
High-Speed RSA Implementation

C�etin Kaya Ko�c

Koc@ece.orst.edu

RSA Laboratories

RSA Data Security, Inc.

100 Marine Parkway, Suite 500

Redwood City, CA 94065-1031

Copyright c RSA Laboratories

Version 2.0 { November 1994

Contents

Preface 1

1 The RSA Cryptosystem 3

1.1 The RSA Algorithm . 3
1.2 Exchange of Private Messages . 5
1.3 Signing Digital Documents . 5
1.4 Computation of Modular Exponentiation . 6

2 Modular Exponentiation 9

2.1 Modular Exponentiation . 9
2.2 Exponentiation . 9
2.3 The Binary Method . 10
2.4 The m-ary Method . 11

2.4.1 The Quaternary Method . 12
2.4.2 The Octal Method . 13

2.5 The Adaptive m-ary Methods . 15
2.5.1 Reducing Preprocessing Multiplications 15
2.5.2 The Sliding Window Techniques . 16
2.5.3 Constant Length Nonzero Windows 17
2.5.4 Variable Length Nonzero Windows 18

2.6 The Factor Method . 20
2.7 The Power Tree Method . 21
2.8 Addition Chains . 22
2.9 Vectorial Addition Chains . 23
2.10 Recoding Methods . 24

2.10.1 The Booth Algorithm and Modi�ed Schemes 26
2.10.2 The Canonical Recoding Algorithm 27
2.10.3 The Canonical Recoding m-ary Method 29
2.10.4 Recoding Methods for Cryptographic Algorithms 31

3 Modular Multiplication 33

3.1 Modular Multiplication . 33
3.2 Standard Multiplication Algorithm . 34

i

ii Contents

3.3 Karatsuba-Ofman Algorithm . 36
3.4 FFT-based Multiplication Algorithm . 38
3.5 Squaring is Easier . 40
3.6 Computation of the Remainder . 42

3.6.1 Restoring Division Algorithm . 42
3.6.2 Nonrestoring Division Algorithm . 43

3.7 Blakley's Method . 45
3.8 Montgomery's Method . 46

3.8.1 Montgomery Exponentiation . 48
3.8.2 An Example of Exponentiation . 48
3.8.3 The Case of Even Modulus . 50
3.8.4 An Example of Even Modulus Case 51

4 Further Improvements and Performance Analysis 53

4.1 Fast Decryption using the CRT . 53
4.2 Improving Montgomery's Method . 57
4.3 Performance Analysis . 61

4.3.1 RSA Encryption . 62
4.3.2 RSA Decryption without the CRT 63
4.3.3 RSA Decryption with the CRT . 63
4.3.4 Simpli�ed Analysis . 64
4.3.5 An Example . 65

Bibliography 70

Preface

This report is written for people who are interested in implementing modular exponentiation
based cryptosystems. These include the RSA algorithm, the Di�e-Hellman key exchange
scheme, the ElGamal algorithm, and the recently proposed Digital Signature Standard (DSS)
of the National Institute for Standards and Technology. The emphasis of the report is on
the underlying mathematics, algorithms, and their running time analyses. The report does
not include any actual code; however, we have selected the algorithms which are particularly
suitable for microprocessor and signal processor implementations. It is our aim and hope
that the report will close the gap between the mathematics of the modular exponentiation
operation and its actual implementation on a general purpose processor.

1

2 Preface

Chapter 1

The RSA Cryptosystem

1.1 The RSA Algorithm

The RSA algorithm was invented by Rivest, Shamir, and Adleman [41]. Let p and q be two
distinct large random primes. The modulus n is the product of these two primes: n = pq.
Euler's totient function of n is given by

�(n) = (p� 1)(q � 1) .

Now, select a number 1 < e < �(n) such that

gcd(e; �(n)) = 1 ,

and compute d with

d = e�1 mod �(n)

using the extended Euclidean algorithm [19, 31]. Here, e is the public exponent and d is
the private exponent. Usually one selects a small public exponent, e.g., e = 216 + 1. The
modulus n and the public exponent e are published. The value of d and the prime numbers
p and q are kept secret. Encryption is performed by computing

C =M e (mod n) ,

where M is the plaintext such that 0 � M < n. The number C is the ciphertext from which
the plaintext M can be computed using

M = Cd (mod n) .

The correctness of the RSA algorithm follows from Euler's theorem: Let n and a be positive,
relatively prime integers. Then

a�(n) = 1 (mod n) .

3

4 The RSA Cryptosystem

Since we have ed = 1 mod �(n), i.e., ed = 1 +K�(n) for some integer K, we can write

Cd = (M e)d (mod n)

= M ed (mod n)

= M1+K�(n) (mod n)

= M � (M�(n))K (mod n)

= M � 1 (mod n)

provided that gcd(M;n) = 1. The exception gcd(M;n) > 1 can be dealt as follows. Accord-
ing to Carmichael's theorem

M�(n) = 1 (mod n)

where �(n) is Carmichael's function which takes a simple form for n = pq, namely,

�(pq) =
(p� 1)(q � 1)

gcd(p� 1; q � 1)
.

Note that �(n) is always a proper divisor of �(n) when n is the product of distinct odd
primes; in this case �(n) is smaller than �(n). Now, the relationship between e and d is
given by

M ed =M (mod n) if ed = 1 (mod �(n)) .

Provided that n is a product of distinct primes, the above holds for allM , thus dealing with
the above-mentioned exception gcd(M;n) > 1 in Euler's theorem.

As an example, we construct a simple RSA cryptosystem as follows: Pick p = 11 and
q = 13, and compute

n = p � q = 11 � 13 = 143 ,
�(n) = (p� 1) � (q � 1) = 10 � 12 = 120 .

We can also compute Carmichael's function of n as

�(pq) =
(p� 1)(q � 1)

gcd(p� 1; q � 1)
=

10 � 12
gcd(10; 12)

=
120

2
= 60 .

The public exponent e is selected such that 1 < e < �(n) and

gcd(e; �(n)) = gcd(e; 120) = 1 .

For example, e = 17 would satisfy this constraint. The private exponent d is computed by

d = e�1 (mod �(n))

= 17�1 (mod 120)

= 113

which is computed using the extended Euclidean algorithm, or any other algorithm for
computing the modular inverse. Thus, the user publishes the public exponent and the
modulus: (e; n) = (13; 143), and keeps the following private: d = 113, p = 11, q = 13. A
typical encryption/decryption process is executed as follows:

The RSA Cryptosystem 5

Plaintext: M = 50
Encryption: C :=M e (mod n)

C := 5017 (mod 143)
C = 85

Ciphertext: C = 85
Decryption: M :=Md (mod n)

M := 85113 (mod 143)
M = 50

1.2 Exchange of Private Messages

The public-key directory contains the pairs (e; n) for each user. The users wishing to send
private messages to one another refer to the directory to obtain these parameters. For
example, the directory might be arranged as follows:

User Public Keys

Alice (ea; na)
Bob (eb; nb)
Cathy (ec; nc)
� � � � � �

The pair na and ea respectively are the modulus and the public exponent for Alice. As an
example, we show how Alice sends her private message M to Bob. In our simple protocol
example Alice executes the following steps:

1. Alice locates Bob's name in the directory and obtains his public exponent and the
modulus: (eb; nb).

2. Alice computes C :=M eb (mod nb).

3. Alice sends C to Bob over the network.

4. Bob receives C.

5. Bob uses his private exponent and the modulus, and computes M = Cdb (mod nb)
in order to obtain M .

1.3 Signing Digital Documents

The RSA algorithm provides a procedure for signing a digital document, and verifying
whether the signature is indeed authentic. The signing of a digital document is somewhat
di�erent from signing a paper document, where the same signature is being produced for all
paper documents. A digital signature cannot be a constant; it is a function of the digital

6 The RSA Cryptosystem

document for which it was produced. After the signature (which is just another piece of
digital data) of a digital document is obtained, it is attached to the document for anyone
wishing the verify the authenticity of the document and the signature. Here we will briey
illustrate the process of signing using the RSA cryptosystem. Suppose Alice wants to sign a
message, and Bob would like to obtain a proof that this message is indeed signed by Alice.
First, Alice executes the following steps:

1. Alice takes the message M and computes S =Mda (mod na).

2. Alice makes her message M and the signature S available to any party wishing to
verify the signature.

Bob executes the following steps in order to verify Alice's signature S on the document M :

1. Bob obtainsM and S, and locates Alice's name in the directory and obtains her public
exponent and the modulus (ea; na).

2. Bob computes M 0 = Sea (mod na).

3. If M 0 =M then the signature is veri�ed. Otherwise, either the original message M or
the signature S is modi�ed, thus, the signature is not valid.

We note that the protocol examples given here for illustration purposes only | they are
simple `textbook' protocols; in practice, the protocols are somewhat more complicated. For
example, secret-key cryptographic techniques may also be used for sending private messages.
Also, signing is applied to messages of arbitrary length. The signature is often computed
by �rst computing a hash value of the long message and then signing this hash value. We
refer the reader to the report [42] and Public Key Cryptography Standards [43] published
by RSA Data Security, Inc., for answers to certain questions on these issues.

1.4 Computation of Modular Exponentiation

Once an RSA cryptosystem is set up, i.e., the modulus and the private and public exponents
are determined and the public components have been published, the senders as well as the re-
cipients perform a single operation for signing, veri�cation, encryption, and decryption. The
RSA algorithm in this respect is one of the simplest cryptosystems. The operation required is
the computation of M e (mod n), i.e., the modular exponentiation. The modular exponen-
tiation operation is a common operation for scrambling; it is used in several cryptosystems.
For example, the Di�e-Hellman key exchange scheme requires modular exponentiation [8].
Furthermore, the ElGamal signature scheme [13] and the recently proposed Digital Signature
Standard (DSS) of the National Institute for Standards and Technology [34] also require the
computation of modular exponentiation. However, we note that the exponentiation process
in a cryptosystem based on the discrete logarithm problem is slightly di�erent: The base
(M) and the modulus (n) are known in advance. This allows some precomputation since

The RSA Cryptosystem 7

powers of the base can be precomputed and saved [6]. In the exponentiation process for the
RSA algorithm, we know the exponent (e) and the modulus (n) in advance but not the base;
thus, such optimizations are not likely to be applicable. The emphasis of this report is on
the RSA cryptosystem as the title suggests.

In the following chapters we will review techniques for implementation of modular ex-
ponentiation operation on general-purpose computers, e.g., personal computers, micropro-
cessors, microcontrollers, signal processors, workstations, and mainframe computers. This
report does not include any actual code; it covers mathematical and algorithmic aspects of
the software implementations of the RSA algorithm. There also exist hardware structures
for performing the modular multiplication and exponentiations, for example, see [40, 28, 46,
15, 24, 25, 26, 50]. A brief review of the hardware implementations can be found in [5].

8 The RSA Cryptosystem

Chapter 2

Modular Exponentiation

2.1 Modular Exponentiation

The �rst rule of modular exponentiation is that we do not compute

C :=M e (mod n)

by �rst exponentiating
M e

and then performing a division to obtain the remainder

C := (M e) % n .

The temporary results must be reduced modulo n at each step of the exponentiation. This
is because the space requirement of the binary number M e is enormous. Assuming, M and
e have 256 bits each, we need

log2(M
e) = e � log2(M) � 2256 � 256 = 2264 � 1080

bits in order to store M e. This number is approximately equal to the number of particles
in the universe [1]; we have no way of storing it. In order to compute the bit capacity of
all computers in the world, we can make a generous assumption that there are 512 million
computers, each of which has 512 MBytes of memory. Thus, the total number of bits available
would be

512 � 220 � 512 � 220 � 8 = 261 � 1018 ,

which is only enough to store M e when M and e are 55 bits.

2.2 Exponentiation

We raise the following question: How many modular multiplications are needed to compute

M e mod n ? A naive way of computing C = M e (mod n) is to start with C := M

9

10 Modular Exponentiation

(mod n) and keep performing the modular multiplication operations

C := C �M (mod n)

until C = M e (mod n) is obtained. The naive method requires e� 1 modular multiplica-
tions to compute C :=M e (mod n), which would be prohibitive for large e. For example,
if we need to compute M15 (mod n), this method computes all powers of M until 15:

M !M2 !M3 !M4 !M5 !M6 !M7 ! � � � !M15

which requires 14 multiplications. However, not all powers of M need to be computed in
order to obtain M15. Here is a faster method of computing M15:

M !M2 !M3 !M6 !M7 !M14 !M15

which requires 6 multiplications. The method by which M15 is computed is not speci�c for
certain exponents; it can be used to compute M e for any e. The algorithm is called the
binary method or square and multiply method, and dates back to antiquity.

2.3 The Binary Method

The binary method scans the bits of the exponent either from left to right or from right
to left. A squaring is performed at each step, and depending on the scanned bit value, a
subsequent multiplication is performed. We describe the left-to-right binary method below.
The right-to-left algorithm requires one extra variable to keep the powers of M . The reader
is referred to Section 4.6.3 of Knuth's book [19] for more information. Let k be the number
of bits of e, i.e., k = 1 + blog2 ec, and the binary expansion of e be given by

e = (ek�1ek�2 � � � e1e0) =
k�1X
i=0

ei2
i

for ei 2 f0; 1g. The binary method for computing C =M e (mod n) is given below:

The Binary Method

Input: M; e; n.
Output: C =M e mod n.
1. if ek�1 = 1 then C :=M else C := 1
2. for i = k � 2 downto 0

2a. C := C � C (mod n)
2b. if ei = 1 then C := C �M (mod n)

3. return C

As an example, let e = 250 = (11111010), which implies k = 8. Initially, we take C := M
since ek�1 = e7 = 1. The binary method proceeds as follows:

Modular Exponentiation 11

i ei Step 2a Step 2b

6 1 (M)2 =M2 M2 �M =M3

5 1 (M3)2 =M6 M6 �M =M7

4 1 (M7)2 =M14 M14 �M =M15

3 1 (M15)2 =M30 M30 �M =M31

2 0 (M31)2 =M62 M62

1 1 (M62)2 =M124 M124 �M =M125

0 0 (M125)2 =M250 M250

The number of modular multiplications required by the binary method for computing M250

is found to be 7+5 = 12. For an arbitrary k-bit number e with ek�1 = 1, the binary method
requires:

� Squarings (Step 2a): k� 1 where k is the number of bits in the binary expansion of e.

� Multiplications (Step 2b): H(e)� 1 where H(e) is the Hamming weight (the number
of 1s in the binary expansion) of e.

Assuming e > 0, we have 0 � H(e)� 1 � k � 1. Thus, the total number of multiplications
is found as:

Maximum: (k � 1) + (k � 1) = 2(k � 1) ,

Minimum: (k � 1) + 0 = k � 1 ,

Average: (k � 1) + 1
2
(k � 1) = 3

2
(k � 1) ,

where we assume that ek�1 = 1.

2.4 The m-ary Method

The binary method can be generalized by scanning the bits of e

� 2 at a time: the quaternary method, or

� 3 at a time: the octal method, etc.

More generally,

� log2m at a time: the m-ary method.

The m-ary method is based on m-ary expansion of the exponent. The digits of e are then
scanned and squarings (powerings) and subsequent multiplications are performed accord-
ingly. The method was described in Knuth's book [19]. When m is a power of 2, the
implementation of the m-ary method is rather simple, since M e is computed by grouping

12 Modular Exponentiation

the bits of the binary expansion of the exponent e. Let e = (ek�1ek�2 � � � e1e0) be the binary
expansion of the exponent. This representation of e is partitioned into s blocks of length r
each for sr = k. If r does not divide k, the exponent is padded with at most r � 1 0s. We
de�ne

Fi = (eir+r�1eir+r�2 � � � eir) =
r�1X
j=0

eir+j2
j .

