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and other data to provide evidence of correct re-
covery and to thwart certain attacks.
Masked block — a block that results when the for-
matted block is masked to hide patterns.
Encrypted block — the block that results after the
formatted or masked block has been asymmetrically
encrypted.

For readers interested in some of the security issues
involved in using RSA, an earlier CryptoBytes ar-
ticle entitled The Secure Use of RSA [9] contains
much useful information.

PKCS #1
The Public Key Cryptography Standard #1 was de-
signed by the cryptographers at RSA Data Secu-
rity, Inc. [10].  PKCS #1 describes a method to
RSA encrypt a secret symmetric key. The format-
ted block is passed directly to the RSA encrypt
process. It uses the following method (with ratio-
nale):

1. A leading 0x00 is in the block to be RSA en-
crypted, ensuring the encryption block is less
than the RSA modulus.

2. A block type encoded octet of 0x02 follows the
leading 0x00, indicating the block is to be en-
crypted using a public key.

3. At least eight non-zero pseudorandom padding
octets (bytes) are appended to the right after
the block type octet. The padding octets should
be generated independently for each RSA en-
cryption, especially if the same key is being en-
crypted. This thwarts Hastad’s attack [6] and
allows use of a low value (e.g., 3) for the public
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When public key cryptography was invented, one
of its uses was identified as the secure transport of
secret symmetric keys. The objectives of such a key
transport mechanism keep evolving as attacks are
identified, hidden assumptions are revealed, proofs
of security are given, and additional capability is
needed. The process continues in this article.

W e trace the evolution of some asymmetric key
transport mechanisms, starting with the method in
PKCS #1 [10]. We then discuss, in historical order,
two masking techniques developed by IBM cryp-
tographers, and the method curr ently under study
in ANSI draft standard X9.44 RSA Key T ransport.
W e then give ideas that may be useful when using
elliptic curve cryptography, where the size of the
block is typically much less than that used with
other algorithms, for example, RSA.

W e will use the following terminology:

Formatted block — a block of data passed as input
to the methods. It contains a secret symmetric key

Asymmetric Encryption:
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Editor’s Note

Readers of the Autumn 1995 issue of CryptoBytes
will recall that we included two articles related to
RSA encryption. In one, we concentrated on the
secure use of conventional RSA and in the other we
looked at a new proposal by Adi Shamir termed Un-
balanced RSA.

Our lead article in this issue is also related to RSA
encryption, but in reality has wider implications for
public-key technology in general. The use of what
was intr oduced as Optimal Asymmetric Encryption
Padding (OAEP) has been receiving a lot of atten-
tion recently and it seems an appropriate time to
look at this topic in more depth. We lead this issue
with an article by Don Johnson and Stephen Matyas
on the evolution of padding schemes for use with
asymmetric encryption. Many readers will already be
aware that standardization efforts are currently un-
derway on the specification of such techniques (for
instance as part of the curre nt Secure  Electronic Trans-
actions (SET) standard effort) and we hope that this
article will provide readers with some of the back-
ground to these discussions. Future developments
will, of course, be reported in upcoming issues of
CryptoBytes.

For new technologies we turn our attention to what
have been called micropayment schemes and to two
that were recently devised by Ron Rivest and Adi
Shamir.  Micropayment techniques are aimed specifi-
cally at accommodating commerce over the Internet
and World-W ide Web where small-scale payments are
often required at an exceptionally low operational
cost. In this arti cle, the signi fi cant features of PayWord
and MicroMint are described as well as the philosophy
behind some of the security issues involved.

Our third article is a presentation of HMAC by Mihir
Bellare, Ran Canetti and Hugo Krawczyk.  In the
use of keyed-MD5 for message authentication,
HMAC appears to be a solution that is rapidly gain-
ing acceptance and a report on this construction,
particularly since it forms a continuation of previous
CryptoBytes articles, will be of interest to a great
many readers.

This issue of CryptoBytes is the first of what will be-
come the second volume. In the year since the news-
letter was launched we have had a lot of positive
response to both the aims of the newsletter and to

the articles we have been carrying. We  are delighted
to announce that CryptoBytes will now be available
free of charge and that all issues will be directly ac-
cessible via the W orld-W ide Web.

The future success of CryptoBytes depends on input
from all sectors of the cryptographic community, and
as usual we would very much like to thank the writ-
ers who have contributed to this first issue of the
second volume. We encourage any readers with com-
ments, opposite opinions, suggestions or proposals for
future issues to contact the CryptoBytes editor at RSA
Laboratories or by E-mail to bytes-ed@rsa.com.

About RSA Laboratories

RSA Laboratories is the research and development division of RSA
Data Security, Inc., the company founded by the inventors of the
RSA public-key cryptosystem. RSA Laboratories reviews, designs
and implements secure and efficient cryptosystems of all kinds. Its
clients include government agencies, telecommunications compa-
nies, computer manufacturers, software developers, cable TV
broadcasters, interactive video manufacturers, and satellite broad-
cast companies, among others.

Newsletter Availability and
Contact Information

CryptoBytes is a free publication and all
issues, both current and past, are available
via the W orld-W ide Web at http://
www.rsa.com/rsalabs/cryptobytes/.

For each issue a limited number of copies
are printed. They are distributed at major
conferences and through direct mailing.
While available, additional copies of the
newsletter can be requested by contacting
RSA Laboratories though a nominal fee to
cover handling costs might be charged for
individual requests.

RSA Laboratories can be contacted at:

RSA Laboratories
100 Marine Parkway, Suite 500
Redwood City, CA 94065
415/595-7703
415/595-4126 (fax)
rsa-labs@rsa.com
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key exponent, which is important for perf or-
mance reasons.

4. An octet of 0x00 is then appended on the right
of the above to act as a delimiter between the
non-zero pseudorandom octets and the key.

5. The secret symmetric key is then appended on
the right of the above.

A simplified diagram of the PKCS #1 method follows:

Figure 1. Simplified PKCS #1 method.  Key is the secret

symmetric key and RN is a random number. The actual

specification of PKCS #1 differs from this simplified

representation.  See the text for details.

