

More About

Bulletins

<u>Challenges</u>

Crypto FAQ

<u>CryptoBytes</u>

RSA Algorithm

PKCS

Advanced Encryption Standard

Tech Notes

Staff & Associates
Standards

Members Login | E-mail This Page | Site Map | Content Library | Search

Company Products Services Training Partners Worldwide Contact

RSA Security Home > RSA Laboratories > Tech Notes > TWIRL and RSA Key Size

TWIRL and RSA Key Size

Burt Kaliski, RSA Laboratories Revised May 6, 2003

Executive Summary

The popular 1024-bit key size for RSA keys is becoming the next horizon for researchers in inte factorization, as demonstrated by the innovative "TWIRL" design recently proposed by Adi Shar Tromer. The design confirms that the traditional assumption that a 1024-bit RSA key provides constrength to an 80-bit symmetric key has been a reasonable one. Thus, if the 80-bit security level appropriate for a given application, then TWIRL itself has no immediate effect. Many details rem worked out, however, and the cost estimates are inconclusive. TWIRL provides an opportunity f key sizes in practice; RSA Laboratories' revised recommendations are given in Table 1 below.

Introduction

The security of RSA keys of particular sizes has been of theoretical and practical importance for due both to the academic interest in the underlying problem of *integer factorization* and the wide such keys for data security. Various estimates of the security for different key sizes have been c based both on experimental evidence and extrapolations. This has helped to establish recomme minimum key sizes, just as with other algorithms.

One result of the work on RSA key sizes is the traditional comparison, found in many standards of 1024-bit RSA keys to 80-bit symmetric keys. This comparison helps to harmonize key size ar selections. If an application requires security greater than or equal to that provided by 80-bit syn then appropriate choices for that application would include algorithms such as triple-DES (112-t (128-bit or greater keys), SHA-1 (160-bit hash value with 80-bit security against collisions), and among other algorithms. (See Note 1). Such a comparison has recently been documented in the schedule proposed by NIST [NIST03].

For a rough estimate for the security of 80-bit symmetric keys, one may consider the 1996 reporsymmetric key sizes by Matt Blaze *et al.* [BDR+96]. The report estimates that using 1996 technomillion machine could search for a single 56-bit DES key in six minutes. Applying Moore's Law to speed per dollar doubles every eighteen months, a machine with the same cost would take about oday. An 80-bit key search today (assuming the same complexity per key as DES) would take a longer, or about seven years, a figure that is also in line with data in the NSA report on AES har [WBRF00] updated for present technology (see Note 2).

Arjen Lenstra and Eric Verheul's methodical estimates [LV01] give quite similar results for the set 1024-bit RSA keys. In one model, they project that in the year 2009, a machine costing about \$2 could factor a 1024-bit RSA key in a day — so a \$10 million machine would take just under a method to the year 2003 requires one to "undo" eight doublings, four due to Moore's ledue to anticipated improvements in methods for integer factorization. The \$10 million machine wabout 18 years today under this model. In the year 2006, a machine with this cost would take just year.

The comparison of 1024-bit RSA keys with 80-bit symmetric keys has so far been based on rou extrapolations of the running times for smaller keys. It has generally minimized the impact of oth such as memory size, which can become substantial as RSA key sizes increase, particularly in implementations [Sil01]. Moreover, the previous estimates have primarily focused on software implementations, with limited attention to hardware speedups. Recent research has thus aimed the cost of a hardware implementation more accurately, taking into account all these factors.

TWIRL

TWIRL is an acronym for The Weizmann Institute Relation Locator, a new hardware design for i

factorization developed by Shamir and Tromer [ST03]. Like most approaches to factoring gener is based on the Number Field Sieve, which consists of two steps:

- Sieving step (a.k.a. "relation location"): searching a large sieving region for relations with factor base
- Matrix step: solving for a linear dependency among the relations, which yields the factor key

The sieving step is the bulk of the work in the Number Field Sieve. (The matrix step has been sprevious research involving the same authors, and there are still some other aspects of sieving overall factorization process that need to be considered, but an improvement in the sieving step enabler to faster factorization.)