Note that 0 � Fi � m� 1 and e =
Ps�1

i=0 Fi2
ir. The m-ary method �rst computes the values

of Mw (mod n) for w = 2; 3; : : : ; m � 1. Then the bits of e are scanned r bits at a time
from the most signi�cant to the least signi�cant. At each step the partial result is raised to
the 2r power and multiplied y MFi modulo n where Fi is the (nonzero) value of the current
bit section.

The m-ary Method

Input: M; e; n.
Output: C =M e mod n.
1. Compute and store Mw (mod n) for all w = 2; 3; 4; : : : ; m� 1.
2. Decompose e into r-bit words Fi for i = 0; 1; 2; : : : ; s� 1.
3. C :=MFs�1 (mod n)
4. for i = s� 2 downto 0

4a. C := C2r (mod n)
4b. if Fi 6= 0 then C := C �MFi (mod n)

5. return C

2.4.1 The Quaternary Method

We �rst consider the quaternary method. Since the bits of e are scanned two at a time, the
possible digit values are (00) = 0, (01) = 1, (10) = 2, and (11) = 3. The multiplication step
(Step 4b) may require the values M0, M1, M2, and M3. Thus, we need to perform some
preprocessing to obtain M2 and M3. As an example, let e = 250 and partition the bits of e
in groups of two bits as

e = 250 = 11 11 10 10 .

Here, we have s = 4 (the number of groups s = k=r = 8=2 = 4). During the preprocessing
step, we compute:

bits w Mw

00 0 1
01 1 M
10 2 M �M =M2

11 3 M2 �M =M3

The quaternary method then assigns C := MF3 = M3 (mod n), and proceeds to compute
M250 (mod n) as follows:

Modular Exponentiation 13

i Fi Step 4a Step 4b

2 11 (M3)4 =M12 M12 �M3 =M15

1 10 (M15)4 =M60 M60 �M2 =M62

0 10 (M62)4 =M248 M248 �M2 =M250

The number of modular multiplications required by the quaternary method for computing
M250 (mod n) is found as 2 + 6 + 3 = 11.

2.4.2 The Octal Method

The octal method partitions the bits of the exponent in groups of 3 bits. For example,
e = 250 is partitioned as

e = 250 = 011 111 010 ,

by padding a zero to the left, giving s = k=r = 9=3 = 3. During the preprocessing step we
compute Mw (mod n) for all w = 2; 3; 4; 5; 6; 7.

bits w Mw

000 0 1
001 1 M
010 2 M �M =M2

011 3 M2 �M =M3

100 4 M3 �M =M4

101 5 M4 �M =M5

110 6 M5 �M =M6

111 7 M6 �M =M7

The octal method then assigns C := MF2 = M3 (mod n), and proceeds to compute M250

(mod n) as follows:

i Fi Step 4a Step 4b

1 111 (M3)8 =M24 M24 �M7 =M31

0 010 (M31)8 =M248 M248 �M2 =M250

The computation of M250 (mod n) by the octal method requires a total of 6 + 6 + 2 =
14 modular multiplications. However, notice that, even though we have computed Mw

(mod n) for all w = 2; 3; 4; 5; 6; 7, we have not used all of them. Thus, we can slightly
modify Step 1 of the m-ary method and precompute Mw (mod n) for only those w which
appear in the partitioned binary expansion of e. For example, for e = 250, the partitioned
bit values are (011) = 3, (111) = 7, and (010) = 2. We can compute these powers using only
4 multiplications:

14 Modular Exponentiation

bits w Mw

000 0 1
001 1 M
010 2 M �M =M2

011 3 M2 �M =M3

100 4 M3 �M =M4

111 7 M4 �M3 =M7

This gives the total number of multiplications required by the octal method for computing
M250 (mod n) as 4+6+2 = 12. The method of computingM e (mod n) by precomputing
Mw (mod n) for only those w which appear in the partitioning of the exponent is termed a
data-dependent or an adaptive algorithm. In the following section, we will explore methods of
this kind which try to reduce the number of multiplications by making use of the properties
of the given e. In general, we will probably have to compute Mw (mod n) for all w =
2; 3; : : : ; 2r � 1. This will be more of the case when k is very large. We summarize the
average number of multiplications and squarings required by the m-ary method assuming
2r = m and k

r
is an integer.

� Preprocessing Multiplications (Step 1): m� 2 = 2r � 2

� Squarings (Step 4a): (k
r
� 1) � r = k � r

� Multiplications (Step 4b): (k
r
� 1)(1� 1

m
) = (k

r
� 1)(1� 2�r)

Thus, in general, the m-ary method requires

2r � 2 + k � r +

k

r
� 1

!�
1� 2�r

�

multiplications plus squarings on the average. The average number of multiplications for the
binary method can be found simply by substituting r = 1 and m = 2 in the above, which
gives 3

2
(k�1). Also note that there exists an optimal r = r� for each k such that the average

number of multiplications required by the m-ary method is minimum. The optimal values
of r can be found by enumeration [21]. In the following we tabulate the average values of
multiplications plus squarings required by the binary method and the m-ary method with
the optimal values of r.

k binary m-ary r� Savings %

8 11 10 2 9.1
16 23 21 2 8.6
32 47 43 2,3 8.5
64 95 85 3 10.5
128 191 167 3,4 12.6
256 383 325 4 15.1
512 767 635 5 17.2
1024 1535 1246 5 18.8
2048 3071 2439 6 20.6

Modular Exponentiation 15

The asymptotic value of savings o�ered by the m-ary method is equal to 33 %. In order to
prove this statement, we compute the limit of the ratio

lim
k!1

2r � 2 + k � r + (k
r
� 1)(1� 2�r)

3
2
(k � 1)

=
2

3

1 +

1� 2�r

r

!
� 2

3
.

2.5 The Adaptive m-ary Methods

The adaptive methods are those which form their method of computation according to the
input data. In the case of exponentiation, an adaptive algorithm will modify its structure
according to the exponent e, once it is supplied. As we have pointed out earlier, the number
of preprocessing multiplications can be reduced if the partitioned binary expansion of e do
not contain all possible bit-section values w. However, there are also adaptive algorithms
which partition the exponent into a series of zero and nonzero words in order to decrease
the number multiplications required in Step 4b of the m-ary method. In the following we
introduce these methods, and give the required number of multiplications and squarings.

2.5.1 Reducing Preprocessing Multiplications

We have already briey introduced this method. Once the binary expansion of the exponent
is obtained, we partition this number into groups of d bits each. We then precompute and
obtain Mw (mod n) only for those w which appear in the binary expansion. Consider the
following exponent for k = 16 and d = 4

1011 0011 0111 1000

which implies that we need to computeMw (mod n) for only w = 3; 7; 8; 11. The exponent
values w = 3; 7; 8; 11 can be sequentially obtained as follows:

M2 = M �M
M3 = M2 �M
M4 = M2 �M2

M7 = M3 �M4

M8 = M4 �M4

M11 = M8 �M3

which requires 6 multiplications. The m-ary method that disregards the necessary exponent
values and computes all of them would require 16 � 2 = 14 preprocessing multiplications.
The number of multiplications that can be saved is upper-bounded by m�2 = 2d�2, which
is the case when all partitioned exponent values are equal to 1, e.g., when

0001 0001 0001 0001

16 Modular Exponentiation

This implies that we do not precompute anything, just use M . This happens quite rarely.
In general, we have to compute Mw (mod n) for all w = w0; w1; : : : ; wp�1. If the span of
the set fwi j i = 0; 1; : : : ; p� 1g is the values 2; 3; : : : ; 2d � 1, then there is no savings. We
perform 2d�2 multiplications and obtain all of these values. However, if the span is a subset
(especially a small subset) of the values 2; 3; : : : ; 2d� 1, then some savings can be achieved if
we can compute wi for i = 0; 1; : : : ; p� 1 using much fewer than 2d � 2 multiplications. An
algorithm for computing any given p exponent values is called a vectorial addition chain, and
in the case of p = 1, an addition chain. Unfortunately, the problem of obtaining an addition
chain of minimal length is an NP-complete problem [9]. We will elaborate on addition and
vectorial addition chains in the last section of this chapter.

2.5.2 The Sliding Window Techniques

The m-ary method decomposes the bits of the exponent into d-bit words. The probability
of a word of length d being zero is equal to 2�d, assuming that the 0 and 1 bits are produced
with equal probability. In Step 4b of the m-ary method, we skip a multiplication whenever
the current word is equal to zero. Thus, as d grows larger, the probability that we have to
perform a multiplication operation in Step 4a becomes larger. However, the total number of
multiplications increases as d decreases. The sliding window algorithms provide a compro-
mise by allowing zero and nonzero words of variable length; this strategy aims to increase
the average number of zero words, while using relatively large values of d.

A sliding window exponentiation algorithm �rst decomposes e into zero and nonzero
words (windows) Fi of length L(Fi). The number of windows p may not be equal to k=d.
In general, it is also not required that the length of the windows be equal. We take d to be
the length of the longest window, i.e., d = max(L(Fi)) for i = 0; 1; : : : ; k � 1. Furthermore,
if Fi is a nonzero window, then the least signi�cant bit of Fi must be equal to 1. This is
because we partition the exponent starting from the least signi�cant bit, and there is no point
in starting a nonzero window with a zero bit. Consequently, the number of preprocessing
multiplications (Step 1) are nearly halved, since xw are computed for odd w only.

The Sliding Window Method

Input: M; e; n.
Output: C =M e (mod n).
1. Compute and store Mw (mod n) for all w = 3; 5; 7; : : : ; 2d � 1.
2. Decompose e into zero and nonzero windows Fi of length L(Fi)

for i = 0; 1; 2; : : : ; p� 1.
3. C :=MFk�1 (mod n)
4. for i = p� 2 downto 0

4a. C := C2L(Fi) (mod n)
4b. if Fi 6= 0 then C := C �MFi (mod n)

5. return C

Two sliding window partitioning strategies have been proposed [19, 4]. These methods di�er

Modular Exponentiation 17

in whether the length of a nonzero window must be a constant (= d), or can be variable
(however, � d). In the following sections, we give algorithmic descriptions of these two
partitioning strategies.

2.5.3 Constant Length Nonzero Windows

The constant length nonzero window (CLNW) partitioning algorithm is due to Knuth [19].
The algorithm scans the bits of the exponent from the least signi�cant to the most signi�cant.
At any step, the algorithm is either forming a zero window (ZW) or a nonzero window (NW).
The algorithm is described below:

ZW: Check the incoming single bit: if it is a 0 then stay in ZW; else go to NW.

NW: Stay in NW until all d bits are collected. Then check the incoming single bit: if it is
a 0 then go to ZW; else go to NW.

Notice that while in NW, we distinguish between staying in NW and going to NW. The
former means that we continue to form the same nonzero window, while the latter implies
the beginning of a new nonzero window. The CLNW partitioning strategy produces zero
windows of arbitrary length, and nonzero windows of length d. There cannot be two adjacent
zero windows; they are necessarily concatenated, however, two nonzero windows may be
adjacent. For example, for d = 3, we partition e = 3665 = (111001010001) as

e = 111 00 101 0 001 .

The CLNW sliding window algorithm �rst performs the preprocessing multiplications and
obtains Mw (mod n) for w = 3; 5; 7.

bits w Mw

001 1 M

010 2 M �M =M2

011 3 M �M2 =M3

101 5 M3 �M2 =M5

111 7 M5 �M2 =M7

The algorithm assigns C = MF4 = M7 (mod n), and then proceeds to compute M3665

(mod n) as follows:

i Fi L(Fi) Step 4a Step 4b

3 00 2 (M7)4 =M28 M28

2 101 3 (M28)8 =M224 M224 �M5 =M229

1 0 1 (M229)2 =M458 M458

0 001 3 (M458)8 =M3664 M3664 �M =M3665

18 Modular Exponentiation

Thus, a total of 4+ 9+2 = 15 modular multiplications are performed. The average number
of multiplications can be found by modeling the partitioning process as a Markov chain. The
details of this analysis are given in [23]. In following table, we tabulate the average number
of multiplications for the m-ary and the CLNW sliding window methods. The column for the
m-ary method contains the optimal values d� for each k. As expected, there exists an optimal
value of d for each k for the CLNW sliding window algorithm. These optimal values are also
included in the table. The last column of the table contains the percentage di�erence in the
average number of multiplications. The CLNW partitioning strategy reduces the average
number of multiplications by 3{7 % for 128 � k � 2048. The overhead of the partitioning is
negligible; the number of bit operations required to obtain the partitioning is proportional
to k.

m-ary CLNW (T�T1)=T

k d� T d� T1 %

128 4 168 4 156 7.14
256 4 326 5 308 5.52
512 5 636 5 607 4.56
768 5 941 6 903 4.04
1024 5 1247 6 1195 4.17
1280 6 1546 6 1488 3.75
1536 6 1844 6 1780 3.47
1792 6 2142 7 2072 3.27
2048 6 2440 7 2360 3.28

2.5.4 Variable Length Nonzero Windows

The CLNW partitioning strategy starts a nonzero window when a 1 is encountered. Although
the incoming d�1 bits may all be zero, the algorithm continues to append them to the current
nonzero window. For example, for d = 3, the exponent e = (111001010001) was partitioned
as

e = 111 00 101 0 001 .

However, if we allow variable length nonzero windows, we can partition this number as

e = 111 00 101 000 1 .

We will show that this strategy further decreases the average number of nonzero windows.
The variable length nonzero window (VLNW) partitioning strategy was proposed by Bos and
Coster in [4]. The strategy requires that during the formation of a nonzero window (NW),
we switch to ZW when the remaining bits are all zero. The VLNW partitioning strategy has
two integer parameters:

� d : maximum nonzero window length,

Modular Exponentiation 19

� q : minimum number of zeros required to switch to ZW.

The algorithm proceeds as follows:

ZW: Check the incoming single bit: if it is zero then stay in ZW; else go to NW.

NW: Check the incoming q bits: if they are all zero then go to ZW; else stay in NW. Let
d = lq + r + 1 where 1 < r � q. Stay in NW until lq + 1 bits are received. At the last
step, the number of incoming bits will be equal to r. If these r bits are all zero then go
to ZW; else stay in NW. After all d bits are collected, check the incoming single bit: if
it is zero then go to ZW; else go to NW.

The VLNW partitioning produces nonzero windows which start with a 1 and end with a 1.
Two nonzero windows may be adjacent; however, the one in the least signi�cant position
will necessarily have d bits. Two zero windows will not be adjacent since they will be
concatenated. For example, let d = 5 and q = 2, then 5 = 1+1 � 2+2, thus l = 1 and r = 2.
The following illustrates the partitioning of a long exponent according to these parameters:

101 0 11101 00 101 10111 000000 1 00 111 000 1011 .

Also, let d = 10 and q = 4, which implies l = 2 and r = 1. A partitioning example is
illustrated below:

1011011 0000 11 0000 11110111 00 1111110101 0000 11011 .