After RSA decryption, an error is returned if any of
the following conditions exist:

1. The block type octet is not 0x02.
2. There are not at least eight padding octets. A

padding octet cannot be all binary zeros.
3. The block cannot be parsed. Besides the above

reasons, this might happen if a zero octet delim-
iter is not found.

There is significant security provided by the PKCS
#1 method. We  are unaware of any realistic attacks
on this method in practise. Placing the non-zero
block type octet near the left end of the block en-
sures that the RSA modulo r eduction will occur,
even for low public key exponents, like 3. There are
at least 64 bits of pseudorandomness to thwart an
exhaustion attack and Hastad’s attack. There  are a
minimum of 16 bits of redundancy (block type octet
and zero delimiter octet) to provide evidence that
the formatted block has been recovered corre ctly.

However, a concern could be raised that some of the
bits in the formatted block are known. Recent re-
sults by Don Coppersmith [4] show that for an RSA
public exponent of 3 and an n -bit modulus, if an
attacker knows all but n/ 3 of the plaintext and all the
ciphertext, he can recover all the plaintext; if an
attacker knows that two messages agree in all but n/ 9

bits and are encrypted with the same public key, he
can recover the plaintext.

Asymmetric Encryption
Continued from page 1

Readers interested in the development of PKCS#1
are referred to the editors note at the conclusion of
this article.

IBM Transaction Security System
At about the same time as the PKCS was being pub-
lished, IBM developed a public key extension to their
Transaction Security System (TSS) to support digi-
tal signatures and key transport. Cryptographers at
IBM (Johnson, Le, Martin, Matyas, and Wi lkins)
developed a method to mask a for matted block be-
fore its being RSA encrypted [7, 8]. A simplified dia-
gram of the JLMMW method is given in Figure  2.

Its objectives, as given in the paper,  are as follows:

1. Ensure the method is strong for any arbitrary pub-
lic key value, large or small.

2. Ensure that the method is str ong regardless of
whether the same secret symmetric key value is
encrypted by many different public keys.

3. Ensure there are least at
32 bits of redundant data
that may be used to au-
thenticate the symmet-
ric key recovery process.

4. Remove any structure
from the data that is en-
crypted by the public
key.

5. Ensure the symmetric
key can always be en-
crypted as one block by
the public key.

Goal 1 is a common goal of most asymmetric systems,
as often some keys will have better performance than
others. Goals 2, 3, and 5 are also goals of the PKCS
#1 design. Goal 3 was addressed in the PKCS #1
method by using 16 bits and in the JLMMW method
by using 32 bits.

Goal 4 was not addressed in PKCS #1 and is the most
unusual. In fact, goals 3 and 4 appear to conflict. Goal
3 says there is redundancy (structure) to check and
goal 4 says there does not appear to be any structure.
The solution is to realize that while there may need
to be significant structure, there should not APPEAR
to be any structure. This implies a masking operation
is performed on the structured data so that it appears

At about the

same time as

the PKCS was

being published,

IBM developed

a public key

extension to

their Transaction

Security System

to support digital

signatures and

key transpor t.

Figure 2.
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random. The idea is to provide a random number in
the formatted block, that would be input to a pseu-
dorandom generator and used to generate a pseudo-
random string that could be exclusive-ORed with the
formatted block, thereby masking any structure. A
different random number is generated each time a
formatted block is to be RSA encrypted. (This en-
sures that a formatted block is not encrypted twice
using different RSA public keys.) In effect, RSA en-
cryption is performed on masked data consisting of a
random appearing string concatenated to a random
number. While there is significant structure in the
formatted block, the masked block appears random.

Besides the basic masking method, specifying con-
trol information was identified as an option.

Optimal Asymmetric Encryption
Other cryptographers at IBM (Bellare and Rogaway)
saw a way to improve the JLMMW construction [3].
Fig. 3 gives a simplified diagram of their construction.

The question they asked
themselves was: Suppose
an adversary could recover
some of the bits in the en-
crypted block more easily
than recovering the entire
encrypted block. If this
were possible, then this
knowledge might enable
one to more easily deduce
some or all of the remain-
ing bits: that is, it might
give an advantage in re-
covering other bits.

A result given by Alexi,
Chor, Goldr eich and
Schnorr suggests that find-
ing the low order bits of an
RSA encrypted block are
as hard as finding the en-
tire encrypted block [1].

But what if an adversary attacked bits not covered by
this result, or what if another asymmetric algorithm
was used, one possibly without this property?

Although they did not find an attack, they appar-
ently had the following concern about the JLMMW

masking method: If an adversary could discover the
random number component of the masked block,
then an adversary could reconstruct the masking
string. Knowing the masking string and the struc-
ture in the formatted block, it might be possible for
an attacker to deduce other parts of the formatted
block. Their insight into the construction of a good
masking function was to realize that one could also
protect the random number by masking it with a
hash value generated on the masked block (less the
random number). If this was done in the right way,
then an adversary would have to recover the entire
masked block in order to invert the masking opera-
tion and recover the formatted block containing the
secret symmetric key. They were then able to pro -
vide a proof of the security of their method. 1

To provide for non-malleability, 128 binary zeroes
are used in the formatted record. 2  This also provides
evidence of corre ct recovery.

Enhanced Optimal Asymmetric Encryption
The enhancement over the OAE method pr ovided
in the proposed ANSI X9.44 draft standard is essen-
tially to add a one-way hash of information associ-
ated with the key, such as higher -level security proto-
col data [2]. As this also provides for non-malleabil-
ity, the 128 bits of binary zeros in the formatted block,
called for by Bellare and Rogaway, may be omitted.

While still providing non-malleability, this pr ovides
a strong coupling mechanism of the secret symmet-
ric key to arbitrary information associated with the
key. For example, such infor mation may include:

1. Method version identification.
2. Identification of the H and G masking functions.
3. Type of symmetric key algorithm.
4. Intended usage of the symmetric key.
5. Cryptoperiod for the key.
6. Identifiers for the creator and/or recipient of

the key.
7. Key creation timestamp.

