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It has become clear over the past several years that
public-key cryptography is an indispensable tool for
simplifying key management and enabling secure
communication.  What is less clear is which of the
available public-key cryptosystems is best.  This ar-
ticle addresses this question taking into account
such factors as security, computation speed, key size,
and the intended application.

Main contenders
The most important consideration in choosing
among public-key technologies is security.  In some
sense this is a choice among “religions”.  Do you
believe most in the difficulty of factoring, comput-
ing discrete logarithms modulo a prime, or com-
puting elliptic curve logarithms?  Elliptic curve
logarithms are the least studied at this point, but
interest is rising.

There are three main public-key cryptosystem con-
tenders.  Each has a variable key size that can be
increased to achieve higher security at the cost of
slower cryptographic operations.  The best attack
known on each public-key cryptosystem requires
an amount of computation determined by a secu-
rity parameter which is related to the key size.

Performance Comparison of Public-Key
Cryptosystems

RSA
The Rivest-Shamir-Adleman (RSA) public-key
cryptosystem [8] involves exponentiation modulo
a number n that is the product of two large prime
numbers.  When referring to the key size for RSA,
what is meant is the length of the modulus n in
bits.  A typical key size for RSA is 1024 bits.  The
best attack known on RSA is called the General
Number Field Sieve (GNFS) [4] which factors the
modulus into the original prime numbers.

DH/DSA
Diffie-Hellman (DH) key exchange [1] and the
Digital Signature Algorithm (DSA) [2] are pub-
lic-key techniques based on exponentiation
modulo a large prime number p.  For these
schemes, the key size is the length of the prime p
in bits, and a typical value is 1024 bits.  However,
another important security parameter is the size
of exponents used for exponentiation (assuming
that this exponent is not larger than the order of
the generator used).  For DSA, the exponent size
is fixed at 160 bits.  For DH, exponents are often
the same size as the prime p, but are frequently
reduced from 1024 bits to between 160 and 256
bits, which is safe if appropriate precautions are
taken [9].  When exploiting the size of the prime
p, the best attack known is the General Number
Field Sieve (adapted for discrete logarithms rather
than factoring).  When exploiting the size of ex-
ponents used, the best attack known is parallel
collision search [10], which is based on Pollard’s
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Editor’s Note

About RSA Laboratories

An academic environment within a commercial organization, RSA
Laboratories is the research and consulting division of RSA Data
Security, the company founded by the inventors of the RSA public-
key cryptosystem. Its purpose is to provide state-of-the-art exper-
tise on cryptography and information security for the benefit of
RSA Data Security and its customers. RSA Data Security is a
Security Dynamics company.
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In this, the Summer issue of CryptoBytes, we have
four articles covering both well-known topics in
cryptography and new ideas.

Michael Wiener leads off the issue with a compre-
hensive performance comparison of public-key
cryptosystems. The article analyzes public-key
cryptosystems with respect to factors such as secu-
rity, computation speed, key size and the intended
usage of the cryptosystem. The analysis makes it clear
that there is no single “best” public-key technology,
but that the best choice is situation dependent.
Wiener’s article is adapted from a talk he gave at the
1998 RSA Data Security Conference.

Helena Handschuh and Pascal Paillier follow this
up with an article on smart card crypto-coprocessors
for public-key cryptography. The article gives an ex-
tensive review of the technical characteristics and
timings of the predominant smart card chips with
crypto-coprocessors. It serves as a useful reference
for the state of the art in crypto-coprocessors.

Ron Rivest presents a novel technique for ensuring
the confidentiality of a message without encryption
or steganography. The process is called chaffing and
winnowing because the receiver must use message
authentication codes in a winnowing process to re-
move the “chaff” that’s been added to the message.
This technique presents an especially  timely alter-
native to encryption given the current controversy
about law enforcement and cryptographic policy.

Finally, Eli Biham and Lars Knudsen provide an in-
formative piece on DES, Triple-Des and NIST’s
search for an Advanced Encryption Standard (AES)
to replace DES. The article provides an overview of
the progress made in the cryptoanalysis of DES and
triple-DES, making the motivation behind the AES
effort clear. The authors have submitted an AES can-
didate (together with Ross Anderson) called Serpent.

We also include an update on the PKCS standards
and the IEEE P1363 standard project, “Standard
Specifications for Public-Key Cryptography”. Infor-
mation on the upcoming PKCS workshop can be
found here.

The future success of CryptoBytes depends on input
from all sectors of the cryptographic community, and

as usual we would like very much to thank the writ-
ers who have contributed to this first issue of the
first volume.  We encourage any readers with com-
ments, opposite opinions, suggestions or proposals
for future issues to contact the CryptoBytes editor at
RSA Laboratories or by E-mail to bytes-ed@rsa.com.

CryptoBytes Publication Schedule Changed
The CryptoBytes publication schedule has been re-
vised. The newsletter will now be published as two,
longer issues appearing in Summer and Winter of
each year rather than the previous schedule of three,
shorter issues. The newsletter will continue to be
freely available from our website and copies of the
newsletter will also be made available at major con-
ferences.
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Performance Comparison of Public-Key Cryptosystems
Continued from page 1

rho- and lambda-methods of computing discrete
logarithms [7].

Elliptic curves
Elliptic curve cryptosystems are based on computa-
tions with points on an elliptic curve [3, 5].  These
cryptosystems are variants of Diffie-Hellman and
DSA (ECDH and ECDSA).  Typically, elliptic
curves are defined over either the integers modulo a
prime number (GF(p)) or over binary polynomials
(GF(2m)).  When referring to the key size, what is
meant is the size of the prime number or binary poly-
nomials in bits.  Typical key sizes are in the range
160 to 200 bits.  The security parameter is the size of
multipliers which are analogous to the exponents in
DH and DSA.  The size of these multipliers is lim-
ited to the order of the generator used, which is
slightly smaller than the key size.  The best attack
known on ECDH and ECDSA is to compute elliptic
curve logarithms using parallel collision search [10].

