10];
�a[20] = 3;
}

In most cases, writing past the end of the buffer causes the program to crash with a
segmentation fault error, but does not result in a security vulnerability. For a
security vulnerability to occur, two conditions must be fulfilled:

1. The attacker must be able to control the data written into the buffer.
2. There must be security sensitive variables stored after the buffer in memory.

For example, consider the following example:

int main(int argc, char *argv[]) {

2/26/02 6:01 PMRSA Laboratories | Tech Notes | Countermeasures against Buffer Overflow Attacks

Page 1 of 9http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html

�char passwd_ok = 0;
�char passwd[8];
�strcpy(passwd, argv[1]);
�if (strcmp(passwd, "niklas")==0)
��passwd_ok = 1;

�if (passwd_ok) {
��...
}

The layout in memory looks something like this:

The function makes no check that contains at most 8 characters,
so an attacker that passes a longer string can overflow the buffer. If the
string is long enough, the flag will be overwritten and the password will
be accepted by the program, no matter what it is.

strcpy argv[1]
passwd

passwd_ok

Since does not take any parameter that specifies the size of the destination
buffer it has for long been recognized as especially vulnerable to buffer overflow
attacks. Other vulnerable functions of the same type are , , and

.

strcpy

gets sprintf scanf
strcat

Security flags, as the one above, are not the only sensitive variables. A more
common, but less obvious vulnerability is caused by the use of function pointers.
The code below shows an example:

int main(int argc, char *argv[]) {
�void (*func)() = f;
�char buffer[100];
�gets(buffer);
�func();
�...
}

Since does not check the length of the buffer, an attacker can overflow it and
overwrite . Later, when is called, the program will jump to a memory
location determined by the attacker. The attacker can jump to a function in the
program or one of its libraries, or he can be even more clever and jump into the
buffer that he himself has supplied.

gets
func func

2/26/02 6:01 PMRSA Laboratories | Tech Notes | Countermeasures against Buffer Overflow Attacks

Page 2 of 9http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html

Since the attacker determines the content of this buffer, he can get the program to
execute arbitrary code. (Well, not completely arbitrary. The code cannot contain
any bytes since that would terminate the function.)\n gets

The good news for the attacker is that there is a function pointer to overwrite,
whether one has been declared or not. To understand why, we must look at what
happens (on most computer platforms) when a C function is called.

always

When a function is called in C, the caller begins by pushing the function parameters
to the stack. Thereafter, the caller pushes the address of its next instruction --- the
address where execution should continue when the function returns --- to the stack
and jumps to the function. The callee, in turn, makes room on the stack for its local
variables. In most computer architectures the stack grows from high memory
addresses to low, so the memory layout after the call will look something like this:

By overflowing a buffer in the local variables, the attacker can overwrite the return
address. This means that when the function is done, it will not return to the caller,
instead it will jump to an address determined by the attacker. Thus, the effect is
similar to overwriting a function pointer as in the previous example.

It should be noted that the attacker does not only control the address that is jumped
to, but also the entire content of the stack. Since the stack is where function
parameters are stored, this means that the attacker can in fact call any function in
the program or in the libraries used by it, and specify arbitrary parameters. (Again,
not completely arbitrary. Many overflows are stopped by a zero byte. If that is the
case, the only place where the attacker will be able to insert a zero byte is at the
very end of the parameter list.) Thus, it is not necessary for the attacker to inject his
own code into the buffer, since he can usually find an existing function with
sufficiently devastating effects.

We will use the name to refer to attacks where the target is the return
address on the stack. Attacks where other sensitive variables are overwritten will be
referred to as . (Sometimes attacks of this type are called

 but that is a bit confusing, because the sensitive variables could be stored
on the stack as well as on the heap.)

stack attack

variable attacks heap
attacks

3. Countermeasures

As we have seen, a buffer overflow attack requires two things. First, a buffer overflow
must occur in the program. Second, the attacker must be able to use the buffer
overflow to overwrite a security sensitive piece of data (a security flag, function

2/26/02 6:01 PMRSA Laboratories | Tech Notes | Countermeasures against Buffer Overflow Attacks

Page 3 of 9http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html

pointer, return address, etc).