XOR

. . .   θ Key RN

G

Mask 1

RNMasked Data

H

Mask 2 XOR

Masked RNMasked Data

Figure 3.
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1  DES may be viewed as a ladder with 16 rungs, each rung corre-
sponding to a round of DES. This is also called a Feistel network
or ladder. On the odd numbere d rounds, a one-way function (un-
der the control of the key) operates on the rightmost 32 bits to
produce a mask that is exclusive-ORed with the leftmost 32 bits.
On the even numbered rounds the one-way function operates on
the (masked) leftmost 32 bits to produce a mask that is exclusive-
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8. A nonce used in a request/response protocol to
ensure freshness.

As there are many possible ways to use this capabil-
ity, it is important that it be open-ended. As new
protocols are devised and the need to strongly couple
currently unforeseen information to the secret key
becomes identified, this method can grow to meet
potential future requirements. A simplified diagram
of this mechanism is shown in Figure 4.

Reverse Signature Concept
One way to perceive the enhancement of coupling a
hash of information associated with a key to the key
itself is as a kind of “reverse signature.” In a normal
digital signature, only the owner of the private key
can generate a signature, but anyone can have access
to the public key to verify the signature. In a “reverse
signature,” anyone can generate such a signature, but
only the owner of the private key can verify it.

Using asymmetric key cryptography, there  are two
ways to cryptographically couple information to a
key: by using a digital signature and by using a re-
verse signature.

However,  there are several distinct advantages to the
reverse signature concept:

1. The implementation of key recovery is simpli-
fied, needing only the associated private key. It
does not need a public key to verify the recovery
or to provide coupling to associated information
about the key.

2. All digital signatures may be calculated on the
encrypted symmetric key block. None need to
be calculated on the unencrypted symmetric key
block. This ensures all parties can verify any digi-
tal signatures as needed, without requiring recov-
ery of the symmetric key. This can be important

in a generalized environment with many certi-
fication authorities in varying relationships.

3. In an interactive en-
vironment, one may
be able to avoid the
use of digital signa-
tures. In this sce-
nario, the initiator
RSA-encrypts a se-
cret nonce using the
public key of the se-
cret key generator.
The secret key gen-
erator is the only en-
tity that can recover
the secret nonce, so
only the initiator and
the secret key gen-
erator know it. The
secret key generator
generates the secret
key and includes the
secret nonce in the
RSA encrypted r eply.
The initiator then
supplies the secret
nonce to the secret
key recovery process.
The initiator is as-
sured that the secret
key is from the key generator. The key generator
is assured that only the initiator is able to recover
the secret key.

4. As the information associated with the key is
supplied to the key recovery process, it is ex-
pected to be easy to demonstrate that this
method pr ovides secr ecy only for a symmetric key
of limited size. This can be important due to
product export considerations.

Figure 4.

Simpl i fied

Johnson-Matyas

X9.44 draft

method

ORed with the rightmost 32 bits. Another way to perceive the
improvement that the OAE method provided over the JLMMW
method is to realize that the JLMMW method is analogous to a
single round of DES encryption, while the OAE masking method
is analogous to two rounds of DES encryption. That is, with the
JLMMW method, the left part (A) was masked using the right
part (B); with the BR method, the left part (A) was masked using
the right part (B) and the right part (B) was masked using the
masked left part (masked A).

2  Non-malleability was defined in a paper by Dolev, Dwork, and
Naor [5]. Infor mally, a cryptosystem is non-malleable if it is no
easier to determine some plaintext A in some relation to some un-
known plaintext B if one knows the ciphertext of B than if one does
not. An example given in the paper uses two bidders encrypting
their bids. It should not be possible for one bidder to see the en-
crypted bid of the other and somehow be able to offer a bid that was
slightly lower, even if he would not know what the r esulting bid
actually was.
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Further Enhancements
The recent emergence of practical cryptosytems based
on elliptic curves has resulted in other potential re-
finements. These are mainly because elliptic curve
cryptographic algorithms using a blocksize of about
155 bi ts are thought to be strong; however, this means
that the abundance of space in a block that allows
the abi l i ty to store lots of data like a symmetric key, a
reverse signature, and a random number when using
larger blocksizes is severely limited. The following are
some ideas to help address this and are under consid-
eration by the IEEE P1363 workgroup:

1. The Feistel ladder can be balanced, rather than
unbalanced. That is, the dividing line between
the two sides for the masking process operating
on the unformatted block could be put right in
the middle. By symmetry considerations, a bal-
anced construct is preferable from a security
viewpoint as it ensures optimal distribution of
the random secret data throughout the block.
There is no “funnel” in which secrecy may be
reduced. It may also be easier to implement. Also,
by freeing the dividing line between the two parts
from the possibly arbitrary lengths of certain
fields, a reduction in overall length may be able
to be achieved.

2. The random number is used for 2 purposes, to
ensure uniqueness and to help thwart dictionary
attacks. However, use of a random number has a
concern in that the uniqueness is probabilistic,
not guaranteed. Also the random number must
be long enough so that the chance of a duplicate
is sufficiently small. If the symmetric key being
sent is already large enough to thwart dictionary
attacks, then the random number may be able to
be replaced with a counter or some other way to
ensure uniqueness of the block. Not only will
this result in a smaller size than the use of a ran-
dom number, uniqueness can be guaranteed.

3. One may consider doing more than two rounds
of masking to achieve some desired property.

Conclusion
In this article we have presented the increases in
security and capability that have occurred when us-
ing asymmetric encryption. The advantageous at-
tributes of these ideas are such that we believe they
will be able to be used in a wide variety of crypto-
graphic solutions.
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PayWord and MicroMint  (extended abstract)
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Many electronic payment schemes have been pro-
posed in recent years to address the problem of se-
cure transactions over open networks. Micropayment
schemes are a special kind of payment schemes for
applications in which each payment is very small.
To support micropayments, exceptional eff i ciency is
required; otherwise, the cost of the mechanism will
exceed the value of the payments.

PayWord and Micr oMint a re two simple micro -
payment schemes. In both schemes, the players are
brokers, users and vendors. Brokers authorize users to
make micropayments to vendors and redeem the pay-
ments collected by the vendors (See Figure 1). Bro-

ker-user and br oker-vendor r elationships are long-
term, while user-vendor r elationships are transient.