Shamir and Tromer estimate that using TWIRL, one could complete the entire sieving step for a key in less than a year with only \$10 million worth of hardware. They also give a more conserva that they estimate would cost \$50 million.

The primary reason for the impressive performance claimed for TWIRL is a remarkably clever h design. In traditional software-based sieving, the CPU does all the work while the memory is idle time. Motivated by Daniel Bernstein's recommendation to replace memory with active processor implementations of integer factorization [Ber01], TWIRL lets the memory (augmented with some work. TWIRL is thus able to exploit very effectively the massive parallelism inherent in the sievir leading to a factor of 1000 or more performance improvement in addition to the ordinary speedu expect by switching to custom hardware (see Note 3). The hardware design of course requires 1 by hardware designers and researchers in integer factorization, but seems plausible at this stag significant engineering challenge.

The cost and time estimates given in the TWIRL paper, however, are based on simple extrapolathe paper acknowledges are "ferocious" — not precise analysis or actual experimental data. The employs a new tradeoff between the size of the factor base and the size of the sieving region, or also apply (if correct) to software-based implementations. The tradeoff is crucial, because althout amount of searching in the sieving step grows in proportion to the size of the sieving region, the sieving circuit depends on the size of the factor base. Such tradeoffs are notoriously difficult to a there are so many parameter choices in the Number Field Sieve. Further research is needed to whether the estimates are correct, and it is possible that the correct sizes will be significantly higher true for both the \$10 million and the more conservative \$50 million designs. (Some initial resear these lines was just posted by Lenstra et al. [LDHL03].)

Since a full implementation of the Number Field Sieve requires more than just sieving circuits, a "ferocious" size estimates in TWIRL may be optimistic, the cost of actual hardware based on the design is probably higher than the initial \$10 million / \$50 million estimates. However, further impare certainly possible over time. The cost of such a machine, assuming one could be built over the years, therefore might not be far from the expectation for the 80-bit symmetric security level whe machine is built. In this sense, TWIRL may be viewed as an affirmation of both the 80-bit security Lenstra and Verheul's projection about what might be possible as both hardware speed and intefactorization methods improve.

Significantly shorter keys such as the historic 512-bit RSA key size are essentially compromised not already overcome by previous methods). Longer keys, in particular 2048-bit keys, still provide significant security margin as both the sieving region and the factor base are substantially larger. The TWIRL paper does not give any estimates for 2048-bit RSA keys, and an accurate estimate analysis similar to what remains to be done for 1024-bit keys. Previous work based on running to suggests that 2048-bit keys are about 2³² times harder than 1024-bit RSA keys, i.e., at the 112-level.

Since TWIRL confirms the presumed 80-bit security level for such keys, if the 80-bit security lev appropriate for a given application, then TWIRL itself has no immediate effect. But if one were c extra security margin for 1024-bit RSA keys beyond the 80-bit security level, that expectation had iminished.

Over time, it should be assumed that machines like TWIRL will be built, and that the performanc machines may improve as further optimizations are found. Thus, the 1024-bit RSA key size will longer be sufficient, just like the key sizes that preceded it (56-bit symmetric, 512-bit RSA, etc.) question is when to make a transition to larger key sizes.

Key Size Recommendations

RSA Laboratories has from time to time provided key size recommendations, primarily for the R Eight years ago, in the <u>Summer 1995 issue of *CryptoBytes*</u>, we recommended a minimum key s for user keys, 1024 bits for enterprise keys and 2048 bits for root keys, a practice that has been reflected in the industry with the exception of legacy support for "exportable" key sizes such as ! These recommendations were made without any specific "lifetime" for the data, so would need t periodically. Our current recommendation, consistent with industry standards, is a minimum of 1 general data, but again without any specific lifetime.

NIST's recently proposed schedule of key sizes does take into account the lifetime of the data, a next several decades [NIST03]. The schedule, still a draft, suggests that the 80-bit security leve RSA keys) is appropriate for protecting data through the year 2015, and that the 112-bit security appropriate through the year 2035. (See Note 5).