In order to compute the average number of multiplications, the VLNW partitioning process,
like the CLNW process, can be modeled using a Markov chain. This analysis was performed
in [23], and the average number of multiplications have been calculated for 128 � k � 2048.
In the following table, we tabulate these values together with the optimal values of d and q,
and compare them to those of the m-ary method. Experiments indicate that the best values
of q are between 1 and 3 for 128 � k � 2048 and 4 � d � 8. The VLNW algorithm requires
5{8 % fewer multiplications than the m-ary method.

m-ary VLNW (T2�T)=T2

T2=k for q�

k d� T=k d� q = 1 q = 2 q = 3 %

128 4 1.305 4 1.204 1.203 1.228 7.82
256 4 1.270 4 1.184 1.185 1.212 6.77
512 5 1.241 5 1.163 1.175 1.162 6.37
768 5 1.225 5 1.155 1.167 1.154 5.80
1024 5 1.217 6 1.148 1.146 1.157 5.83
1280 6 1.207 6 1.142 1.140 1.152 5.55
1536 6 1.200 6 1.138 1.136 1.148 5.33
1792 6 1.195 6 1.136 1.134 1.146 5.10
2048 6 1.191 6 1.134 1.132 1.144 4.95

20 Modular Exponentiation

The sliding window algorithms are easy to program, introducing negligible overhead. The
reduction in terms of the number of multiplications is notable, for example, for n = 512, the
m-ary method requires 636 multiplications whereas the CLNW and VLNW sliding window
algorithms require 607 and 595 multiplications, respectively. In Figure 2.1, we plot the scaled
average number of multiplications T=k, i.e., the average number of multiplications T divided
by the total number of bits k, for the m-ary and the sliding window algorithms as a function
of n = 128; 256; : : : ; 2048.

m-ary

CLNW

VLNW

256 512 768 1024 1280 1536 1792 2048

k

1.1

1.15

1.2

1.25

1.3

T
/k

Figure 2.1: The values of T=k for the m-ary and the sliding window algorithms.

2.6 The Factor Method

The factor method is given by Knuth [19]. It is based on factorization of the exponent e = rs
where r is the smallest prime factor of e and s > 1. We compute M e by �rst computing M r

and then raising this value to the sth power:

C1 = M r ,

C2 = Cs
1 =M rs =M e .

If e is prime, then we �rst compute M e�1 then multiply this quantity by M . The algorithm
is recursive, e.g., in order to compute M r, we factor r = r1 � r2 such that r1 is the smallest
prime factor of r and r2 > 1. This process continues until the exponent value required is
equal to 2. As an example, we illustrate the computation of M e for e = 55 = 5 � 11 in the
following:

Modular Exponentiation 21

Compute: M !M2 !M4 !M5

Assign: a :=M5

Compute: a! a2

Assign: b := a2

Compute: b! b2 ! b4 ! b5

Compute: b5 ! b5a =M55

The factor method requires 8 multiplications for computing M55. The binary method, on
the other hand, requires 9 multiplications since e = 55 = (110111) implies 5 squarings (Step
2a) and 4 multiplications (Step 2b).

Unfortunately, the factor method requires factorization of the exponent, which would be
very di�cult for large numbers. However, this method could still be of use for the RSA
cryptosystem whenever the exponent value is small. It may also be useful if the exponent is
constructed carefully, i.e., in a way to allow easy factorization.

2.7 The Power Tree Method

The power tree method is also due to Knuth [19]. This algorithm constructs a tree according
to a heuristic. The nodes of the tree are labeled with positive integers starting from 1. The
root of the tree receives 1. Suppose that the tree is constructed down to the kth level.
Consider the node e of the kth level, from left to right. Construct the (k + 1)st level by
attaching below node e the nodes

e + a1; e+ a2; e+ a3; : : : ; e+ ak

where a1; a2; a3; : : : ; ak is the path from the root of the tree to e. (Note: a1 = 1 and ak = e.)
In this process, we discard any duplicates that have already appeared in the tree. The power
tree down to 5 levels is given in Figure 2.2.

1

2

3 4

5

7

14 11 13 15 20 18 24 32

10 9 12 16

6 8

17

Figure 2.2: The Power Tree

22 Modular Exponentiation

In order to compute M e, we locate e in the power tree. The sequence of exponents that
occur in the computation of M e is found on the path from the root to e. For example, the
computation of M18 requires 5 multiplications:

M !M2 !M3 !M6 !M9 !M18

For certain exponent values of e, the power tree method requires fewer number of multipli-
cations, e.g., the computation of M23 by the power tree method requires 6 multiplications:

M !M2 !M3 !M5 !M10 !M13 !M23

However, since 23 = (10111), the binary method requires 4 + 3 = 7 multiplications:

M !M2 !M4 !M5 !M10 !M11 !M22 !M23

Also, since 23� 1 = 22 = 2 � 11, the factor method requires 1 + 5 + 1 = 7 multiplications:

M !M2 !M4 !M8 !M16 !M20 !M22 !M23

Knuth gives another variation of the power tree heuristics in Problem 6 in page 463 [19]. The
power tree method is also applicable for small exponents since the tree needs to be \saved".

2.8 Addition Chains

Consider a sequence of integers
a0; a1; a2; : : : ; ar

with a0 = 1 and ar = e. If the sequence is constructed in such a way that for all k there
exist indices i; j < k such that

ak = ai + aj ,

then the sequence is an addition chain for e. The length of the chain is equal to r. An
addition chain for a given exponent e is an algorithm for computing M e. We start with M1,
and proceed to compute Mak using the two previously computed values Mai and Maj as
Mak =Mai �Maj . The number of multiplications required is equal to r which is the length of
the addition chain. The algorithms we have so far introduced, namely, the binary method,
the m-ary method, the sliding window method, the factor and the power tree methods are
in fact methods of generating addition chains for the given exponent value e. Consider for
example e = 55, the addition chains generated by some of these algorithms are given below:

binary: 1 2 3 6 12 13 26 27 54 55
quaternary: 1 2 3 6 12 13 26 52 55

octal: 1 2 3 4 5 6 7 12 24 48 55
factor: 1 2 4 5 10 20 40 50 55

power tree: 1 2 3 5 10 11 22 44 55

Modular Exponentiation 23

Given the positive integer e, the computation of the shortest addition chain for e is estab-
lished to be an NP-complete problem [9]. This implies that we have to compute all possible
chains leading to e in order to obtain the shortest one. However, since the �rst introduc-
tion of the shortest addition chain problem by Scholz [19] in 1937, several properties of the
addition chains have been established:

� The upper bound on the length of the shortest addition chain for e is equal to: blog2 ec+
H(e) � 1 where H(e) is the Hamming weight of e. This follows from the binary
method. In the worst case, we can use the binary method to compute M e using at
most blog2 ec +H(e)� 1 multiplications.

� The lower bound was established by Sch�onhage [44]: log2 e + log2H(e)� 2:13. Thus,
no addition chain for e can be shorter than log2 e+ log2H(e)� 2:13.

The previously given algorithms for computingM e are all heuristics for generating short
addition chains. We call these algorithms heuristics because they do not guarantee min-
imality. Statistical methods, such as simulated annealing, can be used to produce short
addition chains for certain exponents. Certain heuristics for obtaining short addition chains
are discussed in [4, 52].

2.9 Vectorial Addition Chains

Another related problem (which we have briey mentioned in Section 2.5.1) is the gener-
ation of vectorial addition chains. A vectorial addition chain of a given vector of integer
components is the list of vectors with the following properties:

� The initial vectors are the unit vectors [1; 0; : : : ; 0]; [0; 1; 0; : : : ; 0]; : : : ; [0; : : : ; 0; 1].

� Each vector is the sum of two earlier vectors.

� The last vector is equal to the given vector.

For example, given the vector [7; 15; 23], we obtain a vectorial addition chain as

[1; 0; 0]
[0; 1; 0]
[0; 0; 1]

[0; 1; 1] [1; 1; 1] [0; 1; 2] [1; 2; 3] [1; 3; 5] [2; 4; 6] [3; 7; 11] [4; 8; 12] [7; 15; 23]

which is of length 9. Short vectorial addition chains can be used to e�ciently compute Mwi

for several integers wi. This problem arises in conjunction with reducing the preprocessing
multiplications in adaptive m-ary methods and as well as in the sliding window technique
(refer to Section 2.5). If the exponent values appear in the partitioning of the binary ex-
pansion of e are just 7, 15, and 23, then the above vectorial addition chain can be used for

24 Modular Exponentiation

obtaining these exponent values. This is achieved by noting a one-to-one correspondence be-
tween the addition sequences and the vectorial addition chains. This result was established
by Olivos [35] who proved that the complexity of the computation of the multinomial

xn11 x
n2
2 � � �xnii

is the same as the simultaneous computation of the monomials

xn1 ; xn2; : : : ; xni .

An addition sequence is simply an addition chain where the i requested numbers n1; n2; : : : ; ni
occur somewhere in the chain [53]. Using the Olivos algorithm, we convert the above vectorial
addition chain to the addition sequence with the requested numbers 7, 15, and 23 as

1 2 3 4 7 8 15 23

which is of length 7. In general an addition sequence of length r and i requested numbers
can be converted to a vectorial addition sequence of length r + i� 1 with dimension i.

2.10 Recoding Methods

In this section we discuss exponentiation algorithms which are intrinsically di�erent from the
ones we have so far studied. The property of these algorithms is that they require the inverse
of M modulo n in order to e�ciently compute M e (mod n). It is established that k � 1
is a lower bound for the number of squaring operations required for computing M e where
k is the number of bits in e. However, it is possible to reduce the number of consequent
multiplications using a recoding of the the exponent [17, 33, 11, 21]. The recoding techniques
use the identity

2i+j�1 + 2i+j�2 + � � �+ 2i = 2i+j � 2i

to collapse a block of 1s in order to obtain a sparse representation of the exponent. Thus,
a redundant signed-digit representation of the exponent using the digits f0; 1;�1g will be
obtained. For example, (011110) can be recoded as

(011110) = 24 + 23 + 22 + 21

(1000�10) = 25 � 21 .

Once a recoding of the exponent is obtained, we can use the binary method (or, the m-ary
method) to compute M e (mod n) provided that M�1 (mod n) is supplied along with M .
For example, the recoding binary method is given below:

The Recoding Binary Method

Input: M;M�1; e; n.
Output: C =M e mod n.

Modular Exponentiation 25

0. Obtain a signed digit representation f of e.
1. if fk = 1 then C :=M else C := 1
2. for i = k � 1 downto 0

2a. C := C � C (mod n)
2b. if fi = 1 then C := C �M (mod n)

else if fi = �1 then C := C �M�1 (mod n)
3. return C

Note that even though the number of bits of e is equal to k, the number of bits in the
the recoded exponent f can be k + 1, for example, (111) is recoded as (100�1). Thus, the
recoding binary algorithm starts from the bit position k in order to compute M e (mod n)
by computing Mf (mod n) where f is the (k + 1)-bit recoded exponent such that f = e.
We give an example of exponentiation using the recoding binary method. Let e = 119 =
(1110111). The (nonrecoding) binary method requires 6+5 = 11 multiplications in order to
compute M119 (mod n). In the recoding binary method, we �rst obtain a sparse signed-
digit representation of 119. We will shortly introduce techniques for obtaining such recodings.
For now, it is easy to verify the following:

Exponent: 119 = 01110111 ,
Recoded Exponent: 119 = 1000�100�1 .

The recoding binary method then computes M119 (mod n) as follows:

fi Step 2a Step 2b

1 M M
0 (M)2 =M2 M2

0 (M2)2 =M4 M4

0 (M4)2 =M8 M8

�1 (M8)2 =M16 M16 �M�1 =M15

0 (M15)2 =M30 M30

0 (M30)2 =M60 M60

�1 (M60)2 =M120 M120 �M�1 =M119

The number of squarings plus multiplications is equal to 7 + 2 = 9 which is 2 less than that
of the binary method. The number of squaring operations required by the recoding binary
method can be at most 1 more than that of the binary method. The number of subsequent
multiplications, on the other hand, can be signi�cantly less. This is simply equal to the
number of nonzero digits of the recoded exponent. In the following we describe algorithms
for obtaining a sparse signed-digit exponent. These algorithms have been used to obtain
e�cient multiplication algorithms. It is well-known that the shift-add type of multiplication
algorithms perform a shift operation for every bit of the multiplier; an addition is performed
if the current bit of the multiplier is equal to 1, otherwise, no operation is performed, and the
algorithm proceeds to the next bit. Thus, the number of addition operations can be reduced
if we obtain a sparse signed-digit representation of the multiplier. We perform no operation

26 Modular Exponentiation

if the current multiplier bit is equal to 0, an addition if it is equal to 1, and a subtraction
if the current bit is equal to �1. These techniques are applicable to exponentiation, where
we replace addition by multiplication and subtraction by division, or multiplication with the
inverse.

2.10.1 The Booth Algorithm and Modi�ed Schemes

The Booth algorithm [3] scans the bits of the binary number e = (ek�1ek�2 � � � e1e0) from
right to left, and obtains the digits of the recoded number f using the following truth table:

ei ei�1 fi

0 0 0
0 1 1
1 0 �1
1 1 0

To obtain f0, we take e�1 = 0. For example, the recoding of e = (111001111) is obtained as

111001111
100�101000�1

which is more sparse than the ordinary exponent. However, the Booth algorithm has a
shortcoming: The repeated sequences of (01) are recoded as repated sequences of (1�1).
Thus, the resulting number may be much less sparse. The worst case occurs for a number
of the form e = (101010101), giving

101010101
1�11�11�11�11�1

We are much better o� not recoding this exponent. Another problem, which is related to this
one, with the Booth algorithm is that when two trails of ones are separated by a zero, the
Booth algorithm does not combine them even though they can be combined. For example,
the number e = (11101111) is recoded as

11101111
100�11000�1

even though a more sparse recoding exists:

100�11000�1
1000�1000�1

since (�11) = �2 + 1 = �1 = (0�1). In order to circumvent these shortcomings of the Booth
algorithm, several modi�cations have been proposed [51, 16, 29]. These algorithms scan
several bits at a time, and attempt to avoid introducing unnecessary nonzero digits to the
recoded number. All of these algorithms which are designed for multiplication are applicable

Modular Exponentiation 27

for exponentiation. Running time analyses of some of these modi�ed Booth algorithms in the
context of modular exponentiation have been performed [33, 21]. For example, the modi�ed
Booth scheme given in [21] scans the bits of the exponent four bits at a time sharing one bit
with the previous and two bits with the next case:

ei+1 ei ei�1 ei�2 fi ei+1 ei ei�1 ei�2 fi
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 1 0
0 0 1 0 0 1 0 1 0 0
0 0 1 1 1 1 0 1 1 1
0 1 0 0 1 1 1 0 0 �1
0 1 0 1 1 1 1 0 1 �1
0 1 1 0 0 1 1 1 0 0
0 1 1 1 0 1 1 1 1 0

This technique recodes the number in such a way that the isolated 1s stay untouched. Also
0110 is recoded as 10�10 and any trail of 1s of length i � 3 is recoded as 10 � � �0�1. We
have shown that the binary method requires 3

2
(k � 1) squarings plus multiplications on the

average. The recoding binary method requires signi�cantly fewer multiplications, and the
number of squarings is increased by at most 1. In order to count the average number of
consequent multiplications, we calculate the probability of the signed-digit value being equal
to nonzero, i.e., 1 or �1. For the above recoding scheme, an analysis has been performed
in [21]. The recoding binary method using the recoding strategy given in the able requires
a total of 11

8
(k � 1) squarings plus multiplications. The average asymptotic savings in the

number of squarings plus multiplications is equal to�
3

2
� 11

8

�
� 3

2
=

1

12
� 8:3 % .

The average number of multiplications plus squarings are tabulated in the following table:

k binary recoding

8 11 10
16 23 21
32 47 43
64 95 87
128 191 175
256 383 351
512 767 703
1024 1535 1407
2048 3071 2815

2.10.2 The Canonical Recoding Algorithm

In a signed-digit number with radix 2, three symbols f�1; 0; 1g are allowed for the digit
set, in which 1 in bit position i represents +2i and �1 in bit position i represents �2i. A

28 Modular Exponentiation

minimal signed-digit vector f = (fkfk�1 � � � f1f0) that contains no adjacent nonzero digits
(i.e. fifi�1 = 0 for 0 < i � k) is called a canonical signed-digit vector . If the binary
expansion of E is viewed as padded with an initial zero, then it can be proved that there
exists a unique canonical signed-digit vector for e [38]. The canonical recoding algorithm
[38, 16, 29] computes the signed-digit number

f = (fkfk�1fk�2 � � � f0)

starting from the least signi�cant digit. We set the auxiliary variable c0 = 0 and examine the
binary expansion of e two bits at a time. The canonically recoded digit fi and the next value
of the auxiliary binary variable ci+1 for i = 0; 1; 2; : : : ; n are computed using the following
truth table.

ci ei+1 ei ci+1 fi
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 �1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 �1
1 1 1 1 0

As an example, when e = 3038, i.e.,

e = (0101111011110) = 211 + 29 + 28 + 27 + 26 + 24 + 23 + 22 + 21 ,

we compute the canonical signed-digit vector f as

f = (10�10000�1000�10) = 212 � 210 � 25 � 21 .