Uses of public-key techniques
The three main uses of public-key techniques are
digital signatures, encryption and decryption for pass-
ing symmetric keys, and on-line key exchange.  All
three public-key technologies can be used for each
of these purposes.

Digital signatures
Digital signing of data can be performed using RSA
signatures, DSA, or ECDSA.

Encryption/decryption
For store-and-forward communications such as email,
encryption of the bulk user data is most efficiently
done with a symmetric cryptosystem.  The symmet-
ric key is then encrypted with the public key of the
intended recipient.  This key management function
can be done using RSA encryption, Diffie-Hellman
(in “half-static” mode using one long-term key and
one short-term key), or the elliptic curve variant of
Diffie-Hellman.

On-line key exchange
For on-line communications such as web browsing,
it is possible to encrypt the communications session
with a key passed from one party to the other using a
store-and-forward method described under Encryp-

tion/decryption.  However, in the on-line case, it is
possible to achieve a property called perfect forward
secrecy, which means that if either party’s long-term
keys are compromised, then past sessions keys remain
secure.  Diffie-Hellman and ECDH provide this
property when used in ephemeral mode where both
keys are short-term.  Typically, on-line key exchange
is combined with digital signatures to give an au-
thenticated key exchange.  It is (incorrectly) widely
believed that RSA cannot be used to give perfect
forward secrecy.  This only applies to the use of RSA
in a store-and-forward mode.  If a one-time RSA key
pair is generated by one party who sends the public
key to the other party, and the other party returns a
symmetric key encrypted with the public key, then
perfect forward secrecy is achieved, assuming that
the RSA key pair is erased after its use.

Key sizes for comparable security levels
To fairly compare the speeds of the different public-
key techniques, it is necessary to decide what key
sizes give comparable security levels.  These com-
parisons are necessarily based on the best attacks
known.  Any future improvements in attacks will
change the results of the analysis.  RSA with a 1024-
bit modulus is used as the basis for comparison, and
we determine what Diffie-Hellman, DSA, and ellip-
tic curve key sizes give the same level of security.

Comparing RSA to Diffie-Hellman and DSA is fairly
easy.  The General Number Field Sieve (GNFS) re-
quires about the same run-time to factor a 1024-bit
RSA modulus and to perform a discrete logarithm
with a 1024-bit Diffie-Hellman or DSA modulus.

Comparing RSA to elliptic curves is more difficult
and requires a more detailed analysis.  Odlyzko esti-
mated that factoring a 1024-bit RSA modulus with
GNFS requires 3×1011 MIPS-years [6] (a MIPS-year
is one year of time on a computer performing one
million instructions per second).  Using an estimate
of 300 MIPS for the latest generation of PCs gives
an estimate to factor a 1024-bit RSA modulus of 230

PC-years (230/t years of elapsed time on t PCs).  It
may be possible to do better than this using custom
hardware, but PCs are quite well-suited to factoring
due to the high memory requirements.  Combining
this with the difficulty of keeping up with the level

The three main
uses of public-
key techniques
are digital
signatures,
encryption and
decryption for
passing
symmetric
keys, and on-
line key
exchange.  All
three public-
key
technologies
can be used for
each of these
purposes.



4C R Y P T O B Y T E S S U M M E R   1 9 9 8   —   T H E   T E C H N I C A L   N E W S L E T T E R   O F   R S A   L A B O R A T O R I E S

of technology in mass-produced PCs makes it doubt-
ful that the use of custom hardware could improve
significantly on PCs for factoring.

A parallel collision search attack on elliptic curves
with k-bit multipliers (exponents) requires about 2k/2

elliptic curve additions.  For a software-based attack
with PCs, each elliptic curve addition requires about
2−14 second (2−39 year), giving a total attack time of
2k/2−39 PC-years.  This is the same as the 230 PC-years
for factoring a 1024-bit RSA modulus when k = 138,
a fairly small elliptic curve.  However, attackers are
not limited to attacking elliptic curves in software.
Parallel collision search has very low memory require-
ments, and there is much to be gained by going to a
hardware-based attack, even using technology which
is less advanced than that used in PCs.  A fully
pipelined chip for elliptic curve additions over GF(2m)
could be run at 64 MHz (251 additions per year) and
would cost about $16.  The total attack time is 2k/2−51

chip-years.  We now have to compare the cost of a
PC to the cost of a chip.  It would
not be fair to assume that the at-
tacker would have to assume the
full cost of a PC.  On the other
hand, it is not fair to assume that
the attacker could access all PCs
for free; people will donate com-
puter time to what they deem to
be worthy causes, but it is doubtful
that many people would donate computer time to
break a single individual’s key.  We assume here that
full-time access to a PC could be had for $250, the
cost of about 16 chips.  To achieve the level of secu-
rity of 1024-bit RSA with elliptic curves requires
k = 170.  To use multipliers of 170 bits requires an
elliptic curve key size in the range 171-180 bits.  The
required key size for elliptic curves over GF(p) is lower
(by perhaps 8 or 10 bits) because elliptic curve addi-
tion for this case is more expensive to implement in
hardware than it is for the GF(2m) case.

Computation speed comparison
We can now compare the computation speeds of
the different public-key techniques for key sizes
which give comparable security levels.  The results
of this comparison differ depending upon which use
of public-key cryptography is considered: digital sig-

natures, encryption/decryption, and on-line key ex-
change.