Assuming that Moore's Law continues to hold for eight more generations, and starting with estin on the Blaze *et al.* report above, it would take a \$10 million machine 10 days with year 2015 tec search for an 80-bit key — which even in 2015 should still be a lot of money for most keys. How keys will have greater value, and key size recommendations have a history of taking longer to b embraced than one might prefer (consider the lengthy process of upgrading DES). Accordingly, transition would seem prudent, consistent with the higher security level of 90 bits encouraged by *al.* report [BDR+96] for protecting data through that time period.

The next level in NIST's schedule is the 112-bit security level, matching triple-DES encryption. I 112-bit security level in concrete terms, some simple calculations may be done. Starting with the for 80-bit key search today, a 112-bit key search today on a \$10 million machine would take above above above with the same cost in the year 2030 — 18 generations from now — would take 100,000 years to do a 112-bit key search. (There is clearly dispute over whether Moore's Law w long, so this is only a starting point for analysis.)

Taking the previously established correspondence between 2048-bit RSA keys and the 112-bit as a starting point, one may assume that a "future TWIRL" in 2030 would likewise take 100,000 factor a 2048-bit RSA key. It could take more time, due to the larger circuit size. More likely, it w less, as there may be further improvements in integer factorization. Conservatively applying Ler Verheul's "law", i.e., incorporating 18 "generations" of such improvements, a \$10 million "future" year 2030 would take about five months to factor a 2048-bit RSA key. This brings us essentially TWIRL's initial claims for 1024-bit RSA keys today.

The 112-bit security level is somewhat higher than needed now, but it is convenient since triple-already widely implemented, and the 2048-bit RSA key size key size is convenient as it is alread for root keys. In the recent NESSIE recommendations [NESSIE03], a minimum of 1536 bits is SIRSA signature keys. This may be an appropriate interim measure, but due to the lengthy procest upgrading key sizes, 2048 bits is a better goal. Based on these considerations, RSA Laboratoric following recommendations for key sizes:

Protection Lifetime of Data	Present – 2010	Present – 2030	Present – 2031
Minimum symmetric security level	80 bits	112 bits	128 bits
Minimum RSA key size	1024 bits	2048 bits	3072 bits

Table 1. Recommended minimum symmetric security levels and RSA key sizes based on prote

These recommendations are similar to NIST's proposed schedule except that the transitions to sizes are in the years 2010 and 2030. As that schedule is further developed based on input fron research community, these recommendations may need to be updated accordingly. Moreover, t recommendations are general minimums. A larger minimum may well be appropriate for enterpr keys, a distinction that is already reflected in practice through the common use of 2048-bit root I

Conclusion

TWIRL confirms that the 80-bit security level has been a reasonable assumption for 1024-bit R\$ serves as a reminder that 80-bit security will not last indefinitely. If the industry has learned anyt key size over recent years, it's that we need to plan ahead for transitions. A transition toward the security level and larger RSA keys is recommended over the remainder of this decade. When the 1024-bit RSA keys is finally reached, such keys will hopefully already be in the past.

NOTES

- 1. In NIST's schedule, and as a general principle, the choice of RSA key size and the choic symmetric algorithms are independent, both being driven by the desired security level. A key may be used with a 1024-bit RSA key if the 80-bit security level is adequate for an all since both choices meet or exceed that security level. Similarly a 128-bit AES key may b 2048-bit RSA key if the 112-bit security level is adequate. A 128-bit AES key does not rebit RSA key.
- 2. The smaller of the pipelined Rijndael implementations developed by NSA during the AES [WBRF00] requires about 4 million transistors and occupies an area of about 300mm². (If the algorithm subsequently selected for the AES.) The implementation achieves a throug about 4 Gbit/second or 32 million encryptions/second. With the same wafer technology a the implementation would occupy an area of about 10mm² and would thus run about 30 (using the rule of thumb that clock speed is inversely proportional to feature area). A sing search circuit using this technology would thus presumably have a throughput of nearly 1 encryptions/second. Key setup is a relatively small overhead in this Rijndael circuit, so th rate should be similar.