Our micropayment schemes might be considered light-
weight when compared with full payment schemes in
the sense that our security goal is to keep honest
people honest (a similar situation exists with newspa-
per vending machines): exceptionally small-scale fraud
and abuse cannot be totally prevented. In return, how-
ever, we try to achieve the following efficiency goals:

• Minimize the number of public-key operations
by using hash operations whenever possible.
(Roughly, hash functions are about 100 times
faster than RSA signature verification and about
10,000 faster than RSA signature generation.)

• Minimize communication (particularly on-line

Ron Rivest is associate director of MIT’s Laboratory for Computer
Science. He can be contacted at rivest@theory.lcs.mit.edu. Adi
Shamir is professor at the Applied Math Department of the
W eizmann Institute of Science, Israel, and can be contacted at
shamir@wisdom.weizmann.ac.il. Rivest and Shamir are co-inven-
tor of the RSA cryptosystem.
This article is edi ted from the full paper [7] by Yiqun Lisa Yin. She
is a research scientist at RSA Laboratories, and can be reached at
yiqun@rsa.com.

communication) with brokers. Since there may
be only a few nationwide brokers, it is important
that their computational burden be both reason-
able and “off-line.”

• Make the communication per transaction effi-
cient, especially for repeated small purchases.

PayWord is a credit-based scheme and is optimized
for sequences of micropayments. It is also secure and
flexible enough to support larger variable-value pay-
ments as well. Micr oMint intr oduces a new para-
digm for electronic coins and is designed to eliminate
public-key operations altogether. It has lower secu-
rity but higher efficiency.

PayWord
Roughly speaking, PayW ord consists of the follow-
ing components:

1. A user establishes an account with a br oker, who
issues the user a digitally-signed certificate. This
authorizes the user to make payword chains,
which are chains of hash values.

2. Before contacting a vendor, the user creates a
vendor -specific payword chain off -line.

3. The user authenticates the complete chain to the
vendor with a single public-key signature, and
then successively reveals each payword in the
chain to make each micropayment.

4. The vendor redeems the paywords received from
the user with the original broker.

Payword Chains
In the construction of a payword chain, we will use a
one-way hash function, such as MD5 [6]. The hash
function h has the property that, given a hash value
y, it is hard to find an input x, such that y=h(x).

Figure 1.
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A user creates a payword chain {w 0, w1, w2, ...., wn} by
picking the final payword w n at random and com-
puting paywords according to w i = h(w i+1). The fi rst
payword w 0 is called the “root” of the chain. Given
w0 it is hard for anyone other than the user to figure
out the rest of the paywords in the chain. By reveal-
ing w 0, however, the user is “committed” to the
payword chain she just created.

User-Br oker relationship
A user begins a relationship with a broker by request-
ing an account and a PayWord Certificate. The user
first gives the broker over a secure authenticated
channel: her credit-card number, her public key PK U,

and her “delivery address” (e.g., IP-address). The bro-
ker then issues the user a digitally signed certificate
which authorizes her to make payword chains until
a given expiration date, and authorizes the delivery
of goods only to the specified delivery addre ss.

The user’s certificate C U thus has the following form:

CU = {broker,  user, user’s delivery address,

PKU, expiration-date, other- info}  SKB
,

where { } SKB 
denotes that the contents of { } are signed

with the broker’s private key SK B. The PayWord cer-
ti ficate C U is a statement by the broker to any ven-
dor that authentic paywords pr oduced by the user
and used before the expiration date will be redeemed.

User-V endor r elationship
User -vendor r elationships are transient. A user might
visit a web site, purchase ten pages, and then move
on elsewhere. When the user is about to contact a
new vendor, she computes a fresh payword chain {w 0,

w1, w2, ...., wn}. Here n is chosen at the user’s conve-
nience; it could be ten or ten thousand. She then
computes her commitment for that chain:

M  = {vendor,  C U, w 0, current-date, other- info} SKU.

The commitment M , which is signed with the user’s
private key SK U, authorizes the broker to pay the ven-
dor for any of the paywords w 1, w2, ...., wn redeemed
on the curr ent date. Paywords are  vendor- specific and
user- speci fic;  they are of no value to another vendor.
Upon receiving the commitment M , the vendor veri-
fies the user’s signature on M  and the br oker’s signa-
ture on C U (contained within M ), and checks the

expiration dates. After the commitment, payment
from a user to a vendor consists of a payword and its
index: (w i,i). The payment is not signed by the user.

The user spends her paywords in order: w 1 fi rst, then
w2, and so on. If each payword is worth one cent and
each web page costs one cent, then she discloses w i

to the vendor when she orders her i -th web page from
the vendor that day. This leads to the PayWord pay-
ment policy: For each commitment a vendor is paid l
cents, where (wl,l) is the corresponding payment received
with the largest index. This means that the vendor
needs to store only one payment from each user: the
one with the highest index. The broker can confirm
the value to be paid for w l by determining how many
applications of h are required to map w l into w 0.

Vendor-Br oker relationship
A vendor needn’t have a prior r elationship with a
broker, but does need to obtain the public key of the
broker in an authenticated manner, so he can au-
thenticate certificates signed by the broker. He also
needs to establish a way for the broker to pay him
redeemed paywords.

At the end of each day (or other suitable period),
the vendor sends the broker a redemption message
giving, for each of the broker’s users who have paid
the vendor that day, the commitment C U and the
last payment P=(w l ,l ). The broker needs to first
verify each commitment received by checking the
user’s signatures (since he can recognize his own cer-
tificates), and then verify each payment (w l ,l ) by
computing the hash function l times. The broker will
normally honor all valid redemption requests.

Security
In a typical scenario for PayW ord, each payword rep-
resents a very small amount of money, such as one
cent. After the commitment, the paywords do not
need to be signed by the user, since the paywords are
self-authenticating using the commitment. Such a
feature may allow each payword to represent a larger
amount of money (e.g., software selling at $19.99).
Hence, the level of security and flexibility of Pay-
W ord makes it possible to support certain “macro -
payment” as well.