Table 1 summarizes the computation times for the
operations associated with digital signatures.  For the
most frequent operations, signing and signature veri-
fication, DSA and ECDSA over GF(p) are compa-
rable.  However, RSA is slower for signing and much
faster for signature verification.  Elliptic curves over
GF(2m) appear to be slower than those over GF(p),
but reports differ on this.  There is a narrow class of
curves over GF(2m), called anomalous binary curves
or Koblitz curves which give faster computations, but
recently these have been shown to be slightly less
secure than first thought.

For public-key encryption and decryption operations,
the comparison is similar to the digital signature
comparison.  Diffie-Hellman is comparable to ECDH
over GF(p), and RSA is slower for decryption and
much faster for encryption.  For on-line key ex-

RSA-1024 DSA-1024 ECDSA-168
(e = 3) (over GF(p))

sign 43 7 5

verify 0.6 27 19

key generation 1100 7 7

parameter generation none 6500 large (research area)

Figure 1.  Digital signature timings (milliseconds on a 200 MHz Pentium Pro)
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public-key
techniques […].
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signature
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change giving perfect forward secrecy, DH and
ECDH are comparable, but RSA is much slower due
to the need to create the one-time RSA key pair.

Although different benchmarks vary considerably,
when the best available computation times are con-
sidered, elliptic curves are comparable to DSA/DH.
The differences show up when considering RSA, par-
ticularly the very fast RSA signature verification,
which is quite important in certificate-based systems
where the most frequent public-key operation is veri-
fying a signature.

Which public-key technology is best?
There is no single answer to the question of which
public-key technology is best.  The answer depends
upon the setting in which public key methods are
used.



C R Y P T O B Y T E ST H E   T E C H N I C A L   N E W S L E T T E R   O F   R S A   L A B O R A T O R I E S   —   S U M M E R   1 9 9 8 5

Setting 1: certificate-based systems.
Certification Authority (CA) key pairs are used for
signing and verifying the signatures on certificates
and Certificate Revocation Lists (CRLs).  Each cer-
tificate and CRL is signed once and is verified thou-
sands of times.  Therefore, the most critical opera-
tion is signature verification.  RSA’s very fast signa-
ture verification is important here.

Setting 2: secure email.
For an email message which is signed and encrypted,
the message is signed once and the signature is veri-
fied by each recipient.  The symmetric key used to
encrypt the message is encrypted with each
recipient’s public key by the sender, and each recipi-
ent must decrypt his encrypted copy of the symmet-
ric key.  The total number of public-key encryptions
is the same as the number of decryptions, but all the
encryptions are performed by one party, the sender.
Thus, the most time-critical operations are signature
verification and public-key encryption.  This gives
the advantage to RSA, but not by as wide a margin
as in the CA key pair case.

Setting 3: on-line communications.
To use RSA for on-line communications requires ei-
ther giving up perfect forward secrecy or tolerating
slow RSA key pair generation for each session.  The
advantage in this case goes to Diffie-Hellman and
ECDH.

Setting 4: implementation in custom silicon.
RSA, DSA, Diffie-Hellman, and elliptic curves over
GF(p) all require integer multiply operations which
are expensive in hardware.  Most processors devote
quite a bit of silicon to an integer multiplier making
this operation cheap in software.  Elliptic curve ad-
ditions over GF(2m) do not require integer multiply
operations and can be implemented with less silicon
than the other public-key techniques.

Setting 5: wireless communications.
Transmission costs are quite high in wireless com-
munications which makes elliptic curves attractive
due to the small key sizes.  With elliptic curves, digi-
tal signatures are small and encrypted symmetric keys
are small which leads to fewer bits to transmit.  If
the cryptosystem implementation in the wireless de-

vice is in silicon, then there is the added benefit of a
small implementation as well.

Conclusion
The most important factor in choosing a public-key
technology is security.  Based on the best attacks
known, RSA at 1024 bits, DSA and Diffie-Hellman
at 1024 bits, and elliptic curves at about 170 bits give
comparable levels of security.  Looking at other fac-
tors in making a choice, RSA offers very fast signa-
ture verification, Diffie-Hellman and its elliptic curve
variant offer fast on-line key exchange, and elliptic
curves over GF(2m) offer small silicon implementa-
tions. For certificate-based systems implemented in
software, it is best to use RSA and Diffie-Hellman,
and for non-certificate systems with cryptographic
implementations in custom silicon, ECDSA and
ECDH over GF(2m) are most efficient.
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In recent years, public key cryptography has gained
increasing attention from both companies and end
users who wish to use this technology to add security
to a wide variety of applications. One consequence
of this trend has been the growing importance of
public key smart cards to store a user’s private key
and to provide a secure computing environment for
the private key operation. As such, these smart cards
are used as secure tokens.

Many chip manufacturers are therefore proposing
ever better and faster implementations of public key
algorithms using dedicated crypto-coprocessors on
their chips. Two years ago the main focus of atten-
tion was on established public-key techniques such
as RSA [10] and discrete-logarithm based
cryptosystems [4, 6]. The main focus of attention
was on the performance of these algorithms with
key sizes that were lying around the 512-bit range.
A survey of the state of the art at that time was
published in [8]. This survey is intended to give an
overview of recent evolutions in the crypto-
coprocessor market and the latest achievements in
terms of the speed and the range of modulus size
that is available. We also include consideration of
implementations of other public-key techniques
such as elliptic curve cryptosystems [7].