Note that in this example the exponent e contains 9 nonzero bits while its canonically
recoded version contains only 4 nonzero digits. Consequently, the binary method requires
11 + 8 = 19 multiplications to compute M3038 when applied to the binary expansion of E,
but only 12 + 3 = 15 multiplications when applied to the canonical signed-digit vector f ,
provided thatM�1 (mod n) is also supplied. The canonical signed-digit vector f is optimal
in the sense that it has the minimum number of nonzero digits among all signed-digit vectors
representing the same number. For example, the following signed-digit number for e = 3038
produced by the original Booth recoding algorithm contains 5 nonzero digits instead of 4:

f = (011000�11000�10) = 211 + 210 � 26 + 25 � 21 .

Certain variations of the Booth algorithm also produce recodings which are suboptimal in
terms of the number of zero digits of the recoding. For example, the �rst of the two algo-
rithms given in [33] replaces the occurrences of 01a0 by 10a�110, and consequently recodes

Modular Exponentiation 29

(01111011110) as (10001100010). Since (11) = (01), the optimal recoding is (10000100010).
The second algorithm in [33] recodes (01111011110) correctly but is suboptimal on binary
numbers in which two trails of 1s are separated by (010). For example (0111101011110) is
recoded as (1000101100010), which can be made more sparse by using the identity (1011) =
(101). We note that Reitwiesner's canonical recoding algorithm has none of these shortcom-
ings; the recoding f it produces is provably the optimal signed-digit number [38].

It has been observed that when the exponent is recoded using the canonical bit recoding
technique then the average number of multiplications for large k can be reduced to 4

3
k +

O(1) provided that M�1 is supplied along with M . This is proved in [11] by using formal
languages to model the Markovian nature of the generation of canonically recoded signed-
digit numbers from binary numbers and counting the average number of nonzero bits. The
average asymptotical savings in the number of squarings plus multiplications is equal to

�
3

2
� 4

3

�
� 3

2
=

1

9
� 11 % .

The average number of squarings plus multiplications are tabulated in the following table:

k binary canonical

8 11 11
16 23 22
32 47 43
64 95 86
128 191 170
256 383 342
512 767 683
1024 1535 1366
2048 3071 2731

2.10.3 The Canonical Recoding m-ary Method

The recoding binary methods can be generalized to their respective recoding m-ary coun-
terparts. Once the digits of the exponent are recoded, we scan them more than one bit at
a time. In fact, more sophisticated techniques, such as the sliding window technique can
also be used to compute M e (mod n) once the recoding of the exponent e is obtained.
Since the partitioned exponent values are allowed to be negative numbers as well, during
the preprocessing step Mw for certain w < 0 may be computed. This is easily accomplished
by computing (M�1)w (mod n) because M�1 (mod n) is assumed to be supplied along
with M . One hopes that these sophisticated algorithms someday will become useful. The
main obstacle in using them in the RSA cryptosystem seems to be that the time required
for the computation of M�1 (mod n) exceeds the time gained by the use of the recoding
technique.

An analysis of the canonical recoding m-ary method has been performed in [12]. It is
shown that the average number of squarings plus multiplications for the recoding binary

30 Modular Exponentiation

(d = 1), the recoding quaternary (d = 2), and the recoding octal (d = 3) methods are equal
to

Tr(k; 1) =
4

3
k � 4

3
; Tr(k; 2) =

4

3
k � 2

3
; Tr(k; 3) =

23

18
k +

75

18
,

respectively. In comparison, the standard binary, quaternary, and octal methods respectively
require

Ts(k; 1) =
3

2
k � 3

2
, Ts(k; 2) =

11

8
k � 3

4
, Ts(k; 3) =

31

24
k � 17

8

multiplications in the average. Furthermore, the average number of squarings plus multipli-
cations for the canonical recoding m-ary method for m = 2d is equal to

Tr(k; d) = k � d+
�
1� 1

3 2d�2

�
k

d
� 1

!
+
1

3
[2d+2 + (�1)d+1]� 3 .

For large k and �xed d, the behavior of Tr(k; d) and Ts(k; d) of the standard m-ary method
is governed by the coe�cient of k. In the following table we compare the values Tr(k; d)=k
and Ts(k; d)=k for large k.

d = log2m 1 2 3 4 5 6 7 8

Ts(k; d)=k 1:5000 1:3750 1:2917 1:2344 1:1938 1:1641 1:1417 1:1245

Tr(k; d)=k 1:3333 1:3333 1:2778 1:2292 1:1917 1:1632 1:1414 1:1244

We can compute directly from the expressions that for constant d

lim
k!1

Tr(k; d)

Ts(k; d)
=

(d+ 1)2d � 4
3

(d+ 1)2d � 1
< 1 :

However, it is interesting to note that if we consider the optimal values ds and dr of d (which
depend on k) which minimize the average number of multiplications required by the standard
and the recoded m-ary methods, respectively, then

Tr(k; dr)

Ts(k; ds)
> 1

for large k. It is shown in [12] that

Tr(k; dr)

Ts(k; ds)
� 1 + 1

dr

1 + 1
ds

for large k, which implies Tr(k; dr) > Ts(k; ds). Exact values of ds and dr for a given k can
be obtained by enumeration. These optimal values of ds and dr are given in the following
table together with the corresponding values of Ts and Tr for each k = 128; 256; : : : ; 2048.

Modular Exponentiation 31

k ds Ts(k; ds) dr Tr(k; dr)

128 4 168 3 168

256 4 326 4 328

512 5 636 4 643

1024 5 1247 5 1255

2048 6 2440 6 2458

In the following �gure, we plot the average number of multiplications required by the stan-
dard and canonical recoding m-ary methods as a function of d and k.

216

216

215

215

214

214

213

213

212

212

211

211

210

210

29

29

28

28

27

27
standard

recoded

5 10 15

d

1

1.2

1.4

1.6

1.8

T
(k

,d
)/

k

Figure 2.3: The standard versus recoding m-ary methods.

This �gure and the previous analysis suggest that the recoding m-ary method may not be as
useful as the straightforward m-ary method. A discussion of the usefulness of the recoding
exponentiation techniques is found in the following section.

2.10.4 Recoding Methods for Cryptographic Algorithms

The recoding exponentiation methods can perhaps be useful ifM�1 can be supplied without
too much extra cost. Even though the inverse M�1 (mod n) can easily be computed using
the extended Euclidean algorithm, the cost of this computation far exceeds the time gained
by the use of the recoding technique in exponentiation. Thus, at this time the recoding
techniques do not seem to be particularly applicable to the RSA cryptosystem. In some

32 Modular Exponentiation

contexts, where the plaintext M as well as its inverse M�1 modulo n are available for some
reason, these algorithms can be quite useful since they o�er signi�cant savings in terms of
the number multiplications, especially in the binary case. For example, the recoding binary
method requires 1:33k multiplications while the nonrecoding binary method requires 1:5k
multiplications. Also, Kaliski [18] has recently shown that if one computes the Montgomery

inverse instead of the inverse, certain savings can be achieved by making use of the right-
shifting binary algorithm. Thus, Kaliski's approach can be utilized for fast computation of
the inverse, which opens up new avenues in speeding modular exponentiation computations
using the recoding techniques.

On the other hand, the recoding techniques are shown to be useful for computations on
elliptic curves over �nite �elds since in this case the inverse is available at no additional
cost [33, 20]. In this context, one computes e �M where e is a large integer and M is a
point on the elliptic curve. The multiplication operator is determined by the group law of
the elliptic curve. An algorithm for computing M e is easily converted to an algorithm for
computing e �M , where we replace multiplication by addition and division (multiplication
with the inverse) by subtraction.

Chapter 3

Modular Multiplication

The modular exponentiation algorithms perform modular squaring and multiplication oper-
ations at each step of the exponentiation. In order to compute M e (mod n) we need to
implement a modular multiplication routine. In this section we will study algorithms for
computing

R := a � b (mod n) ,

where a, b, and n are k-bit integers. Since k is often more than 256, we need to build
data structures in order to deal with these large numbers. Assuming the word-size of the
computer is w (usually w = 16 or 32), we break the k-bit number into s words such that
(s � 1)w < k � sw. The temporary results may take longer than s words, and thus, they
need to be accommodated as well.

3.1 Modular Multiplication

In this report, we consider the following three methods for computing of R = a �b (mod n).

� Multiply and then Reduce:

First Multiply t := a � b. Here t is a 2k-bit or 2s-word number.

Then Reduce: R := t mod n. The result u is a k-bit or s-word number.

The reduction is accomplished by dividing t by n, however, we are not interested in
the quotient; we only need the remainder. The steps of the division algorithm can be
somewhat simpli�ed in order to speed up the process.

� Blakley's method:

The multiplication steps are interleaved with the reduction steps.

� Montgomery's method:

This algorithm rearranges the residue class modulo n, and uses modulo 2j arithmetic.

33

34 Modular Multiplication

3.2 Standard Multiplication Algorithm

Let a and b be two s-digit (s-word) numbers expressed in radix W as:

a = (as�1as�2 � � �a0) =
s�1X
j=0

aiW
i ,

b = (bs�1bs�2 � � � b0) =
s�1X
j=0

biW
i ,

where the digits of a and b are in the range [0;W � 1]. In general W can be any positive
number. For computer implementations, we often select W = 2w where w is the word-size
of the computer, e.g., w = 32. The standard (pencil-and-paper) algorithm for multiplying
a and b produces the partial products by multiplying a digit of the multiplier (b) by the
entire number a, and then summing these partial products to obtain the �nal number 2s-
word number t. Let tij denote the (Carry,Sum) pair produced from the product ai � bj. For
example, when W = 10, and ai = 7 and bj = 8, then tij = (5; 6). The tij pairs can be
arranged in a table as

a3 a2 a1 a0
� b3 b2 b1 b0

t03 t02 t01 t00
t13 t12 t11 t10

t23 t22 t21 t20
+ t33 t32 t31 t30
t7 t6 t5 t4 t3 t2 t1 t0

The last row denotes the total sum of the partial products, and represents the product as an
2s-word number. The standard algorithm for multiplication essentially performs the above
digit-by-digit multiplications and additions. In order to save space, a single partial product
variable t is being used. The initial value of the partial product is equal to zero; we then
take a digit of b and multiply by the entire number a, and add it to the partial product t.
The partial product variable t contains the �nal product a � b at the end of the computation.
The standard algorithm for computing the product a � b is given below:

The Standard Multiplication Algorithm

Input: a; b
Output: t = a � b
0. Initially ti := 0 for all i = 0; 1; : : : ; 2s� 1.
1. for i = 0 to s� 1
2. C := 0
3. for j = 0 to s� 1
4. (C; S) := ti+j + aj � bi + C
5. ti+j := S
6. ti+s := C
7. return (t2s�1t2s�2 � � � t0)

Modular Multiplication 35

In the following, we show the steps of the computation of a � b = 348 � 857 using the standard
algorithm.

i j Step (C; S) Partial t
0 0 t0 + a0b0 + C (0; �) 000000

0 + 8 � 7 + 0 (5; 6) 000006
1 t1 + a1b0 + C

0 + 4 � 7 + 5 (3; 3) 000036
2 t2 + a2b0 + C

0 + 3 � 7 + 3 (2; 4) 000436
002436

1 0 t1 + a0b1 + C (0; �)
3 + 8 � 5 + 0 (4; 3) 002436

1 t2 + a1b1 + C
4 + 4 � 5 + 4 (2; 8) 002836

2 t3 + a2b1 + C
2 + 3 � 5 + 2 (1; 9) 009836

019836
2 0 t2 + a0b2 + C (0; �)

8 + 8 � 8 + 0 (7; 2) 019236
1 t3 + a1b2 + C

9 + 4 � 8 + 7 (4; 8) 018236
2 t4 + a2b2 + C

1 + 3 � 8 + 4 (2; 9) 098236
298236

In order to implement this algorithm, we need to be able to execute Step 4:

(C; S) := ti+j + aj � bi + C ,

where the variables ti+j, aj, bi, C, and S each hold a single-word, or a W -bit number. This
step is termed as an inner-product operation which is common in many of the arithmetic
and number-theoretic calculations. The inner-product operation above requires that we
multiply two W -bit numbers and add this product to previous `carry' which is also a W -bit
number and then add this result to the running partial product word ti+j. From these three
operations we obtain a 2W -bit number since the maximum value is

2W � 1 + (2W � 1)(2W � 1) + 2W � 1 = 22W � 1 .

Also, since the inner-product step is within the innermost loop, it needs to run as fast
as possible. Of course, the best thing is to have a single microprocessor instruction for
this computation; unfortunately, none of the currently available microprocessors and signal
processors o�ers such a luxury. A brief inspection of the steps of this algorithm reveals that
the total number of inner-product steps is equal to s2. Since s = k=w and w is a constant on a

36 Modular Multiplication

given computer, the standard multiplication algorithm requires O(k2) bit operations in order
to multiply two k-bit numbers. This algorithm is asymptotically slower than the Karatsuba
algorithm and the FFT-based algorithm which are to be studied next. However, it is simpler
to implement and, for small numbers, gives better performance than these asymptotically
faster algorithms.

3.3 Karatsuba-Ofman Algorithm

We now describe a recursive algorithm which requires asymptotically fewer than O(k2) bit
operations to multiply two k-bit numbers. The algorithm was introduced by two Russian
mathematicians Karatsuba and Ofman in 1962. The details of the Karatsuba-Ofman al-
gorithm can be found in Knuth's book [19]. The following is a brief explanation of the
algorithm. First, decompose a and b into two equal-size parts:

a := 2ha1 + a0 ,

b := 2hb1 + b0 ,

i.e., a1 is higher order h bits of a and a0 is the lower h bits of a, assuming k is even and
2h = k. Since we will be worried only about the asymptotics of the algorithm, let us assume
that k is a power of 2. The algorithm breaks the multiplication of a and b into multiplication
of the parts a0, a1, b0, and b1. Since

t := a � b
:= (2ha1 + a0)(2

hb1 + b0)

:= 22h(a1b1) + 2h(a1b0 + a0b1) + a0b0

:= 22ht2 + 2ht1 + t0 ,

the multiplication of two 2h-bit numbers seems to require the multiplication of four h-bit
numbers. This formulation yields a recursive algorithm which we will call the standard
recursive multiplication algorithm (SRMA).

function SRMA(a; b)
t0 := SRMA(a0; b0)
t2 := SRMA(a1; b1)
u0 := SRMA(a0; b1)
u1 := SRMA(a1; b0)
t1 := u0 + u1
return (22ht2 + 2ht1 + t0)

Let T (k) denote the number of bit operations required to multiply two k-bit numbers. Then
the standard recursive multiplication algorithm implies that

T (k) = 4T (
k

2
) + �k ,

Modular Multiplication 37

where �k denotes the number of bit operations required to compute the addition and shift
operations in the above algorithm (� is a constant). Solving this recursion with the initial
condition T (1) = 1, we �nd that the standard recursive multiplication algorithm requires
O(k2) bit operations to multiply two k-bit numbers.

The Karatsuba-Ofman algorithm is based on the following observation that, in fact, three
half-size multiplications su�ce to achieve the same purpose:

t0 := a0 � b0 ,

t2 := a1 � b1 ,

t1 := (a0 + a1) � (b0 + b1)� t0 � t2 = a0 � b1 + a1 � b0 .