In PayW ord, the contents of a payment does not
specify what item it is payment for. A vendor may
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cheat a user by sending her nothing, or the wrong
item, in return. The user bears the risk of losing the
payment, just as if she had put a penny in the mail.
Vendors who so cheat their customers will be
shunned. This risk can be moved to the vendor,  if
he specifies payment after the document has been
deliver ed. If the user doesn’t pay, the vendor can no-
tify the broker and/or refuse the user further service.
For micropayments, users and vendors might find ei-
ther approach workable.

Efficiency
PayWord is designed to minimize the on-line com-
munication with brokers: the vendor does not need
to interact with the broker when a user first contacts
the vendor, nor is any interaction with the br oker
required as each payment is made. In PayW ord, the
communication per transition is also very efficient:
after the commitment, each payword is only 20 to
30 bytes long. Moreover,  the broker does not even
receive every payword spent, but only the l ast
payword spent by each user each day at each vendor.
PayWord is thus extr emely ef ficient when a user
makes r epeated r equests from the same vendor,  but
is quite effective in any case.

PayWord’s computational and storage re quir ements
are summarized below:

• The broker needs to sign each user certificate,
verify each user commitment, and perform one
hash function application per payment. (All these
computations are off-line.) The broker stores cop-
ies of user certificates and maintains accounts for
users and vendors.

• The user needs to verify her certificates, sign each
of her commitments, and perform one hash func-
tion application per payword committed to. (Only
signing commitments is an on-line computation.)
She needs to store her private key, her active com-
mitments, the corresponding payword chains, and
her current position in each chain.

• The vendor verifies all certificates and commit-
ments received, and performs one hash function
application per payword received or skipped over.
(All these computations are on-line.) The ven-
dor needs to store all commitments and the last
payment received per commitment each day.

MicroMint
Micr oMint intr oduces a new paradigm for repr esent-
ing electronic coins by “hash function collisions.” In
fact, it uses hash functions only without public-key
cryptography. Micr oMint has the pr operty that gen-
erating many coins is much cheaper, per coin gener-
ated, than generating few coins. A large initial in-
vestment is required to generate the first coin, but
then generating additional coins can be made pro-
gressively cheaper. This is similar to the economics
for a regular mint, which invests in a lot of expen-
sive machinery to make coins economically.

In a typical setting, a broker produces coins that are
valid for a given period (e.g., a month). The br oker
needs to invest in substantial hardware that gives
him a computational advantage over would-be forg-
ers, and run this hardware continuously for a month
to compute coins valid for the next month. New
coins are issued to users at the beginning of each
month. Users give valid coins to vendors as payment,
and vendors return coins collected to the broker at
their convenience (e.g., at the end of each day).

MicroMint coins as hash function collisions
MicroMint coins are represented by hash function
collisions, for some specified one-way hash function
h mapping m - bi t strings x t o n- bi t strings y.  A k- way
collision (k • 2) i s a set of k distinct x-values (x 1, x 2,
..., x k) that have the same hash value y.

W e fi rst give a brief review of the computation time
for finding hash function collision. Assume h acts
“randomly,” then the only way to pr oduce even a
single k -way collision is to hash about 2 n(k-1)/ k x-val-
ues and search for repeated outputs. (The case for 2-
way collisions is essentially the “birthday paradox.”)
However, if one examines c times this many x- val-
ues, for 1 < c < 2n/k, one expects to see about c k k-way
collisions. Hence, producing collisions can be done
increasingly efficiently, per coin generated, once the
first collision has been passed. Note that increasing
k has the dual effect of delaying the threshold at
which the first collision is seen, and also accelerat-
ing the rate of collision generation once the thresh-
old is passed.

W e thus let a k-way collision (x 1, x 2, ..., x k) represent
a coin. This coin can be easily verified by checking
that the x i’s are distinct and that
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h(x 1) = h(x 2) = ... = h(x k) = y

for some n- bi t string y.  Note that each coin is a bit-
string whose validity can be easily checked by any-
one, but which is hard to pr oduce. This is similar to
the requirements for a public-key signature, but the
complexity of the signature makes it an overkill for a
transaction whose value is only one cent.

The process of minting coins
The process of computing h(x)=y is analogous to toss-
ing a ball x at random into one of 2 n bins; the bin
which ball x ends up in is the one with index y.  A
coin is thus a set of k balls that have been tossed into
the same bin. Getting k balls into the same bin re-
quires tossing a substantial number of balls alto-
gether, since balls can not be “aimed”. To mint coins,
the broker will create 2n bins, toss approximately k2 n

balls, and create one coin from each bin that now
contains at least k  balls. In this way each ball has a
chance of roughly 1/2 of being part of a coin.

A small pr oblem in this basic picture, however,  is
that computation is much cheaper than storage. The
number of balls that can be tossed into bins in a long
computation far exceeds the number of balls that
can be memorized on a reasonable number of hard
disks. We thus propose to make most balls unusable
as part of a coin, in a manner that depends on the
hash value y.  To do so, we say that a ball x is “good”
if the high-order t  bits of the hash value y  have a
value z  specified by the br oker. More precisely, let
n = t + u. If the high-order t  b i ts of y are equal to z,
then y  is called “good,” and the low-order u bi ts of y
deter mine the index of the bin in which the (good)
ball x is tossed.

A proper choice of t  enables us to balance the com-
putational and storage r equir ements of the br oker.
This slows down the generation process by a factor of
2t, without slowing down the verification process. The
broker thus tosses approximately k2 n balls, memorizes
about k2 u good balls that he tosses into 2 u bins, and
generates from them about (1/2) ∞ 2u valid coins.

A typical scenario
Here is a sketch of how a typical broker might
choose the parameters (k , u, t, n) and make invest-
ment in hardware. We suppose that the br oker
wishes to have a net profit of $1 million per month,

and he charges a 10% brokerage fee to vendors for
redemption. Thus, the broker needs to sell one bil-
lion coins (approximately 2 30) per month to collect
his $1 million fee. (This requires a customer base of
500,000 if an average user buys 2,500 coins for $25
per month.)