If we want to prevent buffer overflows completely we must stop one of these two
things, i. e. either:

1. Prevent all buffer overflows or
2. Prevent all sensitive information from being overwritten

Both these solutions are costly in terms of efficiency and many programs therefore
settle for a partial goal, such as:

Prevent use of dangerous functions: , , etc. gets strcpy
Prevent return addresses from being overwritten
Prevent data supplied by the attacker from being executed (stops the attacker
from jumping into his own buffer)

There are several possible levels where a defense mechanism can be inserted. At
the we can make changes to the C language itself to reduce the
risk of buffer overflows. At the we can use static or dynamic
source code analyzers to check our code for buffer overflow problems. At the

 we can change the compiler so that it does bounds checking or
protects certain addresses from overwriting. At the we can
change the rules for which memory pages that should be allowed to hold executable
content.

language level
source code level

compiler level
operating system level

In the following sections, we will look at each of these options in turn.

3.1 Language Tools

The simplest solution at the language level is to switch to a language that provides
automatic bounds checking of buffers, such as Java, Perl or Python. However, in
most projects this is not an option.

A better solution is to use a library module that implements "safe", bounds-checked
buffers, such as the standard C++ module or . There are two
problems with this solution. First, it requires a complete rewrite of all the source
code for the project. This alone makes the solution improper for anything but
recently started projects. Second, most programs have to interface with prewritten
library code. Since this code will use the ordinary "unsafe" buffers, the program will
not be able to completely avoid them. Instead it will constantly have to convert
between "safe" and "unsafe" buffers. Whenever a buffer is in the "unsafe" mode,
buffer overflow problems can occur. There is also a risk that programmer's will forget
to convert buffers back to the "safe" mode.

string libmib [9]

An alternative to making every buffer access safe is to target only those specific
functions in C which are known to be dangerous, e. g. , , and

. This takes care of buffer overflows caused by these functions, but doesn't
handle buffer overflows caused by other code, such as user written functions.

strcpy strcat gets
sprintf

The simplest solution to securing the dangerous function is to disallow them. They
all have "safe" counterparts that can be substituted, such as and

, which in addition to the buffers also take a size parameter. (Of course,
these functions are only "safe" if the size parameter is specified correctly.)
Replacing the functions with safe calls is probably the best solution provided that
the source code to the program is available. To make sure that the unsafe versions
are not used by mistake, their prototypes can be removed from the header files.

strncpy
snprintf

2/26/02 6:01 PMRSA Laboratories | Tech Notes | Countermeasures against Buffer Overflow Attacks

Page 4 of 9http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html

The library from Bell Labs provides a way of securing calls to these
functions, even if the source code is not available . It does this by replacing the
implementation of the dangerous functions in the shared libc library with safe
versions.

libsafe
[1]

libsafe makes use of the fact that stack frames are linked together by frame
pointers (this is implementation dependent, but many C compilers on many
platforms use this solution). When a buffer is passed as argument to one of the
unsafe functions, libsafe follows the frame pointers to find the stack frame where the
buffer was allocated (if it is not found, it is assumed that the buffer resides on the
heap). It then checks the distance to the closest return address on the stack. When
the function executes it makes sure that this address is not overwritten. If an
attempt to overwrite this address is made, the program terminates with a
vulnerability warning.

Finding the correct stack frame and protecting the return address requires some
overhead which depends on how deep on the stack buffers are buried and how many
calls to unsafe functions the program makes. Usually the overhead is quite small.

libsafe can only protect against stack attacks, not variable attacks, and only
against vulnerabilities caused by one of the dangerous functions. Also, it is only
really useful when we don't have access to the source code (otherwise, it is better
to replace the unsafe calls). Thus, it is typically used by end users who want to add
an extra measure of safety and not by programmers who want to make sure that
their code is correct.

3.2 Source Code Tools

A source code tool analyzes the source code of a program and tries to determine
whether it contains any dangerous constructions that could lead to buffer overflows.

We cannot expect a source code tool to be able to detect all possible instances of
buffer overflow while at the same time yielding no false positives, since that is a task
of the same difficulty as solving the halting problem. Constructing good source code
tools will therefore always be a heuristic task.

The source code tools available today make only a limited, local analysis of the
code and are therefore heavily restricted in the types of buffer overflow problems that
they can detect.

 is a source code tool that checks for the use of dangerous function. It is a bit
smarter than a plain search in that it can rule out some cases where the use
of a dangerous function usually does not pose a problem.

its4
grep

[3]

L0pht Heavy Industries have a web page advertising , a source code analyzer
capable of detecting some buffer overflow problems . However, it seems to be
vaporware. L0pht does not give any information about what the program does or
what classes of errors it is able to detect and people who have tried to order the
product have been told that it is not ready yet .

slint
[7]

[6]

An analyzer that could perform more extensive, cross-function analysis would be a
valuable tool in a security audit. Constructing such a tool would however be a major
undertaking. The tool would have to try to keep track of the size of all buffers and
the possible ranges of variables to be able to detect when a buffer overflow might
occur.