The most widely used smart card chips with crypto-
coprocessors are listed here. The usual manufactur-
ers such as Thomson, Siemens, Philips and Motorola
still lead the market, but new manufacturers have
joined the public-key battlefield since 1996, such as
NEC, Hitachi and Toshiba. Table 1 lists the stan-
dard field size of such chips in terms of on-board
memory sizes (RAM, ROM, EEPROM), operating
voltage and frequency, abnormal behaviour sensors
(High or Low Voltage, Frequency or Temperature),

and the maximum public key size supported for RSA
or DSA public modulus, and elliptic curve charac-
teristic as appropriate.

It can be observed that new trends include increas-
ing RAM and EEPROM sizes for user customized ap-
plications, faster internal clocks, improved security
features such as new sensors or address scrambling
matrices, and growing public moduli sizes. In other
words, chips are becoming bigger, more versatile,
faster and increasingly secure.

The new range of public key sizes for RSA and DSA
is now generally up to 1024 bits, and some chips can
even handle 2048-bit computations. But as the need
for ever bigger moduli becomes less acute, one future
direction for improvement is in a battle for increased
performance. Public key algorithms are currently
used only for authentication or access control as they
are much too slow for stream encryption.

Every architecture has its own optimizations for com-
puting modular multiplications and exponentiations
which are the most important operations in most
public key cryptosystems. See [8] for some examples.
But basically most chips end up achieving compa-
rable speed. Table 2 lists the computation times on
different chips for different public key algorithms
with the most widely implemented system being
RSA. However, DSA [5] and the elliptic curve
equivalent ECDSA, as well as other systems such as
ESIGN appear in some implementations.

With regard to signing with RSA only 1024-bit RSA
is currently possible with a performance time of less
than a second, but we suspect that it will not be too
long before 2048-bit RSA becomes practical as well.
As a matter of fact, in one of our custom implementa-
tions, 2048-bit signatures can already be computed in
a reasonable time (around 2 seconds) using the Chi-
nese Remainder Theorem, and a signature verifica-
tion using a small exponent (typically e = F4 = 216 +
1) which can be computed in about 360 ms applying
what are called size-doubling methods (see below).

Modular arithmetic on CCPs
Modular multiplication, the computation of Z = XY
mod N is certainly the most useful operation in pub-
lic key cryptography, and its efficiency in terms of
hardware throughput remains highly critical for

[…] as the need
for ever bigger
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less acute, one
future direction

for improvement
is in a battle for

increased
performance.
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Name Manufacturer µC-core CCP Max RAM ROM EEPROM Voltage Max Ext. Max Int. Tech- Sensors
Name Modulus Clock Clock nology

H8/3111 Hitachi H8/300 Coprocessor 576 bit 800 B 14 KB 8 KB 3V & 5V 10 Mhz 10 Mhz 0.8 µm LV, LF

H8/3112 Hitachi H8/300 Coprocessor 576 bit 1312 B 24 KB 8 KB 3V & 5V 10 Mhz 10 Mhz 0.8 µm LV, LF, HF

H8/3113* Hitachi H8/300 Coprocessor 1024 bit 1.5 KB 32 KB 16 KB 3V & 5V 10 Mhz 14.32 Mhz 0.5 µm LV, HV, LF, HF

T6N29 Toshiba Z80 1024B 1024 bit 512 B 20 KB 8 KB 3V & 5V — — 0.6 µm V

T6N37* Toshiba Z80 1024B 1024 bit 512 B 20 KB 8 KB 3V & 5V — — — V/T/F

T6N39* Toshiba Z80 1024B 1024 bit 512 B 20 KB 8 KB 3V & 5V — — — V/T/F

T6N42* Toshiba Z80 2048B 2048 bit 512 B 20 KB 8 KB 3V & 5V — — — V/T/F

ST16CF54B SGS-Thomson 8 bit MCU MAP 512 bit 512 B 16 KB 4 KB 5V +/- 10% 5 Mhz 5 Mhz — —

ST19CF68 SGS-Thomson 8 bit CPU MAP 512 bit 960 B 23 KB 8 KB 3V,5V +/- 10% 10 Mhz 10 Mhz 0.6 µm —

ST19KF16 SGS-Thomson 8 bit CPU MAP 1088 bit 960 B 32 KB 16 KB 3V,5V +/- 10% 10 Mhz 10 Mhz 0.6 µm —

P83W854 Philips 80C51 FameX 2048 bit 800 B 20 KB 4 KB 2.7V to 5.5V 8 Mhz — — V/T/F

P83W858 Philips 80C51 FameX 2048 bit 800 B 20 KB 8 KB 2.7V to 5.5V 8 Mhz — — V/T/F

P83W8516 Philips 80C51 FameX 2048 bit 2304 B 32 KB 16 KB 2.7V to 5.5V 8 Mhz — — V/T/F

P83W8532 Philips 80C51 FameX 2048 bit 2304 B 32 KB 32 KB 2.7V to 5.5V 8 Mhz — — V/T/F

SmartXA Philips 16 bit CPU FameX 2048 bit 1.5/2 KB 32 KB 8/16/32 KB

SLE44CR80S Siemens 80C51 CCP 540 bit 256 B 17 KB 8 KB 3V to 5V 7.5 Mhz 7.5 Mhz 0.7 µm —

SLE66CX160S Siemens 80C51 ACE 1100 bit 1280 B 32 KB 16 KB 2.7V to 5.5V 7.5 Mhz 7.5 Mhz 0.6 µm —

µPD789828* NEC 78K0S SuperMAP 2048 bit 1 KB 24 KB 8 KB 1.8V to 5.5V 5 Mhz 40 Mhz 0.35 µm —

* expected in forthcoming months

modular exponentiation-based schemes [34]. There
exist many different ways of performing a modular
multiplication, among which Montgomery [7], De
Waleffe & Quisquater [13], or Sedlak [12] provide
methods that are still the most commonly used in
hardware implementations. Naturally, the best in-
ternal architecture of a coprocessor relies strongly
on the choice of modular multiplication algorithm
(see [6, 9] for details).