The br oker first chooses k  = 4; a coin will be a good
4-way hash collision. He then chooses u = 31 (i .e.,
creates 231 bins), since this will allow him to create
about (1/2) ∞ 231 = 230 coins.

The broker chooses his hash function h(x) as the
encryption of some fixed value v with key x  under
DES, which can be implemented by so-called field-
programmable gate array chips. Each chip costs about
$400 and computes 2 25 values per second. Buying 2 8

of these chips costs the broker $100,000 and allows
him to compute about 2 54 values per month. Since
k = 4, the broker chooses n = 52 and t = 21. Storing
all good pairs (x, h(x)) requires less than 237 bytes,
and costs less than $40,000 using standard magnetic
hard disk technology. Hence, the total cost for the
broker’s hardware is less than $150,000, which is less
than 15% of the first month’s pro fit.

Selling coins, making payments, and redemption
At the beginning of each month, the broker either
reveals a new hash function h or changes the value z
for that month and sells coins to users. Such sales
can be on a debit basis or a credit basis, since the
broker can recognize coins when they are returned
to him for redemption. In a typical purchase, a user
might buy $25.00 worth of coins (2500 coins), and
charge the purchase to his credit card. The broker
keeps a record of which coins each user bought. Un-
used coins are returned to the broker at the end of
each month.

Each time a user purchases a web page, he gives the
vendor a previously unspent coin (x 1, x 2, ..., x k). The
vendor verifies that it is indeed a good k-way colli-
sion by computing k hash values. The vendor re-
turns the coins he has collected to the broker at the
end of each day. If the coin has not been pr eviously
returned, the broker pays the vendor one cent (mi-
nus any brokerage fee) for each coin. If a coin is
received more than once, the broker does not pay
more than once. Which vendor gets paid can be de-
cided arbitrarily or randomly by the br oker.
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Security analysis
W e believe that users and vendors will have little
motivation to cheat in order to gain only a few cents;
even if they do, the consequences are of no great
concern. Our security mechanisms are thus prima-
rily designed to discourage large-scale attacks, such
as massive forgery or persistent double-spending.

Forgery: Can an adversary forge MicroMint coins?
(Economically?) First, the computational difficulty
of minting coins makes small-scale forgery not re-
ally a concern. (For the parameter choice given
above, a forger would need to spend 80 years on a
standard workstation just to generate the first coin).
Second, large-scale forgers can be detected and
counter ed. In particular, coins “expire” monthly,
and the new hash function for each month is re-
vealed only at the beginning of that month. (The
broker works during May to make coins good for
June; forger only learns the hash function at the
beginning of June and so starts out way behind.)
Additional protection against forgery may be ob-
tained by restricting coins to satisfy “hidden predi-
cates” which are only announced if forgery is de-
tected by the br oker. For example, legitimate coins
may all satisfy condition that the low-order bit of x i

is equal to some complicated function of other bits.
Forger’s coins will typically not pass this additional
“verification condition”.

Double-spending: What if a user “double-spends” his
MicroMint coins? There is no “anonymity” in Micro-
Mint: the broker keeps track of whom each coin was
sold to and notes when it is r etur ned by vendor.
Small-scale double-spending is not a concern. A user
whose coins are consistently double-spent will be
caught and black-listed; he will not be sold any more
MicroMint coins.

Vendor fraud: What if a vendor gives copies of coins
received to an accomplice? Vendors who consistently
redeem coins that are also redeemed by other ven-
dors will be black-listed and refused further redemp-
tion service by the br oker. Users might cooperate
with the broker to identify bad vendors by identify-
ing where coins were first spent.

Theft of coins.  If theft of coins is judged to be a
problem during initial distribution to users or during
redemption by vendors, it is easy to transmit coins

in an encrypted form. Since user/broker and vendor/
broker relationships are relatively stable, long-term
encryption keys (e.g., DES keys) can be arranged.

To prevent theft of coins as they are being trans-
ferred from user to vendor, we can make coins user-
specific so that they are of no value to other users.
To produce such coins, we generalize the notion of a
“collision” to more complicated combinatorial struc-
tures which are related to the identity of a user and
can be easily checked during verification. The user-
specific coins can be further modified so that they
are vendor -specific as well,  making a stolen coin
even less desirable. Details of these extensions are in
the full version of the paper [7].

Conclusions
In this article we have presented two new micropay-
ment schemes which are exceptionally economical
in terms of the number of public-key operations em-
ployed. Furthermore, both schemes are off-line from
the point of view of the br oker. The area of
micropayments has attracted considerable attention
recently, and several resear chers have pr oposed re -
lated schemes (Millicent [4], NetBill [2], NetCard
[1], Pedersen’s tick payments [5], and a micropay-
ment scheme based on iKP [3], etc). More details
about our schemes and the relationships between the
various proposals are described and analyzed in the
full version of this extended abstract [7].
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There has recently been a lot of interest in the sub-
ject of authenticating information using crypto-
graphic hash functions like MD5 and SHA-1, par-
ticularly for Inter net security pr otocols. We  report
on our HMAC construction [1] which seems to be
gaining acceptance as a solution.

Introduction
Two parties communicating acr oss an insecure chan-
nel need a method by which any attempt to modify
the infor mation sent by one to the other,  or fake i ts
origin, is detected. Most commonly such a mecha-
nism is based on a shared key between the parties,
and in this setting is usually called a MAC, or Mes-
sage Authentication Code. (Other terms include In-
tegrity Check V alue or Cryptographic Checksum).
The sender appends to the data D an authentication
tag computed as a function of the data and the
shared key. At reception, the r eceiver recomputes
the authentication tag on the received message us-
ing the shared key, and accepts the data as valid
only if this value matches the tag attached to the
received message.

The most common approach is to construct MACs
from block ciphers like DES. Of such constructions
the most popular is the CBC MAC. (Its security is
analyzed in [4,12]). More  recently, however, people
have suggested that MACs might be constructed
from cryptographic hash functions like MD5 and

SHA-1. There  are several good r easons to attempt
this: In software these hash functions are signifi-
cantly faster than DES; library code is widely and
freely available; and there are no export restrictions
on hash functions.