Dynamic analysis tools such as are an alternative to static analysis toolspurify

2/26/02 6:01 PMRSA Laboratories | Tech Notes | Countermeasures against Buffer Overflow Attacks

Page 5 of 9http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html

. A dynamic analysis tool analyzes the memory use of a program as it is run.
Dynamic analysis tools can detect buffer overflow problems if they occur in a test
run of a program. However, errors that occur in test runs can usually be detected
even without an analysis tools, since they typically cause the program to crash. The
main advantage of dynamic analyzers is that they allow for the error to be swiftly
located once it has been detected.

[12]

3.3 Compiler Tools

A compiler tool changes the way a program is compiled, so that protection against
buffer overflow is automatically compiled in with the program. No changes to the
program's source code are thus necessary.

Buffer overflows can be prevented by adding bounds checking to all buffers. To do
this, the compiler must add code for keeping track of the size of buffers and for
checking that every buffer access falls within the allocated size. Herman ten Brugge
has written a patch that adds bounds checking to the gcc compiler . Another
project for adding bounds checking to gcc is managed by Greg McGary .

[2]
[8]

The problem with adding bounds checking to every pointer is that it results in a
great performance hit. Code size and execution time may grow by 200 % or more.

Instead of preventing all buffer overflows we might try to protect the return address
from being overwritten. This does not protect against variable attacks, only against
the more common stack attacks.

One possible way of doing this is to write the return address to a "safe" place (far
from the local buffers) at the start of a function and then restore it just before the
function returns. Since the function can call other functions which in turn need to
store their return addresses we will need a stack to keep track of all the stored
return addresses. In practice this solution thus means separating the stack used for
return addresses from the stack used for local variables. This requires a lot of
changes to the compiler. A program called implements this approach,
but is still in beta .

StackShield
[15]

Instead of moving the return address, we can move the buffers. For example, we
could allocate all buffers in heap space instead of in stack space. The disadvantage
of this solution is that the heap is substantially slower than the stack. I do not know
of anyone who has implemented this solution, but the idea has circulated .[11]

A slightly different approach is taken by the program . StackGuard
does not prevent the return address from being overwritten, instead it tries to detect
when it happens and take the appropriate action (terminating the program before
any damage is done).

StackGuard [4]

StackGuard accomplishes this in an ingenious way. Whenever a function is called,
code is added for pushing a small value, called a "canary" value, to the stack. This
value thus ends up between the local variables and the return address.

When the function exits it checks that the canary value has not been modified
before returning. The idea is that a buffer overflow in one of the local variables cannot
overwrite the return address without simultaneously destroying the integrity of the

2/26/02 6:01 PMRSA Laboratories | Tech Notes | Countermeasures against Buffer Overflow Attacks

Page 6 of 9http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html

canary value. It thus becomes possible to detect whether a buffer overflow has
occurred before the function returns.

For this to work, the attacker must not be able to guess the canary value. If the
attacker can correctly guess the canary value, he can overwrite the return address
without being detected. StackGuard can set the canary value in one of two possible
ways. A random value may be used, which is hard for the attacker to guess or the
value 0 may be used, which is easy to guess but hard for the attacker to put into his
buffer (since most sensitive buffer operations, such as string copying, are
terminated by a zero value).

StackGuard can only protect against stack attacks, not against variable attacks,
but there is ongoing work to add canary values to function pointers too, since they
are also a vulnerable target. The added canary checks increase function call and
return times with 40 - 80 %. If the program contains many small function calls and
inlining is not used, the total overhead can be in this range. If the program does not
contain as many function calls, the overhead will be smaller.

3.4 Operating System Tools

Some people have tried to solve the buffer overflow problem at the level of the
operating system. The OS can impose some restrictions which make buffer overflow
attacks harder.

Solar Designer has created a patch for Linux that makes the stack non-executable
. This means that the attacker can no longer inject his own code into the stack

and run it. The patch also maps to the memory range, so that it is
impossible to call functions without having a zero in the buffer. It does not,
however, prevent the attacker from calling arbitrary functions in the program with
arbitrary arguments. Usually, by making the right calls, the attacker can achieve the
desired effect , but the required effort will be greater than on a system
where the patch is not used.

[5]
libc 0x00...

libc

[17] [14]

The disadvantage of having a non-executable stack is that some legitimate
programs (though not very many) actually execute content on the stack. These
programs will cease to work if the patch is applied.

4. Conclusions

No tool can completely solve the buffer overflow problem, but tools can increase the
probability that a buffer overflow is detected and reduce the attacker's chance of
successfully exploiting a vulnerability.