Size-doubling techniques : algorithmic
tools for emulating a 2n-bit CCP from an
n-bit one
There exist some tricky algorithmic techniques that
allow one to virtually increase (typically double) the
size of the crypto-coprocessor being used. Basically,
these techniques allow the execution of a 1024-bit
(resp. 2048-bit) exponentiation on a 512-bit (resp.
1024-bit) processor. These techniques use an addi-
tional API layer which implements an up-to-2n-bit
arithmetic engine out of an n-bit one (this technique is
covered by a Gemplus patent), thereby providing up-to-
2n-bit modular addition, multiplication, and exponen-
tiation. Applied to a 1024-bit processor, this would
allow 2048-bit DSA, 2048-bit Diffie-Hellman Key Ex-
change, 2048-bit ESIGN, 2048-bit RSA verification,
4096-bit RSA signature generation, and so on.

A particularly interesting case is the implementation
of a fast 2048-bit version of RSA on a 1024-bit chip.
As only a few manufacturers have planned 2048-bit
platforms so far, this seems to be the most useful con-
text in which to apply such size-doubling techniques.
These arithmetic algorithms rely on several simulta-
neous computation strategies including:

1. modular representation of long operands,
2. low-storage Chinese Remainder Theorem com-

binations,
3. new parallelizable Montgomery-like operations,

and
4. fast modular computation techniques.

The techniques make previously unavailable opera-
tions on large numbers (2048-bit regular multiplica-
tion, 2048-bit addition, 2048-bit modular addition,
multiplication and squaring) available and at the dis-
posal of public key cryptographic algorithms so that
they can be used with a larger key size.

Modular representations
Long operands (ranging from 1025 to 4096 bits) are
usually given under a radix form in base 21024. To be
computationaly exploitable, they are at first splitted
into (at most) four workable 1024-bit words

Table 1: Technical
characteristics of
the CCPs
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Chip H8/3111-3112 H8/3113 ST16CF54B ST19CF68 ST19KF16

Internal Clock Frequency 3.57 Mhz 14 Mhz 5 Mhz 10 Mhz 10 Mhz

DES 64 bits N/A N/A 10 ms* N/A N/A

SHA 512 bits N/A N/A 15.2 ms 8.2 ms 8.2 ms

MD5 512 bits N/A N/A 12 ms* N/A N/A

RSA 512 Sign with CRT 202 ms N/A 142 ms 70 ms 20 ms

RSA 512 Sign without CRT 514 ms 68 ms 389 ms 195 ms 55 ms

RSA 512 Verify (e = F4) N/A N/A 9 ms 4.5 ms 2 ms

RSA 768 Sign with CRT N/A N/A 377 ms 189 ms 50 ms

RSA 768 Sign without CRT N/A 210 ms N/A N/A 165 ms

RSA 768 Verify (e = F4) N/A N/A 190 ms 100 ms 3 ms

RSA 1024 Sign with CRT N/A N/A 800 ms 400 ms 110 ms

RSA 1024 Sign without CRT N/A 480 ms N/A N/A 380 ms

RSA 1024 Verify (e =F4) N/A N/A 265 ms 150 ms 5 ms

RSA 2048 Sign with CRT N/A N/A N/A N/A 780 ms

RSA 2048 Sign without CRT N/A N/A N/A N/A N/A

RSA 2048 Verify (e =F4) N/A N/A N/A N/A 100 ms

DSA 512** Sign N/A N/A 163 ms 84 ms 25 ms

DSA 512** Verify N/A N/A 283 ms 146 ms 40 ms

DSA 768** Sign N/A N/A N/A N/A 50 ms

DSA 768** Verify N/A N/A N/A N/A 80 ms

DSA 1024** Sign N/A N/A N/A N/A 100 ms

DSA 1024** Verify N/A N/A N/A N/A 160 ms

ECDSA 135/131 Sign N/A N/A N/A N/A N/A

ECDSA 135/131 Verify N/A N/A N/A N/A N/A

ECDSA 255 Sign N/A N/A N/A N/A N/A

ECDSA 255 Verify N/A N/A N/A N/A N/A

* according to Gemplus’ implementation ** in all the DSA entries, the subgroup size is 160 bits

X → < X >  =  (X  mod  a1, X  mod a2,
X  mod a3, X  mod a4),

where a1, a2, a3 and a4 are relatively prime easy-to-
generate 1024-bit constants. Clearly the representa-
tion conversion  X → < X > consists solely of modular
reductions with a 1024-bit modulus, which is already
implemented and directly available from the underly-
ing arithmetic engine. Larger data appears to be much
easier to handle under such a form, as computing

< X >, < Y >  →  < X + Y >  , (1)
or

< X >, < Y >  →  < X Y >  , (2)

is carry-free and can be performed by independent
parallel computations. It is worthwhile noticing that

multiplication (2) presents a lower complexity than
would a 2n-bit classical multiplication since :

Σ (log ai)  <  (log Π ai).

Hence, this representation leads to time savings
when compared with the classical radix-form ori-
ented manipulations. Obviously one has to be care-
ful that the cost of recombining the operands after-
wards does not reduce the newly gained benefit too
much. A set of moduli {a1, a2, a3, a4} that offers this
property is said to be low-cost.

Fast CRT combinations
The original form of operands is re-obtained, after
various calculations, by combining coordinates ac-
cording to Garner’s CRT algorithm

Table 2 : Public
key algorithm

timings
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X  mod a1a2  = ((X  mod a2 − X  mod a1) a1
−1

mod a2) a1 + X  mod a1

which can be cascaded to obtain a modular-to-radix
transformation

< X > = (X  mod  a1, X  mod a2, X  mod a3,
X  mod a4)  →  X .