This yields the Karatsuba-Ofman recursive multiplication algorithm (KORMA) which is
illustrated below:

function KORMA(a; b)
t0 := KORMA(a0; b0)
t2 := KORMA(a1; b1)
u0 := KORMA(a1 + a0; b1 + b0)
t1 := u0 � t0 � t2
return (22ht2 + 2ht1 + t0)

Let T (k) denote the number of bit operations required to multiply two k-bit numbers using
the Karatsuba-Ofman algorithm. Then,

T (k) = 2T (
k

2
) + T (

k

2
+ 1) + �k � 3T (

k

2
) + �k .

Similarly, �k represents the contribution of the addition, subtraction, and shift operations
required in the recursive Karatsuba-Ofman algorithm. Using the initial condition T (1) = 1,
we solve this recursion and obtain that the Karatsuba-Ofman algorithm requires

O(klog2 3) = O(k1:58)

bit operations in order to multiply two k-bit numbers. Thus, the Karatsuba-Ofman algorithm
is asymptotically faster than the standard (recursive as well as nonrecursive) algorithm which
requires O(k2) bit operations. However, due to the recursive nature of the algorithm, there
is some overhead involved. For this reason, Karatsuba-Ofman algorithm starts paying o� as
k gets larger. Current implementations indicate that after about k = 250, it starts being
faster than the standard nonrecursive multiplication algorithm. Also note that since a0+ a1
is one bit larger, thus, some implementation di�culties may arise. However, we also have
the option of stopping at any point during the recursion. For example, we may apply one
level of recursion and then compute the required three multiplications using the standard
nonrecursive multiplication algorithm.

38 Modular Multiplication

3.4 FFT-based Multiplication Algorithm

The fastest multiplication algorithms use the fast Fourier transform. Although the fast
Fourier transform was originally developed for convolution of sequences, which amounts to
multiplication of polynomials, it can also be used for multiplication of long integers. In the
standard algorithm, the integers are represented by the familiar positional notation. This is
equivalent to polynomials to be evaluated at the radix; for example, 348 = 3x2 + 4x + 8 at
x = 10. Similarly, 857 = 8x2 + 5x + 7 at x = 10. In order to multiply 348 by 857, we can
�rst multiply the polynomials

(3x2 + 4x+ 8)(8x2 + 5x+ 7) = 24x4 + 47x3 + 105x2 + 68x+ 56 ,

then evaluate the resulting polynomial

24(10)4 + 47(10)3 + 105(10)2 + 68(10) + 56 = 298236

at 10 to obtain the product 348 � 857 = 298236. Therefore, if we can multiply polynomials
quickly, then we can multiply large integers quickly. In order to multiply two polynomials, we
utilize the discrete Fourier transform. This is achieved by evaluating these polynomials at the
roots of unity, then multiplying these values pointwise, and �nally interpolating these values
to obtain the coe�cients of the product polynomial. The fast Fourier transform algorithm
allows us to evaluate a given polynomial of degree s�1 at the s roots of unity using O(s log s)
arithmetic operations. Similarly, the interpolation step is performed in O(s log s) time.

A polynomial is determined by its coe�cients. Moreover, there exists a unique polynomial
of degree s � 1 which `visits' s points on the plane provided that the axes of these points
are distinct. These s pairs of points can also be used to uniquely represent the polynomial
of degree s� 1. Let A(x) be a polynomial of degree l � 1, i.e.,

A(x) =
l�1X
i=0

Aix
i .

Also, let ! be the primitive lth root of unity. Then the fast Fourier transform algorithm
can be used to evaluate this polynomial at f1; !; !2; : : : ; !l�1g using O(l log l) arithmetic
operations [31]. In other words, the fast Fourier transform algorithm computes the matrix
vector product

2
66664

A(1)
A(!)
...

A(!l�1)

3
77775 =

2
66664
1 1 � � � 1
1 ! � � � !l�1

...
...

. . .
...

1 !l�1 � � � !(l�1)(l�1)

3
77775

2
66664

A0

A1
...

Al�1

3
77775 ,

in order to obtain the polynomial values A(!i) for i = 0; 1; : : : ; l�1. These polynomial values
also uniquely de�ne the polynomial A(x). Given these polynomial values, the coe�cients Ai

Modular Multiplication 39

for i = 0; 1; : : : ; l � 1 can be obtained by the use of the `inverse' Fourier transform:

2
66664

A0

A1
...

Al�1

3
77775 = l�1

2
66664
1 1 � � � 1
1 !�1 � � � !�(l�1)

...
...

. . .
...

1 !�(l�1) � � � !�(l�1)(l�1)

3
77775

2
66664

A(1)
A(!)
...

A(!l�1)

3
77775 ,

where l�1 and !�1 are the inverses of l and !, respectively. The polynomial multiplication
algorithm utilizes these subroutines. Let the polynomials a(x) and b(x)

a(x) =
s�1X
i=0

aix
i , b(x) =

s�1X
i=0

bix
i

denote the multiprecision numbers a = (as�1as�2 � � �a0) b = (bs�1bs�2 � � � b0) represented in
radixW where ai and bi are the `digits' with the property 0 � ai; bi � W �1. Let the integer
l = 2s be a power of 2. Given the primitive lth root of unity !, the following algorithm
computes the product t = (tl�1tl�2 � � � t0).

FFT-based Integer Multiplication Algorithm

Step 1. Evaluate a(!i) and b(!i) for i = 0; 1; : : : ; l� 1 by calling the fast Fourier transform
procedure.

Step 2. Multiply pointwise to obtain

fa(1)b(1); a(!)b(!); : : : ; a(!l�1)b(!l�1)g .

Step 3. Interpolate t(x) =
Pl�1

i=0 tix
i by evaluating

l�1
l�1X
i=0

a(!i)b(!i)xi

on f1; !�1; : : : ; !�(l�1)g using the fast Fourier transform procedure.

Step 4. Return the coe�cients (tl�1; tl�2; : : : ; t0).

The above fast integer multiplication algorithm works over an arbitrary �eld in which
l�1 and a primitive lth root of unity exist. Here, the most important question is which
�eld to use. The fast Fourier transform was originally developed for the �eld of complex
numbers in which the familiar lth root of unity e2�j=l makes this �eld the natural choice (here,
j =

p�1). However, there are computational di�culties in the use of complex numbers.
Since computers can only perform �nite precision arithmetic, we may not be able perform
arithmetic with quantities such as e2�j=l because these numbers may be irrational.

40 Modular Multiplication

In 1971, Pollard [36] showed that any �eld can be used provided that l�1 and a primitive
lth root of unity are available. We are especially interested in �nite �elds, since our computers
perform �nite precision arithmetic. The �eld of choice is the Galois �eld of p elements where
p is a prime and l divides p�1. This is due to the theorem which states that if p be prime and
l divides p�1, then l�1 is in GF (p) and GF (p) has a primitive lth root of unity. Fortunately,
such primes p are not hard to �nd. Primes of the form 2rs + 1, where s is odd, have been
listed in books, e.g, in [39]. Their primitive roots are readily located by successively testing.
There exist an abundance of primes in the arithmetic progression 2rs + 1, and primitive
roots make up more than 3 out of every �2 elements in the range from 2 to p � 1 [31, 7].
For example, there are approximately 180 primes p = 2rs + 1 < 231 with r � 20. Any such
prime can be used to compute the fast Fourier transform of size 220 [31]. Their primitive
roots may also be found in a reasonable amount of time. The following list are the 10 largest
primes of the form p = 2rs+ 1 � 231 � 1 with r > 20 and their least primitive roots �.

p r �
2130706433 24 3
2114977793 20 3
2113929217 25 5
2099249153 21 3
2095054849 21 11
2088763393 23 5
2077229057 20 3
2070937601 20 6
2047868929 20 13
2035286017 20 10

The primite lth root of unity can easily be computed from � using �(p�1)=l. Thus, mod
p FFT computations are viable. There are many Fourier primes, i.e., primes p for which
FFTs in modulo p arithmetic exist. Moreover, there exists a reasonably e�cient algorithm
for determining such primes along with their primitive elements [31]. From these primitive
elements, the required primitive roots of unity can be e�ciently computed. This method
for multiplication of long integers using the fast Fourier transform over �nite �elds was
discovered by Sch�onhage and Strassen [45]. It is described in detail by Knuth [19]. A careful
analysis of the algorithm shows that the product of two k-bit numbers can be performed
using O(k log k log log k) bit operations. However, the constant in front of the order function
is high. The break-even point is much higher than that of Karatsuba-Ofman algorithm. It
starts paying o� for numbers with several thousand bits. Thus, they are not very suitable
for performing RSA operations.

3.5 Squaring is Easier

Squaring is an easier operation than multiplication since half of the single-precision multi-
plications can be skipped. This is due to the fact that tij = ai � aj = tji.

Modular Multiplication 41

a3 a2 a1 a0
� a3 a2 a1 a0

t03 t02 t01 t00
t13 t12 t11 t01

t23 t22 t12 t02
+ t33 t23 t13 t03

2t03 2t02 2t01 t00
2t13 2t12 t11

2t23 t22
+ t33
t7 t6 t5 t4 t3 t2 t1 t0

Thus, we can modify the standard multiplication procedure to take advantage of this property
of the squaring operation.

The Standard Squaring Algorithm

Input: a
Output: t = a � a
0. Initially ti := 0 for all i = 0; 1; : : : ; 2s� 1.
1. for i = 0 to s� 1
2. (C; S) := ti+i + ai � ai
3. for j = i+ 1 to s� 1
4. (C; S) := ti+j + 2 � aj � ai + C
5. ti+j := S
6. ti+s := C
7. return (t2s�1t2s�2 � � � t0)

However, we warn the reader that the carry-sum pair produced by operation

(C; S) := ti+j + 2 � aj � ai + C

in Step 4 may be 1 bit longer than a single-precision number which requires w bits. Since

(2w � 1) + 2(2w � 1)(2w � 1) + (2w � 1) = 22w+1 � 2w+1

and

22w � 1 < 22w+1 � 2w+1 < 22w+1 � 1 ,

the carry-sum pair requires 2w + 1 bits instead of 2w bits for its representation. Thus, we
need to accommodate this `extra' bit during the execution of the operations in Steps 4, 5,
and 6. The resolution of this carry may depend on the way the carry bits are handled by
the particular processor's architecture. This issue, being rather implementation-dependent,
will not be discussed here.

42 Modular Multiplication

3.6 Computation of the Remainder

The multiply-and-reduce modular multiplication algorithm �rst computes the product a � b
(or, a � a) using one of the multiplication algorithms given above. The multiplication step is
then followed by a division algorithm in order to compute the remainder. However, as we
have noted in Section 3.1, we are not interested in the quotient; we only need the remainder.
Therefore, the steps of the division algorithm can somewhat be simpli�ed in order to speed up
the process. The reduction step can be achieved by making one of the well-known sequential
division algorithms. In the following sections, we describe the restoring and the nonrestoring
division algorithms for computing the remainder of t when divided by n.

Division is the most complex of the four basic arithmetic operations. First of all, it has
two results: the quotient and the remainder. Given a dividend t and a divisor n, a quotient
Q and a remainder R have to be calculated in order to satisfy

t = Q � n+R with R < n .

If t and n are positive, then the quotient Q and the remainder R will be positive. The
sequential division algorithm successively shifts and subtracts n from t until a remainder
R with the property 0 � R < n is found. However, after a subtraction we may obtain a
negative remainder. The restoring and nonrestoring algorithms take di�erent actions when
a negative remainder is obtained.

3.6.1 Restoring Division Algorithm

Let Ri be the remainder obtained during the ith step of the division algorithm. Since we
are not interested in the quotient, we ignore the generation of the bits of the quotient in the
following algorithm. The procedure given below �rst left-aligns the operands t and n. Since
t is 2k-bit number and n is a k-bit number, the left alignment implies that n is shifted k
bits to the left, i.e., we start with 2kn. Furthermore, the initial value of R is taken to be t,
i.e., R0 = t. We then subtract the shifted n from t to obtain R1; if R1 is positive or zero, we
continue to the next step. If it is negative the remainder is restored to its previous value.

The Restoring Division Algorithm

Input: t; n
Output: R = a mod n
1. R0 := t
2. n := 2kn
3. for i = 1 to k
4. Ri := Ri�1 � n
5. if Ri < 0 then Ri := Ri�1

6. n := n=2
7. return Rk

Modular Multiplication 43

In Step 5 of the algorithm, we check the sign of the remainder; if it is negative, the previous
remainder is taken to be the new remainder, i.e., a restore operation is performed. If the
remainder Ri is positive, it remains as the new remainder, i.e., we do not restore. The
restoring division algorithm performs k subtractions in order to reduce the 2k-bit number
t modulo the k-bit number n. Thus, it takes much longer than the standard multiplication
algorithm which requires s = k=w inner-product steps, where w is the word-size of the
computer.

In the following, we give an example of the restoring division algorithm for computing
3019 mod 53, where 3019 = (101111001011)2 and 53 = (110101)2. The result is 51 =
(110011)2.

R0 101111 001011 t
n 110101 subtract

� 000110 negative remainder
R1 101111 001011 restore
n=2 11010 1 shift and subtract

+ 10100 1 positive remainder
R2 10100 101011 not restore
n=2 1101 01 shift and subtract

+ 0111 01 positive remainder
R3 0111 011011 not restore
n=2 110 101 shift and subtract

+ 000 110 positive remainder
R4 000 110011 not restore
n=2 11 0101 shift
n=2 1 10101 shift
n=2 110101 shift and subtract

+ 000010 negative remainder
R5 110011 restore
R 110011 �nal remainder

Also, before subtracting, we may check if the most signi�cant bit of the remainder is 1. In
this case, we perform a subtraction. If it is zero, there is no need to subtract since n > Ri.
We shift n until it is aligned with a nonzero most signi�cant bit of Ri. This way we are able
to skip several subtract/restore cycles. In the average, k=2 subtractions are performed.

3.6.2 Nonrestoring Division Algorithm

The nonrestoring division algorithm allows a negative remainder. In order to correct the
remainder, a subtraction or an addition is performed during the next cycle, depending on
the whether the sign of the remainder is positive or negative, respectively. This is based on
the following observation: Suppose Ri = Ri�1 � n < 0, then the restoring algorithm assigns

44 Modular Multiplication

Ri := Ri�1 and performs a subtraction with the shifted n, obtaining

Ri+1 = Ri � n=2 = Ri�1 � n=2 .

However, if Ri = Ri�1 � n < 0, then one can instead let Ri remain negative and add the
shifted n in the following cycle. Thus, one obtains

Ri+1 = Ri + n=2 = (Ri�1 � n) + n=2 = Ri�1 � n=2 ,

which would be the same value. The steps of the nonrestoring algorithm, which implements
this observation, are given below:

The Nonrestoring Division Algorithm

Input: t; n
Output: R = t mod n
1. R0 := t
2. n := 2kn
3. for i = 1 to k
4. if Ri�1 > 0 then Ri := Ri�1 � n
5. else Ri := Ri�1 + n
6. n := n=2
7. if Rk < 0 then R := R + n
8. return Rk

Note that the nonrestoring division algorithm requires a �nal restoration cycle in which a
negative remainder is corrected by adding the last value of n back to it. In the following we
compute 51 = 3019 mod 53 using the nonrestoring division algorithm. Since the remainder
is allowed to stay negative, we use 2's complement coding to represent such numbers.