The Solar Designer patch makes attacks slightly harder for the attacker without
reducing the program's performance. Its main drawback is that it is incompatible
with a small number of programs. For a typical server machine that only runs a
small fixed set of programs, this is not a big issue, because it is easy to check all
programs for incompatibilities. Thus, I would recommend all Linux servers to run the
Solar Designer patch. However, it is important not to be lulled in to a false sense of
security, since its protection mechanisms can easily be bypassed.

For the same reason it makes sense to run libsafe on server machines.
Performance before and after its installation should be measured and compared.

StackGuard is capable of stopping many types of buffer overflow attacks, but there
is a performance penalty in using it. Depending on the type of application this may
or may not be acceptable. There is also a psychological penalty involved. Releasing

2/26/02 6:01 PMRSA Laboratories | Tech Notes | Countermeasures against Buffer Overflow Attacks

Page 7 of 9http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html

a program under StackGuard is equivalent to admitting that there might be security
related bugs in the application and this could have a negative effect on a company's
image. This drawback is shared by all compiler tools, especially those with a non-
negligible performance cost. In this respect, source code and operating system
tools are superior.

There are at least three possible areas of future development for buffer overflow tools:

1. Many of the compiler patches and libraries only support Linux or other Unix
derivatives and the gcc compiler. There is a need for developing similar tools
with support for other compilers and operating systems.

2. There is a need for a powerful source analyzer to assist security auditors in
locating potential buffer overflow problems. This is a major programming
project.

3. The possibility of allocating all buffers on the heap should be investigated. In
particular, it should be examined how this affects the performance of real-world
programs.

References

1. . Bell Labs. libsafe
http://www.bell-labs.com/org/11356/libsafe.html

2. . Herman ten Brugge. Bounds checking patch for gcc
http://web.inter.nl.net/hcc/Haj.Ten.Brugge/

3. . Cigital Security. ITS4: Software Security Tool
http://www.cigital.com/its4/

4. . Crispin Cowan et al. StackGuard
http://www.cse.ogi.edu/DISC/projects/ immunix/StackGuard/
usenixsc98_html/

5. . Solar Designer. Linux kernel patch from the Openwall project
http://www.openwall.com/linux/

6. . Marc Heuse. Re: imapd4r1 v12.264 and security implications
http://lists.suse.com/archives/suse-security/2000-Apr/0136.html

7. . L0pht Heavy Industries. SLINT - source code security analyzer
http://www.l0pht.com/slint.html

8. . Greg McGary. Bounds checking projects
http://gcc.gnu.org/projects/bp/main.html

9. . Mib Software. Libmib allocated string functions
http://www.mibsoftware.com/libmib/astring/

10. . Aleph One. Smashing the stack for fun and profit
http://www.linux.com/security/newsitem.phtml?sid=11&aid=5043

11. . Aleph One. BugTraq: Frequently asked questions
http://www.nationwide.net/~aleph1/FAQ

12. . Rational. Rational Purify for Windows
http://www.rational.com/products/purify_nt/index.jsp

13. . Hello World!. April, 1999. Evan Thomas. Attack Class: Buffer Overflows
http://www.cosc.brocku.ca/~cspress/HelloWorld/1999/04-apr/attack_class.html

14. . Linus Torvalds. Re: [PATCH] [SECURITY] suid procs exec'd with bad 0,1,2 fds
http://lwn.net/980806/a/linus-noexec.html

15. . Vendicator. StackShield
http://www.angelfire.com/sk/stackshield/index.html

16. . David A. Wheeler. Secure programming for Linux and Unix howto
http://www.linuxdoc.org/HOWTO/Secure-Programs-HOWTO/index.html

17. . Rafal Wojtczuk. Defeating Solar Deisgner non-executable stack patch
http://www.securityfocus.com/archive/1/8470

2/26/02 6:01 PMRSA Laboratories | Tech Notes | Countermeasures against Buffer Overflow Attacks

Page 8 of 9http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html

United States: 1-877-RSA-4900 or 781 515 5000, Europe, Middle East, Africa: +44 (0)1344 781000,
Asia/Pacific: +65 733 5400, Japan: +81 3 5222 5200
 | | | Home Contact Us Search Terms of Use and Privacy Statement

© Copyright 2002 RSA Security Inc - all rights reserved. Reproduction of this Web Site, in whole or in part, in any form or medium

without express written permission from RSA Security is prohibited.

2/26/02 6:01 PMRSA Laboratories | Tech Notes | Countermeasures against Buffer Overflow Attacks

Page 9 of 9http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html