The use of low-cost moduli allows the recombina-
tion of the correct operands at almost no extra cost
(only linear operations). This allows for high-speed
representation conversion.

Modular Montgomery reduction
Once two operands < X > and < Y > are given under
their modular representation, one will typically wish

to compute < XY mod N > where N may be up-to-
2048-bit long. For that purpose, a newly discovered
efficient algorithm for computing

< X >, < Y >, < N >  →  < XY mod N >

can be implemented. (Contact the authors for fur-
ther information). Routines for 2048-bit (both
modular and non modular) multiplication and 4096-
bit modular reduction can be directly obtained from
this procedure.

Constructing 2048-bit exponentiation
Classically, a Square & Multiply implementation will
use the 2048-bit modular multiplication routine that
we previously discussed while bit-scanning the expo-
nent. As a consequence, the whole algorithm re-

Chip P83W854/-858 P83W8516/-8532 SLE44CR80S SLE66CX160S µPD789828

Internal Clock Frequency independent independent 5 Mhz 5 Mhz 40 Mhz

DES 64 bits 10 ms @ 5 Mhz 10 ms @ 5 Mhz 3.7 ms* 3.7 ms* 4 ms

SHA 512 bits 10 ms 5 ms 5.6 ms* 5.6 ms* < 2 ms

MD5 512 bits N/A N/A 9 ms* 9 ms* N/A

RSA 512 Sign with CRT 45 ms 37  ms 60 ms 37 ms 16 ms

RSA 512 Sign without CRT 140 ms 93 ms 220 ms 110 ms 52 ms

RSA 512 Verify (e = F4) 22 ms 10 ms 20 ms* 10.3 ms* 2 ms

RSA 768 Sign with CRT 182.5 ms 88 ms 250 ms* 124 ms* 52 ms

RSA 768 Sign without CRT 385 ms 220 ms N/A 437 ms* 164 ms

RSA 768 Verify (e = F4) 36 ms 18 ms N/A 18.4 ms* 4 ms

RSA 1024 Sign with CRT 250 ms 160 ms 450 ms 230 ms 100 ms

RSA 1024 Sign without CRT 800 ms 400 ms N/A 880 ms 360 ms

RSA 1024 Verify (e = F4) 50 ms 25 ms N/A 24 ms* 7 ms

RSA 2048 Sign with CRT 2180 ms 1100 ms N/A 1475 ms* 750 ms

RSA 2048 Sign without CRT 21 s 6.4 s N/A 44 s* N/A

RSA 2048 Verify (e = F4) 156 ms 54 ms N/A 268 ms* 45 ms

DSA 512** Sign 75 ms 58 ms 95 ms 50 ms 31 ms

DSA 512** Verify 115 ms 82 ms 175 ms 90 ms 70 ms

DSA 768** Sign 145 ms 100 ms N/A N/A 57 ms

DSA 768** Verify 230 ms 145 ms N/A N/A 150 ms

DSA 1024** Sign 215 ms 150 ms N/A 143 ms* N/A

DSA 1024** Verify 355 ms 225 ms N/A 271 ms* N/A

ECDSA 135/131 Sign N/A N/A 185 ms 185 ms N/A

ECDSA 135/131 Verify N/A N/A 360 ms 360 ms N/A

ECDSA 255 Sign N/A N/A N/A N/A 81 ms

ECDSA 255 Verify N/A N/A N/A N/A 380 ms

* according to Gemplus’ implementation ** in all the DSA entries, the subgroup size is 160 bits

Table 2 : Public
key algorithm
timings
(continued)



10C R Y P T O B Y T E S S U M M E R   1 9 9 8   —   T H E   T E C H N I C A L   N E W S L E T T E R   O F   R S A   L A B O R A T O R I E S

Company Contact name Phone/fax no. Address E-mail address

Hitachi Nicolas Prawitz + 33 1 34630500 18, rue Grange Dame Rose, BP 134 Nicolas.Prawitz@hitachi-eu.com

+ 33 1 34653431 F-78148 Velizy Cedex

Motorola Dan Muenchau + 1 972 5165134

NEC Nicolas Bérard + 33 1 30675800 9, rue Paul Dautier BerardN@ef.nec.de

+ 33 1 30675899 F-78142 Velizy Villacoublay

Philips GmbH Thomas Wille + 49 40 56133690 Röhren- und Halbleiterwerke

+ 49 40 56133045 PO Box 540240

D-22502 Hamburg

SGS-Thomson Frédéric Barbato + 33 1 47407575 7, avenue Gallieni, BP 93 Frederic.Barbato@st.com

+ 33 1 47407910 F-94253 Gentilly Cedex

Siemens Laurent Deloo + 33 1 49223100 39-47, boulevard Ornano Laurent.Deloo@p1.siemens.fr

+ 33 1 49223413 F-93527 Saint-Denis Cedex 2

mains fully compatible with exponent-relative
precomputations (signed-digit, redundant represen-
tations, d+kϕ(N), and so forth).

As far as we know,  only this size-doubling technique
makes it possible to execute on board a 1024-bit
smart card any personalized version of RSA with
keysize ranging continuously from 1025 to 2048 bits,
and while using any public exponent. The required
key material (N, e, constants) is proportional in
length to the chosen RSA-size and Table 3 gives an
illustration of the memory requirements for imple-
menting an n-bit version of RSA (1025 ≤ n ≤ 2048).
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cryptographic
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Trying to regulate
confidentiality
by regulating

encryption closes
one door and

leaves two open
(steganography

and winnowing).