R0 0101111 001011 t
n 0110101 subtract
R1 1111010 negative remainder
n=2 011010 1 add
R2 010100 1 positive remainder
n=2 01101 01 subtract
R3 00111 01 positive remainder
n=2 0110 101 subtract
R4 0000 110 positive remainder
n=2 011 0101
n=2 01 10101
n=2 0 110101 subtract
R5 1 111110 negative remainder
n 0 110101 add (�nal restore)
R 0 110011 Final remainder

Modular Multiplication 45

3.7 Blakley's Method

Blakley's method [2, 47] directly computes a � b mod n by interleaving the shift-add steps of
the multiplication and the shift-subtract steps of the division. Since the division algorithm
proceeds bit-by-bit, the steps of the multiplication algorithm must also follow this process.
This implies that we use a bit-by-bit multiplication algorithm rather than a word-by-word
multiplication algorithm which would be much quicker. However, the bit-by-bit multiplica-
tion algorithms can be made run faster by employing bit-recoding techniques. Furthermore,
them-ary segmentation of the operands and canonical recoding of the multiplier allows much
faster implementations [27]. In the following we describe the steps of Blakley's algorithm.
Let ai and bi represent the bits of the k-bit numbers a and b, respectively. Then, the product
t which is a 2k-bit number can be written as

t = a � b =

k�1X
i=0

ai2
i

!
� b =

k�1X
i=0

(ai � b)2i .

Blakley's algorithm is based on the above formulation of the product t, however, at each
step, we perform a reduction in order to make sure that the remainder is less than n. The
reduction step may involve several subtractions.

The Blakley Algorithm

Input: a; b; n
Output: R = a � b mod n
1. R := 0
2. for i = 0 to k � 1
3. R := 2R + ak�1�i � b
4. R := R mod n
5. return R

At Step 3, the partial remainder is shifted one bit to the right and the product ak�1�ib
is added to the result. This is a step of the right-to-left multiplication algorithm. Let us
assume that 0 � a; b; R � n� 1. Then the new R will be in the range 0 � R � 3n� 3 since
Step 3 of the algorithm implies

R := 2R + aj � b � 2(n� 1) + (n� 1) = 3n� 3 ,

i.e., at most 2 subtractions will be needed to bring the new R to the range [0; n� 1]. Thus,
Step 4 of the algorithm can be expanded as:

4.1 If R � n then R := R� n
4.2 If R � n then R := R� n

This algorithm computes the remainder R in k steps, where at each step one left shift,
one addition, and at most two subtractions are performed; the operands involved in these
computations are k-bit binary numbers.

46 Modular Multiplication

3.8 Montgomery's Method

In 1985, P. L. Montgomery introduced an e�cient algorithm [32] for computing R = a �
b mod n where a, b, and n are k-bit binary numbers. The algorithm is particularly suitable for
implementation on general-purpose computers (signal processors or microprocessors) which
are capable of performing fast arithmetic modulo a power of 2. The Montgomery reduction
algorithm computes the resulting k-bit number R without performing a division by the
modulus n. Via an ingenious representation of the residue class modulo n, this algorithm
replaces division by n operation with division by a power of 2. This operation is easily
accomplished on a computer since the numbers are represented in binary form. Assuming
the modulus n is a k-bit number, i.e., 2k�1 � n < 2k, let r be 2k. The Montgomery reduction
algorithm requires that r and n be relatively prime, i.e., gcd(r; n) = gcd(2k; n) = 1. This
requirement is satis�ed if n is odd. In the following we summarize the basic idea behind the
Montgomery reduction algorithm.

Given an integer a < n, we de�ne its n-residue with respect to r as

�a = a � r mod n .

It is straightforward to show that the set

f i � r mod n j 0 � i � n� 1 g

is a complete residue system, i.e., it contains all numbers between 0 and n�1. Thus, there is
a one-to-one correspondence between the numbers in the range 0 and n�1 and the numbers
in the above set. The Montgomery reduction algorithm exploits this property by introducing
a much faster multiplication routine which computes the n-residue of the product of the two
integers whose n-residues are given. Given two n-residues �a and �b, the Montgomery product

is de�ned as the n-residue
�R = �a � �b � r�1 mod n

where r�1 is the inverse of r modulo n, i.e., it is the number with the property

r�1 � r = 1 mod n .

The resulting number �R is indeed the n-residue of the product

R = a � b mod n

since

�R = �a � �b � r�1 mod n

= a � r � b � r � r�1 mod n

= a � b � r mod n .

Modular Multiplication 47

In order to describe the Montgomery reduction algorithm, we need an additional quantity,
n0, which is the integer with the property

r � r�1 � n � n0 = 1 .

The integers r�1 and n0 can both be computed by the extended Euclidean algorithm [19].
The Montgomery product algorithm, which computes

u = �a � �b � r�1 (mod n)

given �a and �b, is given below:

function MonPro(�a;�b)
Step 1. t := �a � �b
Step 2. m := t � n0 mod r
Step 3. u := (t +m � n)=r
Step 4. if u � n then return u� n

else return u

The most important feature of the Montgomery product algorithm is that the operations
involved are multiplications modulo r and divisions by r, both of which are intrinsically fast
operations since r is a power 2. The MonPro algorithm can be used to compute the product
of a and b modulo n, provided that n is odd.

function ModMul(a; b; n) f n is an odd number g
Step 1. Compute n0 using the extended Euclidean algorithm.
Step 2. �a := a � r mod n
Step 3. �b := b � r mod n
Step 4. �x := MonPro(�a;�b)
Step 5. x := MonPro(�x; 1)
Step 6. return x

A better algorithm can be given by observing the property

MonPro(�a; b) = (a � r) � b � r�1 = a � b (mod n) ,

which modi�es the above algorithm as

function ModMul(a; b; n) f n is an odd number g
Step 1. Compute n0 using the extended Euclidean algorithm.
Step 2. �a := a � r mod n
Step 3. x := MonPro(�a; b)
Step 4. return x

However, the preprocessing operations, especially the computation of n0, are rather time-
consuming. Thus, it is not a good idea to use the Montgomery product computation algo-
rithm when a single modular multiplication is to be performed.

48 Modular Multiplication

3.8.1 Montgomery Exponentiation

The Montgomery product algorithm is more suitable when several modular multiplications
with respect to the same modulus are needed. Such is the case when one needs to compute a
modular exponentiation, i.e., the computation ofM e mod n. Using one of the addition chain
algorithms given in Chapter 2, we replace the exponentiation operation by a series of square
and multiplication operations modulo n. This is where the Montgomery product operation
�nds its best use. In the following we summarize the modular exponentiation operation which
makes use of the Montgomery product function MonPro. The exponentiation algorithm uses
the binary method.

function ModExp(M; e; n) f n is an odd number g
Step 1. Compute n0 using the extended Euclidean algorithm.
Step 2. �M :=M � r mod n
Step 3. �x := 1 � r mod n
Step 4. for i = k � 1 down to 0 do
Step 5. �x := MonPro(�x; �x)
Step 6. if ei = 1 then �x := MonPro(�M; �x)
Step 7. x := MonPro(�x; 1)
Step 8. return x

Thus, we start with the ordinary residue M and obtain its n-residue �M using a division-
like operation, which can be achieved, for example, by a series of shift and subtract oper-
ations. Additionally, Steps 2 and 3 require divisions. However, once the preprocessing has
been completed, the inner-loop of the binary exponentiation method uses the Montgomery
product operations which performs only multiplicationsmodulo 2k and divisions by 2k. When
the binary method �nishes, we obtain the n-residue �x of the quantity x = M e mod n. The
ordinary residue number is obtained from the n-residue by executing the MonPro function
with arguments �x and 1. This is easily shown to be correct since

�x = x � r mod n

immediately implies that

x = �x � r�1 mod n = �x � 1 � r�1 mod n := MonPro(�x; 1) .

The resulting algorithm is quite fast as was demonstrated by many researchers and engi-
neers who have implemented it, for example, see [10, 30]. However, this algorithm can be
re�ned and made more e�cient, particularly when the numbers involved are multi-precision
integers. For example, Duss�e and Kaliski [10] gave improved algorithms, including a simple
and e�cient method for computing n0. We wil describe these methods in Section 4.2.

3.8.2 An Example of Exponentiation

Here we show how to compute x = 710 mod 13 using the Montgomery exponentiation algo-
rithm.

Modular Multiplication 49

� Since n = 13, we take r = 24 = 16 > n.

� Computation of n0:

Using the extended Euclidean algorithm, we determine that 16 � 9� 13 � 11 = 1, thus,
r�1 = 9 and n0 = 11.

� Computation of �M :

Since M = 7, we have �M :=M � r (mod n) = 7 � 16 (mod 13) = 8.

� Computation of �x for x = 1:

We have �x := x � r (mod n) = 1 � 16 (mod 13) = 3.

� Steps 5 and 6 of the ModExp routine:

ei Step 5 Step 6

1 MonPro(3; 3) = 3 MonPro(8; 3) = 8
0 MonPro(8; 8) = 4
1 MonPro(4; 4) = 1 MonPro(8; 1) = 7
0 MonPro(7; 7) = 12

� Computation of MonPro(3; 3) = 3:
t := 3 � 3 = 9
m := 9 � 11 (mod 16) = 3
u := (9 + 3 � 13)=16 = 48=16 = 3

� Computation of MonPro(8; 3) = 8:
t := 8 � 3 = 24
m := 24 � 11 (mod 16) = 8
u := (24 + 8 � 13)=16 = 128=16 = 8

� Computation of MonPro(8; 8) = 4:
t := 8 � 8 = 64
m := 64 � 11 (mod 16) = 0
u := (64 + 0 � 13)=16 = 64=16 = 4

� Computation of MonPro(4; 4) = 1:
t := 4 � 4 = 16
m := 16 � 11 (mod 16) = 0
u := (16 + 0 � 13)=16 = 16=16 = 1

� Computation of MonPro(8; 1) = 7:
t := 8 � 1 = 8
m := 8 � 11 (mod 16) = 8
u := (8 + 8 � 13)=16 = 112=16 = 7

� Computation of MonPro(7; 7) = 12:
t := 7 � 7 = 49
m := 49 � 11 (mod 16) = 11
u := (49 + 11 � 13)=16 = 192=16 = 12

� Step 7 of the ModExp routine: x = MonPro(12; 1) = 4
t := 12 � 1 = 12
m := 12 � 11 (mod 16) = 4
u := (12 + 4 � 13)=16 = 64=16 = 4

Thus, we obtain x = 4 as the result of the operation 710 mod 13.

50 Modular Multiplication

3.8.3 The Case of Even Modulus

Since the existence of r�1 and n0 requires that n and r be relatively prime, we cannot use
the Montgomery product algorithm when this rule is not satis�ed. We take r = 2k since
arithmetic operations are based on binary arithmetic modulo 2w where w is the word-size
of the computer. In case of single-precision integers, we take k = w. However, when the
numbers are large, we choose k to be an integer multiple of w. Since r = 2k, the Montgomery
modular exponentiation algorithm requires that

gcd(r; n) = gcd(2k; n) = 1

which is satis�ed if and only if n is odd. We now describe a simple technique [22] which can
be used whenever one needs to compute modular exponentiation with respect to an even
modulus. Let n be factored such that

n = q � 2j

where q is an odd integer. This can easily be accomplished by shifting the even number n to
the right until its least-signi�cant bit becomes one. Then, by the application of the Chinese
remainder theorem, the computation of

x = ae mod n

is broken into two independent parts such that

x1 = ae mod q ,

x2 = ae mod 2j .

The �nal result x has the property

x = x1 mod q ,

x = x2 mod 2j ,

and can be found using one of the Chinese remainder algorithms: The single-radix conversion
algorithm or the mixed-radix conversion algorithm [49, 19, 31]. The computation of x1 can be
performed using the ModExp algorithm since q is odd. Meanwhile the computation of x2 can
be performed even more easily since it involves arithmetic modulo 2j. There is however some
overhead involved due to the introduction of the Chinese remainder theorem. According to
the mixed-radix conversion algorithm, the number whose residues are x1 and x2 modulo q
and 2j, respectively, is equal to

x = x1 + q � y
where

y = (x2 � x1) � q�1 mod 2j .

The inverse q�1 mod 2j exists since q is odd. It can be computed using the simple algorithm
given in Section 4.2. We thus have the following algorithm:

Modular Multiplication 51

function EvenModExp(a; e; n) f n is an even number g
1. Shift n to the right obtain the factorization n = q � 2j.
2. Compute x1 := ae mod q using ModExp routine above.
3. Compute x2 := ae mod 2j using the binary method and modulo 2j arithmetic.
4. Compute q�1 mod 2j and y := (x2 � x1) � q�1 mod 2j.
5. Compute x := x1 + q � y and return x.

3.8.4 An Example of Even Modulus Case

The computation of ae mod n for a = 375, e = 249, and n = 388 is illustrated below.

Step 1. n = 388 = (110000100)2 = (11000001)2 � 22 = 97� 22. Thus, q = 97 and j = 2.

Step 2. Compute x1 = ae mod q by calling ModExp with parameters a = 375, e = 249,
and q = 97. We must remark, however, that we can reduce a and e modulo q and �(q),
respectively. The latter is possible if we know the factorization of q. Such knowledge is
not necessary but would further decrease the computation time of the ModExp routine.
Assuming we do not know the factorization of q, we only reduce a to obtain

a mod q = 375 mod 97 = 84

and call the ModExp routine with parameters (84; 249; 97). Since q is odd, the ModExp
routine successfully computes the result as x1 = 78.

Step 3. Compute x2 = ae mod 2j by calling an exponentiation routine based on the binary
method and modulo 2j arithmetic. Before calling such routine we should reduce the
parameters as

a mod 2j = 375 mod 4 = 3
e mod �(2j) = 249 mod 2 = 1

In this case, we are able to reduce the exponent since we know that �(2j) = 2j�1.
Thus, we call the exponentiation routine with the parameters (3; 1; 4). The routine
computes the result as x2 = 3.

Step 4. Using the extended Euclidean algorithm, compute

q�1 mod 2j = 97�1 mod 4 = 1 .

Now compute

y = (x2 � x1) � q�1 mod 2j

= (3� 78) � 1 mod 4

= 1 .

Step 5. Compute and return the �nal result

x = x1 + q � y = 78 + 97 � 1 = 175 .

52 Modular Multiplication

Chapter 4

Further Improvements and

Performance Analysis

4.1 Fast Decryption using the CRT

The RSA decryption and signing operation, i.e., given C, the computation of

M := Cd (mod n) ,

can be performed faster using the Chinese remainder theorem (CRT) since the user knows
the factors of the modulus: n = p�q. This method was proposed by Quisquater and Couvreur
[37], and is based on the Chinese remainder theorem, another number theory gem, like the
binary method, coming to us from antiquity. Let pi for i = 1; 2; : : : ; k be pairwise relatively
prime integers, i.e.,

gcd(pi; pj) = 1 for i 6= j .

Given ui 2 [0; pi � 1] for i = 1; 2; : : : ; k, the Chinese remainder theorem states that there
exists a unique integer u in the range [0; P � 1] where P = p1p2 � � �pk such that

u = ui (mod pi) .

The Chinese remainder theorem tells us that the computation of

M := Cd (mod p � q) ,

can be broken into two parts as

M1 := Cd (mod p) ,

M2 := Cd (mod q) ,

after which the �nal value ofM is computed (lifted) by the application of a Chinese remainder
algorithm. There are two algorithms for this computation: The single-radix conversion

53

54 Further Improvements and Performance Analysis

(SRC) algorithm and the mixed-radix conversion (MRC) algorithm. Here, we briey describe
these algorithms, details of which can be found in [14, 49, 19, 31]. Going back to the general
example, we observe that the SRC or the MRC algorithm computes u given u1; u2; : : : ; uk
and p1; p2; : : : ; pk. The SRC algorithm computes u using the summation

u =
kX

i=1

uiciPi (mod P) ,

where

Pi = p1p2 � � �pi�1pi+1 � � � pk = P

pi
,

and ci is the multiplicative inverse of Pi modulo pi, i.e.,

ciPi = 1 (mod pi) .