Thus people seem agreed that hash function based
constructions of MACs are worth having. The more
difficult question is how best to do it. Hash func-
tions were not originally designed for message au-
thentication. (One of many difficulties is that they
are not even keyed primitives, i.e., do not accom-
modate naturally the notion of a secret key). Several
constructions were proposed prior to HMAC, but
they lacked a convincing security analysis.

The HMAC construction is intended to fill this gap.
It has a performance which is essentially that of the
underlying hash function. It uses the hash function
in a black box way so that it can be implemented
with available code, and also replacement of the hash
function is easy should need of such a replacement
arise due to security or performance reasons. Its main
advantage, however, is that it can be proven secure
provided the underlying hash function has some rea-
sonable cryptographic strengths. The security fea-
tures can be summarized like this: if HMAC fails to
be a secure MAC, it means there are sufficient weak-
nesses in the underlying hash function that it needs
to be dropped not only from this particular usage but
also from a wide range of other popular usages to
which it is now subject.

Several articles in the literature survey existing con-
structions, their properties, and some of their weak-
nesses, so we will not try to do this again here. In
particular the reader is referred to Tsudik [17], who
provides one of the earliest works on the subject;
Kaliski and Robshaw who, in the first CryptoBytes
[8], compare various possible constructions; updates
appearing in succeeding issues of CryptoBytes; and
Preneel and van Oorschot [12,13], who present a de-
tailed description of the effect of birthday attacks on
“iterated constructions” and also a new construction
called MDx-MAC.

W e now move on to discuss the HMAC construc-
tion, status, and rationale. For a complete descrip-
tion, implementation guidelines, and detailed analy-
sis we refer the reader to [1,9].

The HMAC Construction

Mihir Bellare is an assistant professor at UCSD. He can be con-
tacted at mihir@cs.ucsd.edu. Ran Canetti is a post-doctoral fellow
at MIT and can be contacted at canetti@theory.lcs.mit.edu. Hugo
Krawczyk is a member of the Network Security Group at IBM.
He can be contacted at hugo@watson.ibm.com.
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HMAC
Let H be the hash function. For simplicity of descrip-
tion we may assume H to be MD5 [15] or SHA-1
[16]; however the construction and analysis can be
applied to other functions as well (see below). H
takes inputs of any length and pr oduces an l -bi t out-
put (l =128 for MD5 and l =160 for SHA-1). Let Te xt
denote the data to which the MAC function is to
be applied and let K be the message authentication
secret key shared by the two parties. (It should not
be larger than 64 bytes, the size of a hashing block,
and, i f shorter,  zeros are appended to bring its length
to exactly 64 bytes.) We further define two fixed
and different 64 byte strings i pad and o pad as fol-
lows (the “ i” and “o” are mnemonics for inner and
outer):

ipad = the byte 0x36 repeated 64 times

opad = the byte 0x5C repeated 64 times.

The function HMAC takes the key K and Te xt, and
produces:

H M A CK(Text)  = H (K ≥ opad, H(K ≥ ipad, Te xt))

Namely,
1. Append zeros to the end of K to create a 64 byte

string
2. XOR (bitwise exclusive-OR) the 64 byte string

computed in step (1) with ipad
3. Append the data str eam Text to the 64 byte string

resulting from step (2)
4. Apply H to the stream generated in step (3)
5. XOR (bitwise exclusive-OR) the 64 byte string

computed in step (1) with opad
6. Append the H result from step (4) to the 64 byte

string resulting from step (5)
7. Apply H  to the stream generated in step (6) and

output the result

The recommended length of the key is at least l  bits.
A longer key does not add significantly to the secu-
rity of the function, although it may be advisable if
the randomness of the key is considered weak.

HMAC optionally allows truncation of the final out-
put say to 80 bits.

As a result we get a simple and efficient construc-
tion. The overall cost for authenticating a stream

Text is close to that of hashing that str eam, espe-
cial ly as Text gets large. Furthermore, the hashing of
the padded keys can be precomputed for even im-
proved eff iciency.

Note HMAC uses the hash function H  as a black
box. No modifications to the code for H are required
to implement HMAC. This makes it easy to use li-
brary code for H , and also makes it easy to replace a
particular hash function, such as MD5, with another,
such as SHA-1, should the need to do this arise.

HMAC was recently chosen as the mandatory-to-
implement authentication transform for the Internet
security protocols being designed by the IPSEC work-
ing group of the IETF (it replaces as a mandatory
transform the one described in [10]). For this purpose
HMAC is described in the Internet Draft [9], and in
an upcoming RFC. Other Internet protocols are
adopting HMAC as well (e.g., s-http [14], SSL [7]).

The rationale
W e now briefly explain some of the rationale used
in [1] to justify the HMAC construction.

As we indicated above, hash functions were not
originally designed to be used for message authenti-
cation. In particular they are not keyed primitives,
and it is not clear how best to “key” them. Thus, one
ought to be quite careful in using hash functions to
build MACs.

The standard approach to security evaluation is to
look for attacks on a candidate MAC construction.
When practical attacks can be found, their effect is
certainly conclusive: the construction must be
dropped. The difficulty is when attacks are not yet
found. Should one adopt the construction? Not clear,
because attacks might be found in the future.

The maxim that guided the HMAC construction was
that an absence of attacks today does not imply security
for the future. A better way must be found to justify
the security of a construction before adopting it.

You can’t make good wine from bad grapes: if no
strengths are assumed of the hash function, we can’t
hope to justify any construction based on it. Accord-
ingly it is appropriate to make some assumptions on
the strength of the hash function.
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A well justified MAC construction, in our view, is
one under which the security of the MAC can be
related as closely as possible to the (assumed) secu-
rity properties of the underlying hash function.

The assumptions on the security of the hash func-
tion should not be too strong, since after all not
enough confidence has been gathered in current can-
didates (like MD5 or SHA-1). In fact, the weaker
the assumed security properties of the hash function,
the stronger the resultant MAC construction is.