Ronald L. Rivest
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545 Technology Square
Cambridge, MA 02139

A major goal of security techniques is “confidential-
ity”—ensuring that adversaries gain no intelligence
from a transmitted message.  There are two major
techniques for achieving confidentiality:

• Steganography: the art of hiding a secret message
within a larger one in such a way that the adver-
sary can not discern the presence or contents of
the hidden message.  For example, a message
might be hidden within a picture by changing the
low-order pixel bits to be the message bits.  (See
Wayner (1996) for more information on
steganography.)

• Encryption: transforming the message to a
ciphertext such that an adversary who overhears
the ciphertext can not determine the message
sent.  The legitimate receiver possesses a secret
decryption key that allows him to reverse the en-
cryption transformation and retrieve the message.
The sender may have used the same key to en-
crypt the message (with symmetric encryption
schemes) or used a different, but related key (with
public-key schemes).  DES and RSA are familiar
examples of encryption schemes.

This paper introduces a new technique, which we
call “chaffing and winnowing’’—to winnow is to
“separate out or eliminate (the poor or useless
parts),’’ (Webster’s Dictionary), and is often used
when referring to the process of separating grain from
chaff.

Novel techniques for confidentiality are interesting
in part because of the current debate about crypto-
graphic policy as to whether law enforcement should
be given when authorized surreptitious access to the
plaintext of encrypted messages.  The usual tech-
nique proposed for such access is “key recovery,”
where law enforcement has a “back door’’ that en-
ables them to recover the decryption key.

Winnowing does not employ encryption, and so does
not have a “decryption key.”  Thus, the usual argu-
ments in favor of “key recovery’’ don’t apply very well
for winnowing.  As usual, the policy debate about
regulating technology ends up being obsoleted by
technological innovations.  Trying to regulate confi-
dentiality by regulating encryption closes one door
and leaves two open (steganography and winnowing).

We now explain how a confidentiality system based
on winnowing works. There are two parts to sending
a message: authenticating (adding MACs), and add-
ing chaff.  The recipient removes the chaff to obtain
the original message.

The sender breaks the message into packets, and au-
thenticates each packet using a secret authentica-
tion key.  That is, the sender appends to each packet
a “message authentication code” or “MAC” com-
puted as a function of the packet contents and the
secret authentication key, using some standard MAC
algorithm, such as HMAC-SHA1 (see Krawczyk et
al. (1997)).  We have the transformation of append-
ing a MAC thus:

packet → packet, MAC

The packet is still “in the clear”; no encryption has
been performed.  We note that software that merely
authenticates messages by adding MACs is automati-
cally approved for export, as it is deemed not to en-
crypt.

There is a secret key shared by the sender and the
receiver to authenticate the origin and contents of
each packet—the legitimate receiver, knowing the
secret authentication key, can determine that a
packet is authentic by recomputing the MAC and
comparing it to the received MAC.  If the compari-
son fails, the packet and its MAC are automatically
discarded.  The sender and the receiver can initially
create and agree upon the secret authentication key
with any standard technique, such as authenticated
Diffie-Hellman.

We note that it is typical for each packet to contain a
serial number as well.  For example, when a long file
is transmitted it is broken up into smaller packets,
and each packet carries a unique serial number. The
serial numbers help the receiver to remove duplicate
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Note that the
problem of
providing
confidentiality
by chaffing and
winnowing is
based on the
difficulty (for the
adversary) of
distinguishing
the chaff from
the wheat.  It is
not based on
the difficulty of
breaking an
encryption
scheme

packets, identify missing packets, and to correctly or-
der the received packets when reassembling the file.
The MAC for a packet is computed as a function of
the serial number of the packet as well as of the packet
contents and the secret authentication key.  As an
example, we might have a sequence of the form:

(1,Hi Bob,465231)
(2,Meet me at,782290)
(3,7PM,344287)
(4,Love-Alice,312265)

of triples of sequence number, message, and MAC.

The second process involved in sending a message is
“adding chaff”: adding fake packets with bogus
MACs.  The chaff packets have the correct overall
format, have reasonable serial numbers and reason-
able message contents, but have MACs that are not
valid.  The chaff packets may be randomly inter-
mingled with the good (wheat) packets to form the
transmitted packet sequence.  Extending the preced-
ing example, chaff packets might make the received
sequence look like:

(1,Hi Larry,532105)
(1,Hi Bob,465231)
(2,Meet me at,782290)
(2,I’ll call you at,793122)
(3,6PM,891231)
(3,7PM,344287)
(4,Yours-Susan,553419)
(4,Love-Alice,312265)

In this case, for each serial number, one packet is
good (wheat) and one is bad (chaff).  Instead of ran-
domly intermingling the chaff with the wheat, the
packets can also be output in sorted order, sorting
first by serial number, and then by message contents.

To obtain the correct message, the receiver merely
discards all of the chaff packets, and retains the
wheat packets.  But this is what the receiver does
anyway!  In a a typical packet-based communication
system the receiver will automatically discard all
packets with bad MACs.  So the “winnowing” pro-
cess is a normal part of such a system. (Receiving a
packet with a bad MAC could conceivably trigger
more of a response from the receiver, but not nor-
mally; the detection of a missing packet is deter-

mined at a different level of the protocol stack, rather
than upon receipt of a bad packet, since the packet
may have been transmitted more than once and been
received OK already.)

Let us verb a word, and let “chaffing” mean the pro-
cess of adding chaff to a sequence of packets. As
above, “winnowing” is the (usual) process of discard-
ing all packets with bad MACs.  We call the good
packets “wheat” for consistency of metaphor.