Thus, applying the SRC algorithm to the RSA decryption, we �rst compute

M1 := Cd (mod p) ,

M2 := Cd (mod q) ,

However, applying Fermat's theorem to the exponents, we only need to compute

M1 := Cd1 (mod p) ,

M2 := Cd2 (mod q) ,

where

d1 := d mod (p� 1) ,

d2 := d mod (q � 1) .

This provides some savings since d1; d2 < d; in fact, the sizes of d1 and d2 are about half of
the size of d. Proceeding with the SRC algorithm, we compute M using the sum

M =M1c1
pq

p
+M2c2

pq

q
(mod n) = M1c1q +M2c2p (mod n) ,

where c1 = q�1 (mod p) and c2 = p�1 (mod q). This gives

M =M1(q
�1 mod p)q +M2(p

�1 mod q)p (mod n) .

In order to prove this, we simply show that

M (mod p) = M1 � 1 + 0 = M1 ,

M (mod q) = 0 +M2 � 1 = M2 .

Further Improvements and Performance Analysis 55

The MRC algorithm, on the other hand, computes the �nal number u by �rst computing
a triangular table of values:

u11
u21 u22
u31 u32 u33
...

...
...

. . .

uk1 uk2 � � � � � � uk;k

where the �rst column of the values ui1 are the given values of ui, i.e., ui1 = ui. The values in
the remaining columns are computed sequentially using the values from the previous column
according to the recursion

ui;j+1 = (uij � ujj)cji (mod pi) ,

where cji is the multiplicative inverse of pj modulo pi, i.e.,

cjipj = 1 (mod pi) .

For example, u32 is computed as

u32 = (u31 � u11)c13 (mod p3) ,

where c13 is the inverse of p1 modulo p3. The �nal value of u is computed using the summation

u = u11 + u22p1 + u33p1p2 + � � �+ ukkp1p2 � � � pk�1
which does not require a �nal modulo P reduction. Applying the MRC algorithm to the
RSA decryption, we �rst compute

M1 := Cd1 (mod p) ,

M2 := Cd2 (mod q) ,

where d1 and d2 are the same as before. The triangular table in this case is rather small,
and consists of

M11

M21 M22

where M11 =M1, M21 =M2, and

M22 = (M21 �M11)(p
�1 mod q) (mod q) .

Therefore, M is computed using

M :=M1 + [(M2 �M1) � (p�1 mod q) mod q] � p .

This expression is correct since

M (mod p) = M1 + 0 = M1 ,

M (mod q) = M1 + (M2 �M1) � 1 = M2 .

The MRC algorithm is more advantageous than the SRC algorithm for two reasons:

56 Further Improvements and Performance Analysis

� It requires a single inverse computation: p�1 mod q.

� It does not require the �nal modulo n reduction.

The inverse value (p�1 mod q) can be precomputed and saved. Here, we note that the order
of p and q in the summation in the proposed public-key cryptography standard PKCS # 1
is the reverse of our notation. The data structure [43] holding the values of user's private
key has the variables:

exponent1 INTEGER, -- d mod (p-1)

exponent2 INTEGER, -- d mod (q-1)

coefficient INTEGER, -- (inverse of q) mod p

Thus, it uses (q�1 mod p) instead of (p�1 mod q). Let M1 and M2 be de�ned as before. By
reversing p, q and M1, M2 in the summation, we obtain

M :=M2 + [(M1 �M2) � (q�1 mod p) mod p] � q .

This summation is also correct since

M (mod q) = M2 + 0 = M2 ,

M (mod p) = M2 + (M1 �M2) � 1 = M1 ,

as required. Assuming p and q are (k=2)-bit binary numbers, and d is as large as n which
is a k-bit integer, we now calculate the total number of bit operations for the RSA decryp-
tion using the MRC algorithm. Assuming d1, d2, (p

�1 mod q) are precomputed, and that
the exponentiation algorithm is the binary method, we calculate the required number of
multiplications as

� Computation of M1:
3
2
(k=2) (k=2)-bit multiplications.

� Computation of M2:
3
2
(k=2) (k=2)-bit multiplications.

� Computation of M : One (k=2)-bit subtraction, two (k=2)-bit multiplications, and one
k-bit addition.

Also assuming multiplications are of order k2, and subtractions are of order k, we calculate
the total number of bit operations as

2
3k

4
(k=2)2 + 2(k=2)2 + (k=2) + k =

3k3

8
+
k2 + 3k

2
.

On the other hand, the algorithm without the CRT would compute M = Cd (mod n) di-
rectly, using (3=2)k k-bit multiplications which require 3k3=2 bit operations. Thus, consider-
ing the high-order terms, we conclude that the CRT based algorithm will be approximately
4 times faster.

Further Improvements and Performance Analysis 57

4.2 Improving Montgomery's Method

The Montgomery method uses the Montgomery multiplication algorithm in order to compute
multiplications and squarings required during the exponentiation process. One drawback of
the algorithm is that it requires the computation of n0 which has the property

r � r�1 � n � n0 = 1 ,

where r = 2k and the k-bit number n is the RSA modulus. In this section, we show how to
speed up the computation of n0 within the MonPro routine. Our �rst observation is that we
do not need the entire value of n0. We repeat the MonPro routine from Section 3.8 in order
to explain this observation:

function MonPro(�a;�b)
Step 1. t := �a � �b
Step 2. m := t � n0 mod r
Step 3. u := (t +m � n)=r
Step 4. if u � n then return u� n

else return u

The multiplication of these multi-precision numbers are performed by breaking them into
words, as shown in Section 3.2. Let w be the wordsize of the computer. Then, these large
numbers can be thought of integers represented in radix W = 2w. Assuming, these numbers
require s words in their radix W representation, we can take r = 2sw. The multiplication
routine, then, accomplishes its task by computing a series of inner-product operations. For
example, the multiplication of �a and �b in Step 1 is performed using:

1. for i = 0 to s� 1
2. C := 0
3. for j = 0 to s� 1
4. (C; S) := ti+j + �aj � �bi + C
5. ti+j := S
6. ti+s := C

When �a = �b, we can use the squaring algorithm given in Section 3.5. This will provide
about 50 % savings in the time spent in Step 1 of the MonPro routine. The �nal value
obtained is the 2s-precision integer (t2s�1t2s�2 � � � t0). The computation of m and u in Steps
2 and 3 of the MonPro routine can be interleaved. We �rst take u = t, and then addm�n to it
using the standard multiplication routine, and �nally divide it by 2sw which is accomplished
using a shift operation (or, we just ignore the lower sw bits of u). Since m = t �n0 mod r and
the interleaving process proceeds word by word, we can use n00 = n0 mod 2w instead of n0.
This observation was made by Duss�e and Kaliski [10], and used in their RSA implementation
for the Motorola DSP 56000.

Thus, after t is computed by multiplying �a and �b using the above code, we proceed with
the following code which updates t in order to compute t +m � n.

58 Further Improvements and Performance Analysis

7. for i = 0 to s� 1
8. C := 0
9. m := ti � n00 mod 2w

10. for j = 0 to s� 1
11. (C; S) := ti+j +m � nj + C
12. ti+j := S
13. for j = i+ s to 2s� 1
14. (C; S) := tj + C
15. tj := S
16. t2s := C

In Step 9, we multiply ti by n
0

0 modulo 2w to compute m. This value of m is then used
in the inner-product step. Steps 13, 14, and 15 are needed to take of the carry propagating
to the last word of t. We did not need these steps in multiplying �a and �b (Steps 1{6) since
the initial value of t was zero. In Step 16, we save the last carry out of the operation in Step
14. Thus, the length of the variable t becomes 2s + 1 due to this carry. After Step 16, we
divide t by r, i.e., simply ignore the lower half of t. The resulting value is u which is then
compared to n; if it is larger than n, we subtract n from it and return this value. These
steps of the MonPro routine are given below:

17. for j = 0 to s
18. uj := tj+s
19. B = 0
20. for j = 0 to s
21. (B;D) := uj � nj � B
22. vj := D
23. if B = 0 then return (vs�1vs�2 � � �v0)

else return (us�1us�2 � � �u0)
Thus, we have greatly simpli�ed the MonPro routine by avoiding the full computation of

n0, and by using only single-precision multiplication to multiply t and n0. In the following, we
will give an e�cient algorithm for computing n00. However, before that, we give an example in
which the computations performed in the MonPro routine are summarized. In this example,
we will use decimal arithmetic for simplicity of the illustration. Let n = 311 and r = 1000.
It is easy to show that the inverse of r is

r�1 = 65 (mod n) ,

and also that

n0 =
r � r�1 � 1

n
=

1000 � 65� 1

311
= 209 ,

and thus, n00 = 9. We will compute the Montgomery product of 216 and 123, which is equal
to 248 since

MonPro(216; 123) = 216 � 123 � r�1 = 248 (mod n) .

Further Improvements and Performance Analysis 59

The �rst step of the algorithm is to compute the product 216 � 123, accomplished in Steps
1{6. The initial value of t is zero, i.e., t = 000 000.

i j (C; S) t = 000 000

0 0 0 + 6 � 3 + 0 = 18 000 008
1 0 + 1 � 3 + 1 = 04 000 048
2 0 + 2 � 3 + 0 = 06 000 648

1 0 4 + 6 � 2 + 0 = 16 000 668
1 6 + 1 � 2 + 1 = 09 000 968
2 0 + 2 � 2 + 0 = 04 004 968

2 0 9 + 6 � 1 + 0 = 15 004 568
1 4 + 1 � 1 + 1 = 06 006 568
2 0 + 2 � 1 + 0 = 02 026 568

Then, we execute Steps 7 through 16, in order to compute (t+m � n) using the value of
n00 = 9. The initial value of t = 026 568 comes from the previous step. Steps 7 through 16
are illustrated below:

i m mod 10 j (C; S) t = 026 568

0 8 � 9 = 2 0 8 + 2 � 1 + 0 = 10 026 560
1 6 + 2 � 1 + 1 = 09 026 590
2 5 + 2 � 3 + 0 = 11 026 190
3 6 + 1 = 07 027 190
4 2 + 0 = 02 027 190
5 0 + 0 = 00 027 190

1 9 � 9 = 1 0 9 + 1 � 1 + 0 = 10 027 100
1 1 + 1 � 1 + 1 = 03 027 300
2 7 + 1 � 3 + 0 = 10 020 300
4 2 + 1 = 03 030 300
5 0 + 0 = 00 030 300

2 3 � 9 = 7 0 3 + 7 � 1 + 0 = 10 030 000
1 0 + 7 � 1 + 1 = 08 038 000
2 3 + 7 � 3 + 0 = 24 048 000
5 0 + 2 = 02 0 248 000

After Step 15, we divide t by r by shifting it s words to the right. Thus, we obtain the
value of u as 248. Then, subtraction is performed to check if u � n; if it is, u�n is returned
as the �nal product value. Since in our example 248 < 311, we return 248 as the result of
the routine MonPro(126; 123), which is the correct value.

As we have pointed out earlier, there is an e�cient algorithm for computing the single
precision integer n00. The computation of n00 can be performed by a specialized Euclidean
algorithm instead of the general extended Euclidean algorithm. Since r = 2sw and

r � r�1 � n � n0 = 1 ,

60 Further Improvements and Performance Analysis

we take modulo 2w of the both sides, and obtain

�n � n0 = 1 (mod 2w) ,

or, in other words,
n00 = �n�10 (mod 2w) ,

where n00 and n
�1
0 are the least signi�cant words (the least signi�cant w bits) of n0 and n�1,

respectively. In order to compute �n�10 (mod 2w), we use the algorithm given below which
computes x�1 (mod 2w) for a given odd x.

function ModInverse(x; 2w) f x is odd g
1. y1 := 1
2. for i = 2 to w
3. if 2i�1 < x � yi�1 (mod 2i)

then yi := yi�1 + 2i�1

else yi := yi�1
4. return yw

The correctness of the algorithm follows from the observation that, at every step i, we have

x � yi = 1 (mod 2i) .

This algorithm is very e�cient, and uses single precision addition and multiplications in order
to compute x�1. As an example, we compute 23�1 (mod 64) using the above algorithm.
Here we have x = 23, w = 6. The steps of the algorithm, the temporary values, and the
�nal inverse are shown below:

i 2i yi�1 x � yi�1 (mod 2i) 2i�1 yi

2 4 1 23 � 1 = 3 2 1 + 2 = 3
3 8 3 23 � 3 = 5 4 3 + 4 = 7
4 16 7 23 � 7 = 1 8 7
5 32 7 23 � 7 = 1 16 7
6 64 7 23 � 7 = 33 32 7 + 32 = 39

Thus, we compute 23�1 = 39 (mod 64). This is indeed the correct value since

23 � 39 = 14 � 64 + 1 = 1 (mod 64) .

Also, at every step i, we have x � yi = 1 (mod 2i), as shown below:

i x � yi mod 2i

1 23 � 1 = 1 mod 2
2 23 � 3 = 1 mod 4
3 23 � 7 = 1 mod 8
4 23 � 7 = 1 mod 16
5 23 � 7 = 1 mod 32
6 23 � 39 = 1 mod 64

Further Improvements and Performance Analysis 61

4.3 Performance Analysis

In this section, we give timing analyses of the RSA encryption and decryption operations.
This analysis can be used to estimate the performance of the RSA encryption and decryption
operations on a given computer system. The analysis is based on the following assumptions.

Algorithmic Issues:

1. The exponentiation algorithm is the binary method.

2. The Montgomery reduction algorithm is used for the modular multiplications.

3. The improvements on the Montgomery method are taken into account.

Data Size:

1. The size of n is equal to s words.

2. The sizes of p and q are s=2 words.

3. The sizes of M and C are s words.

4. The size of e is ke bits.

5. The Hamming weight of e is equal to he, where 1 < he � ke.

6. The size of d is kd bits.

7. The Hamming weight of d is equal to hd, where 1 < hd � kd.

Precomputed Values:

1. The private exponents d1 and d2 are precomputed and available.

2. The coe�cient (p�1 mod q) or (q�1 mod p) is precomputed and available.

Computer Platform:

1. The wordsize of the computer is w bits.

2. The addition of two single-precision integers requires A cycles.

3. The multiplication of two single-precision integers requires P cycles.

4. The inner-product operation requires 2A+ P cycles.

In the following sections, we will analyze the performance of the RSA encryption and
decryptions operations separately based on the preceding assumptions.