W e make assumptions that r eflect the more stan-
dard existing usages of the hash function. The prop-
erties we require are mainly collision-freeness and
some limited “unpr edictability.” What is shown is
that if the hash function has these properties the
MAC is secure; the only way the MAC could fail is
if the hash function fails.

In fact the assumptions we make are in many ways
weaker than standard ones. In particular we require
only a weak form of collision-resistance. Thus it is
possible that H  is broken as a hash function (for ex-
ample collisions are found) and yet HMAC based
on H  survives.

A closer look
Security of the MAC means security against forg-
ery. The MAC is considered br oken if an attacker,
not having the key K, can find some text Te xt to-
gether with its corr ect MAC value HMAC K(Text).
The attacker is assumed able to gather some num-
ber of example pairs of texts and their valid MACs
by observing the traffic between the sender and the
receiver. Indeed the adversary is even allowed a cho-
sen message attack under which she can influence
the choice of messages for which the sender com-
putes MACs. Following [4,3] we quantify security in
terms of the probability of successful forgery under
such attacks.

The analysis of [1] applies to hash functions of the
iterated type, a class that includes MD5 and SHA-1,
and consists of hash functions built by iterating ap-
plications of a compression function f  according to
the procedure of Merkle [11] and Damgård [5]. (In
this construction an l -bit initial variable IV is fixed,
and the output of H  on text x is computed by break-
ing x into 512-bit blocks and hashing in stages using

f, in a simple way that the reader can find described
in many places, e.g. [8].)

Roughly what [1] says is that an attacker who can
forge the HMAC function can, with the same effort
(time and collected information), br eak the under-
lying hash function in one of the following ways:

1. The attacker finds collisions in the hash func-
tion even when the IV is random and secret, or

2. The attacker is able to compute an output of the
compression function even with an IV that is
random, secret and unknown to the attacker.
(That is, the attacker is successful in forging with
respect to the application of the compression
function secretly keyed and viewed as a MAC
on fixed length messages.)

The feasibility of any of these attacks would contra-
dict some of our basic assumptions about the crypto-
graphic strength of these hash functions. Success in
the first of the above attacks means success in find-
ing collisions, the prevention of which is the main
design goal of cryptographic hash functions, and thus
can be assumed hard to do. But in fact, even more is
true: success in the first attack above is even harder
than finding collisions in the hash function, because
finding collisions when the IV is secret (as is the
case here) is far more difficult than finding colli-
sions in the plain (fixed IV) hash function. This is
because the former requires interaction with the le-
gitimate user of the function (in order to generate
pairs of input/outputs from the function), and disal-
lows the parallelism of traditional birthday attacks.
Thus, even if the hash function is not collision-free
in the traditional sense, our schemes could be secure.

Some “randomness” of hash functions is assumed in
their usage for key generation and as pseudo-random
generators. (For example the designers of SHA-1 sug-
gested that SHA-1 be used for this purpose [6].) Ran-
domness of the function is also used as a design meth-
odology towards achieving collision-r esistance. The
success of the second attack above would imply that
these randomness properties of the hash functions
are poor.

The analyses in [1] used to establish the above are
exact (no asymptotics involved), consider generic
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rather than particular attacks, and establish a t ight
relationship between the securities.

Resistance to known attacks
As shown in [12,2], birthday attacks, that are the
basis to finding collisions in cryptographic hash func-
tions, can be applied to attack also keyed MAC
schemes based on iterated functions (including also
CBC-MAC, and other schemes). These attacks ap-
ply to most (or all) of the proposed hash-based con-
structions of MACs. In particular, they constitute
the best known forgery attacks against the HMAC
construction.

Consideration of these attacks is important since
they strongly improve on naive exhaustive search
attacks. However, their practical relevance against
these functions is negligible given the typical hash
lengths like 128 or 160. Indeed, these attacks re-
quire the collection of the MAC value (for a given
key) on about 2 l/2 messages (where l  is the length of
the hash output). For values of l • 128 the attack
becomes totally infeasible. In contrast to the birth-
day attack on key-less hash functions, the new at-
tacks require interaction with the key owner to pro-
duce the MAC values on a huge number of mes-
sages, and then allow for no parallelization. For ex-
ample, when using MD5 such an attack would re-
quire the authentication of 2 64 blocks (or 273 bi ts) of
data using the same key. On a 1 Gbit/sec communi-
cation link, one would need 250,000 years to pro-
cess all the data required by such an attack. This is
in sharp contrast to birthday attacks on key-less hash
functions which allow for far more efficient and
close-to-realistic attacks [18].
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A N N O U N C E M E N T S

Sessions will be informal and relaxed and at-
tendees, who might perhaps see a different side
to cryptographic technology, will be encouraged
to ask questions and comment on the direction
of current research.

It is not often clear how much interaction takes
place across what can sometimes be a signifi-
cant division between academic specialists and
the practitioners of cryptographic techniques.
Our aim is to provide a forum within which
both parties involved in the development of
cryptography can meet to exchange ideas and
views on both current knowledge and the po-
tential for future advances.

More complete details about the 1996 RSA
Laboratories Seminar Series will be available
soon and made available on the World-Wide
W eb at http://www.rsa.com/rsalabs/. In the
meantime more information can be obtained
by contacting RSA Laboratories by any of the
means given on the inside front cover.

The 1996 RSA Laboratories
Seminar Series

RSA Laboratories is pleased to announce pre-
liminary details of the 1996 RSA Laboratories
Seminar Series which will be held on August
15 and 16 in Palo Alto, California. (The an-
nual Crypto conference will be held the fol-
lowing week in Santa Barbara, California.)

The aim of the Seminar Series, as in previous
years, is to provide a bridge between academics
who devise and analyze cryptographic technol-
ogy and practitioners who are involved in ac-
tually implementing and integrating this tech-
nology into pr oducts.

This year we intend to use the Seminar Series
to provide a snapshot of the state of crypto-
graphic research and its relation to the practi-
cal world. Invited speakers will address issues
in a variety of cryptographic fields and provide
an assessment of what the future might hold.

For contact and

distribution

information, see

page 2 of this

newsletter.