Each of the 600 wafers in the \$10 million TWIRL budget is capable of holding about 7000 key search units. The 600 wafers could thus search about 2^{52} keys/second or 2^{77} keys/y Applying the \$50 million figure for the more conservative TWIRL budget, the comparable space would be nearly 2^{80} .

- 3. Interestingly, each sieving circuit in TWIRL takes roughly the same amount of silicon as a XeonTM processor [Intel] plus 1Gbyte memory, yet searches perhaps 20,000 times faste software on that processor would due to the parallelism and the custom hardware. Custo generally gives a significant speedup consider the difference between the DES Cracki ordinary PCs but TWIRL's speedup is even more dramatic because of the inherent pathe sieving step.
- 4. Alternate designs for sieving circuits whose size does not depend on the size of the factor revisited recently by Bernstein [Ber01]. Such circuits hold promise for very large key size clear yet if they have any benefit for key sizes of current interest. Further work along thes warranted in assessing the cost of factoring 2048-bit and larger RSA keys.
- 5. "Through the year Y" means that the protection of the particular data is needed through t encryption, this means that an application needs the assurance it will be infeasible to dec messages that have been encrypted with a given public key through year Y. For signatur means that it will be infeasible to forge signatures that can be verified with a given public that year. In many cases a much shorter lifetime is adequate. For instance, in network at with an ephemeral signature key, the only assurance required is that it should be infeasit signatures before the signature key expires (i.e., the adversary has only a few hours tota obviously will not suddenly become insecure at any given year, but instead their strength erode over time.

[Ber01] Daniel Bernstein. Circuits for Integer Factorization: A Proposal. November 9, 200 via http://cr.yp.to/papers.html.

[BDR+96] M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson and M. Minimal Key Lengths for Symmetric Ciphers to Provide Adequate Commercial S Report of ad hoc panel of cryptographers and computer scientists, January 1996 via http://www.crypto.com/papers/.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. *Journal Cryptology* 14(4):255–293, 2001. Available via

http://citeseer.nj.nec.com/lenstra99selecting.html.

[Intel] Intel Corporation. Intel® Microprocessor Quick Reference Guide. http://www.intel.com/pressroom/kits/quickreffam.htm.

[LDHL03] Arjen K. Lenstra, Bruce Dodson, James Hughes and Paul Leyland. *Factoring Es* 1024-bit RSA Modulus. April 28, 2003. Available via http://www.ecstr.com/.

[NESSIE03] NESSIE Consortium. *Portfolio of Recommended Cryptographic Primitives*. Febru 2003. Available via http://www.cryptonessie.org/.

[NIST03] NIST. Special Publication 800-57: Recommendation for Key Management. Part Guideline. Draft, January 2003. Available via http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html.

[ST03] Adi Shamir and Eran Tromer. Factoring Large Numbers with the TWIRL Device. February 9, 2003. Available via http://www.wisdom.weizmann.ac.il/~tromer.

[Sil01] Robert D. Silverman. A Cost-Based Security Analysis of Symmetric and Asymmolecular Lengths. RSA Laboratories Bulletin #13. Revised November 2001. Available at http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html.

[WBRF00] Bryan Weeks, Mark Bean, Tom Rozylowicz, and Chris Ficke. *Hardware Perform Simulations of Round 2 Advanced Encryption Standard Algorithms*. May 15, 200 via http://csrc.nist.gov/CryptoToolkit/aes/round2/r2anlsys.htm.

REVISION HISTORY

May 1, 2003: Initial version

May 6, 2003: Added reference to [LDHL03]

United States: 1-877-RSA-4900 or 781 515 5000, Europe, Middle East, Africa: +44 (0)1344 781000, Asia/Pacific: + 61 2 9463 8400, Japan: +81 3 5222 5200

Home | Contact Us | Search | Site Map | Terms of Use and Privacy Statement

© Copyright 2003 RSA Security Inc. - all rights reserved.

Reproduction of this Web Site, in whole or in part, in any form or medium without express written permission from RSA Security is prohibited.

RSA, Keon, SecurID, ClearTrust and BSAFE are either registered trademarks or trademarks of RSA Security Inc. in the United States and/or other countries.

All other products and services mentioned are trademarks of their respective companies.