62 Further Improvements and Performance Analysis

4.3.1 RSA Encryption

The encryption operation using the Montgomery product �rst computes n00, which requires

wX
j=2

(P + A) = (w � 1)(P + A) (4.1)

cycles. It then proceeds to compute �M = M � r (mod n) and �C = 1 � r (mod n). The
computation of �M requires sw s-precision subtractions. The computation of �C, on the other
hand, may require up to w s-precision subtractions. Thus, these operations together require

sw(sA) + w(sA) = (s2 + s)wA (4.2)

cycles. We then start the exponentiation algorithm which requires (ke � 1) Montgomery
square and (he � 1) Montgomery product operations. The Montgomery product operation
�rst computes the product �a � �b which requires

s�1X
i=0

s�1X
j=0

(P + 2A) = s2(P + 2A)

cycles. Then, Steps 7 through 15 are followed, requiring

s�1X
i=0

2
4P +

s�1X
j=0

(P + 2A) +
2s�1X
j=i+s

A

3
5 = sP + s2(P + 2A) +

s2 + s

2
A = (s2 + s)P +

5s2 + s

2
A

cycles. The s-precision subtraction operation which is performed in Steps 18{21 requires a
total of s single-precision subtractions. Thus, Steps 7 through 22 require a total of

(s2 + s)P +
5s2 + s

2
A + sA = (s2 + s)P +

5s2 + 3s

2
A

Thus, we calculate the total number of cycles required by the Montgomery product routine
as

s2(P + 2A) + (s2 + s)P +
5s2 + 3s

2
A = (2s2 + s)P +

9s2 + 3s

2
A . (4.3)

The Montgomery square routine uses the optimized squaring algorithm of Section 3.5 in
order to compute �a � �a. This step requires

s(s� 1)

2
(P + 2A)

cycles. The remainder of the Montgomery square algorithm is the same as the Montgomery
product algorithm. Thus, the Montgomery square routine requires a total of

s(s� 1)

2
(P + 2A) + (s2 + s)P +

5s2 + 3s

2
A =

3s2 + s

2
P +

7s2 + s

2
A (4.4)

Further Improvements and Performance Analysis 63

cycles. The total number of cycles required by the RSA encryption operation is then found
by adding the number of cycles for computing n00 given by Equation (4.1), the number of
cycles required by computing �M and �C given by Equation (4.2), (ke � 1) times the number
of cycles required by the Montgomery square operation given by Equation (4.4), and (he�1)
times the number cycles required by the Montgomery product operation given by Equation
(4.3). The total number of cycles is found as

T1(s; ke; he; w; P; A) = (w � 1)(P + A) + (s2 + s)wA+ (ke � 1)

"
3s2 + s

2
P +

7s2 + s

2
A

#

+ (he � 1)

"
(2s2 + s)P +

9s2 + 3s

2
A

#
. (4.5)

4.3.2 RSA Decryption without the CRT

The RSA decryption operation without the Chinese remainder theorem by disregarding the
knowledge of the factors of the user's modulus is the same operation as the RSA encryption.
Thus, the total number of cycles required by the RSA decryption operation is the same as
the one given in Equation (4.5), except that ke and he are replaced by kd and hd, respectively.

T1(s; kd; hd; w; P; A) = (w � 1)(P + A) + (s2 + s)wA+ (kd � 1)

"
3s2 + s

2
P +

7s2 + s

2
A

#

+ (hd � 1)

"
(2s2 + s)P +

9s2 + 3s

2
A

#
. (4.6)

4.3.3 RSA Decryption with the CRT

The RSA decryption operation using the Chinese remainder theorem �rst computes M1 and
M2 using

M1 := Cd1 (mod p) ,

M2 := Cd2 (mod q) .

The computation of M1 is equivalent to the RSA encryption with the exponent d1 and
modulus p. Assuming the number of words required to represent p is equal to s=2, we �nd
the number of cycles required in computing M1 as

T1(
s

2
; kd1; hd1 ; w; P; A) ,

where kd1 and hd1 is the bit size and Hamming weight of d1, respectively. Similarly the
computation of M2 requires

T1(
s

2
; kd2 ; hd2 ; w; P; A)

64 Further Improvements and Performance Analysis

cycles. Then, the mixed-radix conversion algorithm computes M using

M :=M1 + (M2 �M1) � (p�1 mod q) � p ,

which requires one s=2-precision subtraction, two s-precision multiplications, and one s-
precision addition. This requires a total of

s

2
A+ 2s2(P + 2A) + sA = 2s2P + (4s2 +

3s

2
)A

cycles assuming the coe�cient (p�1 mod q) is available. Therefore, we compute the total
number of cycles required by the RSA decryption operation with the CRT as

T2(s; kd1; hd1 ; kd2 ; hd2 ; w; P; A) = T1(
s

2
; kd1 ; hd1; w; P; A) + T1(

s

2
; kd2 ; hd2; w; P; A)

+ 2s2P + (4s2 +
3s

2
)A . (4.7)

4.3.4 Simpli�ed Analysis

In this section, we will consider three cases in order to simplify the performance analysis of
the RSA encryption and decryption operations.

Short Exponent RSA Encryption: We will take the public exponent as e = 216 + 1.
Thus, ke = 17 and he = 2. This gives the total number of cycles as

Tes(s; w; P; A) =
�
Aw + 26P +

121A

2

�
s2 +

�
Aw + 9P +

19A

2

�
s+

+ (w � 1)(P + A) . (4.8)

Long Exponent RSA Encryption: We will assume that the public exponent has exactly
k bits (i.e., the number of bits in n), and its Hamming weight is equal to k=2. Thus,
ke = k = sw and he = k=2 = sw=2. This case is also equivalent to the RSA decryption
without the CRT in terms of the number of cycles required to perform the operation.
This gives the total number of cycles as

Tel(s; w; P; A) =
�
5Pw

2
+
23Aw

4

�
s3 +

�
Pw +

9Aw

4
� 7P

2
� 8A

�
s2 +

+
�
Aw � 3P

2
� 2A

�
s+ (w � 1)(P + A) . (4.9)

RSA Decryption with CRT: The number of bits and the Hamming weights of d1 and d2
are assumed to be given as kd1 = kd2 = k=2 = sw=2 and hd1 = hd2 = k=4 = sw=4.
Since kd1 = kd2 and hd1 = hd2 , we have

Tdl(s; w; P; A) = 2T1(
s

2
;
sw

2
;
sw

4
; w; P; A) + 2s2P + (4s2 +

3s

2
)A .

Further Improvements and Performance Analysis 65

Substituting kd1 = sw=2 and hd1 = sw=4, we obtain

Tdl(s; w; P; A) =
�
5Pw

8
+
23Aw

16

�
s3 +

�
Pw

2
+
9Aw

8
+
P

4

�
s2 +

+
�
Aw � 3P

2
� A

2

�
s+ 2(w � 1)(P + A) . (4.10)

4.3.5 An Example

In a given computer implementation, the values of w, P , and A are �xed. Thus, the number
of cycles required is a function of s, i.e., the word-length of the modulus. In this section,
we will apply the above analysis to the Analog Devices Signal Processor ADSP 2105. This
signal processor has a data path of w = 16 bits, and runs with a clock speed of 10 MHz.
Furthermore, examining the arithmetic instructions, we have determined that the ADSP
2105 signal processor adds or multiplies two single-precision numbers in a single clock cycle.
Considering the read and write times, we take A = 3 and P = 3. The simpli�ed expressions
for Tes, Tel, and Tdl are given below:

Tes =
615

2
s2 +

207

2
s+ 90 ,

Tel = 396s3 +
243

2
s2 +

75

2
s+ 90 ,

Tdl = 99s3 +
315

4
s2 + 42s+ 180 .

Using the clock cycle time of the ADSP 2105 as 100 ns, we tabulate the encryption and
decryption times for the values of k = 128; 256; 384; : : : ; 1024, corresponding to the values of
s = 8; 16; 24; : : : ; 64, respectively. The following table summarizes the times (in milliseconds)
of the short exponent RSA encryption (Tes), the long exponent RSA encryption (Tel), and
the RSA decryption with the CRT (Tdl).

k Tes Tel Tdl

128 3 21 6
256 8 165 43
384 18 555 142
512 32 1,310 333
640 50 2,554 646
768 71 4,408 1,113
896 97 6,993 1,764
1024 127 10,431 2,628

Our experiments with the ADSP simulator validated these estimated values. However, we
note that the values of P and A must be carefully determined for a reliable estimation of
the timings of the RSA encryption and decryption operations.

66 Bibliography

Bibliography

[1] G. B. Arfken, D. F. Gri�ng, D. C. Kelly, and J. Priest. University Physics. San Diego,
CA: Harcourt Brace Jovanovich Publishers, 1989.

[2] G. R. Blakley. A computer algorithm for the product AB modulo M. IEEE Transactions

on Computers, 32(5):497{500, May 1983.

[3] A. D. Booth. A signed binary multiplication technique. Q. J. Mech. Appl. Math.,
4(2):236{240, 1951. (Also reprinted in [48], pp. 100{104).

[4] J. Bos and M. Coster. Addition chain heuristics. In G. Brassard, editor, Advances in
Cryptology | CRYPTO 89, Proceedings, Lecture Notes in Computer Science, No. 435,
pages 400{407. New York, NY: Springer-Verlag, 1989.

[5] E. F. Brickell. A survey of hardware implementations of RSA. In G. Brassard, edi-
tor, Advances in Cryptology | CRYPTO 89, Proceedings, Lecture Notes in Computer
Science, No. 435, pages 368{370. New York, NY: Springer-Verlag, 1989.

[6] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponentiation
with precomputation. In R. A. Rueppel, editor, Advances in Cryptology | EURO-

CRYPT 92, Lecture Notes in Computer Science, No. 658, pages 200{207. New York,
NY: Springer-Verlag, 1992.

[7] P. Chiu. Transforms, �nite �elds, and fast multiplication. Mathematics Magazine,
63(5):330{336, December 1990.

[8] W. Di�e and M. E. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22:644{654, November 1976.

[9] P. Downey, B. Leony, and R. Sethi. Computing sequences with addition chains. SIAM
Journal on Computing, 3:638{696, 1981.

[10] S. R. Duss�e and B. S. Kaliski, Jr. A cryptographic library for the Motorola DSP56000.
In I. B. Damg�ard, editor, Advances in Cryptology | EUROCRYPT 90, Lecture Notes
in Computer Science, No. 473, pages 230{244. New York, NY: Springer-Verlag, 1990.

67

68 Bibliography

[11] �O. E�gecio�glu and C� . K. Ko�c. Fast modular exponentiation. In E. Ar�kan, editor, Com-
munication, Control, and Signal Processing: Proceedings of 1990 Bilkent International

Conference on New Trends in Communication, Control, and Signal Processing, pages
188{194, Bilkent University, Ankara, Turkey, July 2{5 1990. Amsterdam, Netherland:
Elsevier.

[12] �O. E�gecio�glu and C� . K. Ko�c. Exponentiation using canonical recoding. Theoretical

Computer Science, 129(2):407{417, 1994.

[13] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469{472, July 1985.

[14] H. L. Garner. The residue number systems. IRE Transactions on Electronic Computers,
8(6):140{147, June 1959.

[15] F. Hoornaert, M. Decroos, J. Vandewalle, and R. Govaerts. Fast RSA-hardware: dream
or reality? In C. G. Gunther, editor, Advances in Cryptology | EUROCRYPT 88,
Lecture Notes in Computer Science, No. 330, pages 257{264. New York, NY: Springer-
Verlag, 1988.

[16] K. Hwang. Computer Arithmetic, Principles, Architecture, and Design. New York, NY:
John Wiley & Sons, 1979.

[17] J. Jedwab and C. J. Mitchell. Minimum weight modi�ed signed-digit representations
and fast exponentiation. Electronics Letters, 25(17):1171{1172, 17th August 1989.

[18] B. S. Kaliski, Jr. The Z80180 and big-number arithmetic. Dr. Dobb's Journal, pages
50{58, September 1993.

[19] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.
Reading, MA: Addison-Wesley, Second edition, 1981.

[20] N. Koblitz. CM-curves with good cryptographic properties. In J. Feigenbaum, edi-
tor, Advances in Cryptology | CRYPTO 91, Proceedings, Lecture Notes in Computer
Science, No. 576, pages 279{287. New York, NY: Springer-Verlag, 1991.

[21] C� . K. Ko�c. High-radix and bit recoding techniques for modular exponentiation. Inter-
national Journal of Computer Mathematics, 40(3+4):139{156, 1991.

[22] C� . K. Ko�c. Montgomery reduction with even modulus. IEE Proceedings: Computers

and Digital Techniques, 141(5):314{316, September 1994.

[23] C� . K. Ko�c. Analysis of sliding window techniques for exponentiation. Computers and
Mathematics with Applications, 30(10):17{24, 1995.

[24] C� . K. Ko�c and C. Y. Hung. Carry save adders for computing the product AB modulo
N . Electronics Letters, 26(13):899{900, 21st June 1990.

Bibliography 69

[25] C� . K. Ko�c and C. Y. Hung. Multi-operand modulo addition using carry save adders.
Electronics Letters, 26(6):361{363, 15th March 1990.

[26] C� . K. Ko�c and C. Y. Hung. Bit-level systolic arrays for modular multiplication. Journal
of VLSI Signal Processing, 3(3):215{223, 1991.

[27] C� . K. Ko�c and C. Y. Hung. Adaptive m-ary segmentation and canonical recoding
algorithms for multiplication of large binary numbers. Computers and Mathematics

with Applications, 24(3):3{12, 1992.

[28] M. Kochanski. Developing an RSA chip. In H. C. Williams, editor, Advances in Cryp-

tology | CRYPTO 85, Proceedings, Lecture Notes in Computer Science, No. 218, pages
350{357. New York, NY: Springer-Verlag, 1985.

[29] I. Koren. Computer Arithmetic Algorithms. Englewood Cli�s, NJ: Prentice-Hall, 1993.

[30] D. Laurichesse and L. Blain. Optimized implementation of RSA cryptosystem. Com-

puters & Security, 10(3):263{267, May 1991.

[31] J. D. Lipson. Elements of Algebra and Algebraic Computing. Reading, MA: Addison-
Wesley, 1981.

[32] P. L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44(170):519{521, April 1985.

[33] F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using
addition-subtraction chains. Rapport de Recherche 983, INRIA, March 1989.

[34] National Institute for Standards and Technology. Digital signature standard (DSS).
Federal Register, 56:169, August 1991.

[35] J. Olivos. On vectorial addition chains. Journal of Algorithms, 2(1):13{21, March 1981.

[36] J. M. Pollard. The fast Fourier transform in a �nite �eld. Mathematics of Computation,
25:365{374, 1971.

[37] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key
cryptosystem. Electronics Letters, 18(21):905{907, October 1982.

[38] G. W. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231{308, 1960.

[39] H. Riesel. Prime Numbers and Computer Methods for Factorization. Boston, MA:
Birkh�auser, 1985.

[40] R. L. Rivest. RSA chips (Past/Present/Future). In T. Beth, N. Cot, and I. Ingemarsson,
editors, Advances in Cryptology, Proceedings of EUROCRYPT 84, Lecture Notes in
Computer Science, No. 209, pages 159{165. New York, NY: Springer-Verlag, 1984.

70 Bibliography

[41] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120{126, February
1978.

[42] RSA Laboratories. Answers to Frequently Asked Questions About Today's Cryptogra-
phy. RSA Data Security, Inc., October 1993.

[43] RSA Laboratories. The Public-Key Cryptography Standards (PKCS). RSA Data Se-
curity, Inc., November 1993.

[44] A. Sch�onhage. A lower bound for the length of addition chains. Theoretical Computer
Science, 1:1{12, 1975.

[45] A. Sch�onhage and V. Strassen. Schnelle multiplikation grosser zahlen. Computing,
7:281{292, 1971.

[46] H. Sedlak. The RSA cryptography processor. In D. Chaum and W. L. Price, editors,
Advances in Cryptology | EUROCRYPT 87, Lecture Notes in Computer Science, No.
304, pages 95{105. New York, NY: Springer-Verlag, 1987.

[47] K. R. Sloan, Jr. Comments on \A computer algorithm for the product AB modulo M".
IEEE Transactions on Computers, 34(3):290{292, March 1985.

[48] E. E. Swartzlander, editor. Computer Arithmetic, volume I. Los Alamitos, CA: IEEE
Computer Society Press, 1990.

[49] N. S. Szabo and R. I. Tanaka. Residue Arithmetic and its Applications to Computer

Technology. New York, NY: McGraw-Hill, 1967.

[50] C. D. Walter. Systolic modular multiplication. IEEE Transactions on Computers,
42(3):376{378, March 1993.

[51] S. Waser and M. J. Flynn. Introduction to Arithmetic for Digital System Designers.
New York, NY: Holt, Rinehart and Winston, 1982.

[52] Y. Yacobi. Exponentiating faster with addition chains. In I. B. Damg�ard, editor,
Advances in Cryptology | EUROCRYPT 90, Lecture Notes in Computer Science, No.
473, pages 222{229. New York, NY: Springer-Verlag, 1990.

[53] A. C.-C. Yao. On the evaluation of powers. SIAM Journal on Computing, 5(1):100{103,
March 1976.