How much confidentiality does chaffing provide?
This depends on the MAC algorithm, on how the
original message is broken into packets, and on how
the chaffing is done.

A typical MAC algorithm (such as HMAC-SHA1)
will appear to act like a “random function” to the
adversary, and in such a case the adversary will not
be able to distinguish wheat from chaff.  It is pos-
sible in principle, however, to have an unfortunate
MAC algorithm that “leaks” information about the
message being MAC’ed, allowing the adversary to
gain an advantage in distinguishing wheat from
chaff. For example, one could define a LEAKY-
HMAC-SHA1 MAC algorithm to have an output
that is the concatenation of the output of the
HMAC-SHA1 algorithm together with the low-or-
der bit of the message being MAC’ed. However, in
practice (and in theory) one looks for MAC algo-
rithms that are indistinguishable from random func-
tions, and such algorithms also work fine in a chaff-
ing and winnowing application.

Note that the problem of providing confidentiality
by chaffing and winnowing is based on the difficulty
(for the adversary) of distinguishing the chaff from
the wheat.  It is not based on the difficulty of break-
ing an encryption scheme, since there is no encryp-
tion being performed (although confidentiality may
be obtained nonetheless, just as for steganography).

If the adversary sees only one packet with a given
serial number, then that packet is probably wheat,
and not chaff.  So a good chaffing process will add at
least one chaff packet for each packet serial number
used by the message.

The adversary may also distinguish wheat from chaff
by the contents of each packet.  If the wheat packets
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for chaffing and

winnowing is
not encryption; it
is authentication

(adding MACs)
followed by

adding chaff.

each contains an English sentence, while the chaff
packets contain random bits, then the adversary will
have no difficulty in winnowing the wheat from the
chaff himself.

On the other hand, if each wheat packet contains a
single bit, and there is a chaff packet with the same
serial number containing the complementary bit,
then the adversary will have a very difficult (essen-
tially impossible) task.  Being able to distinguish
wheat from chaff would require him to break the
MAC algorithm and/or know the secret authentica-
tion key used to compute the MACs.  With a good
MAC algorithm, the adversary’s ability to winnow is
nonexistant, and the chaffing process provides per-
fect confidentiality of the message contents. To make
this clearer with an example, note that the adver-
sary will see triples of the form:

(1,0,351216)
(1,1,895634)
(2,0,452412)
(2,1,534981)
(3,0,639723)
(3,1,905344)
(4,0,321329)
(4,1,978823)
...

and so on.

I stress that the sending process for chaffing and win-
nowing is not encryption; it is authentication (add-
ing MACs) followed by adding chaff.

Let us assume that the original message is broken
into very short (one-bit) packets, and that MACs
have been added to each such packet to create the
wheat packets.  (There is some obvious inefficiency
here, since each wheat packet may end up being, say
about 100 bits long, but only transmits one bit.  Here
each MAC might be 64 bits in length, and each se-
rial number 32 bits long.  Additional bits might also
be present to identify sender, receiver, etc.)

Such a message sequence is not encrypted, and the
process for creating such a message sequence would
presumably not be export-controlled, since the mes-
sage bits are “in the clear” and nicely labelled with
serial numbers.

The process of creating chaff is also easy: just create a
chaff packet with whatever serial number and packet
contents you may like, and include a random 64-bit
MAC value.  This MAC value is overwhelmingly
likely to be bad, and thus the packet created is over-
whelmingly likely to be chaff.  (The chances of creat-
ing a good packet are one in 264—approximately one
in 1019—which is effectively negligible.)  The person
creating the chaff (the “chaffer”) would do so having
seen the wheat packets, and would make chaff pack-
ets up that have the same serial numbers as the wheat
packets do, but with complementary packet contents.
Again, it is assumed here that an adversary, not know-
ing the secret authentication key, can not distinguish
a good (wheat) packet from a bad (chaff) one.

It is especially intriguing to now observe that creat-
ing chaff does not require knowledge of the secret
authentication key!  That is, creating chaff is done by
creating bogus packets with bogus randomly guessed
(and thus bad) MACs; to randomly guess a MAC re-
quires no knowledge of the secret authentication key.

We could thus have the following intriguing scenario:
Alice is communicating with Bob using a standard
packet-based communication scheme.  Each packet
is authenticated with a MAC created using a secret
authentication key known only to Alice and Bob. (In
practice, they might use a different key for packets in
each direction, although this is not necessary if the
packet contents identify sender and receiver.)  Fur-
thermore, each packet happens to contain only a
single “message bit.”  (Alice wrote their software, and
it contained a bug that caused this unusual behavior.)

So far, Alice and Bob are not encrypting anything,
and are using standard messaging techniques that
would not be considered as encryption and that
would not be export-controlled.  Alice and Bob have
no intention of achieving confidentiality of their
messages from an eavesdropper.

Now, Alice’s packets to Bob may be routed from her
computer through the computer of her Internet ser-
vice provider, run by Charles, on another floor of
her building, before being sent on to more major
trunks of the Internet and then on to Bob.

Charles’ computer, for whatever reason, then adds
“chaff” packets to the packet sequence from Alice to
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Bob.  All of sudden, Charles’ activities provide a very
high degree of confidentiality for the communica-
tions between Alice and Bob!  Alice’s and Bob’s soft-
ware have not been modified in the least to achive
this confidentiality! Charles does not know the se-
cret authentication key used between Alice and Bob!
Alice and Bob did not even want or care to have
confidential communications!  Charles is not using
encryption and does not know any encryption key!
Amazing!

Clearly, the cause of the confidentiality is Charles’s
activities, but Charles has no encryption key or de-
cryption key that he could give to law enforcement.
Alice and Bob share an authentication key, but do
not perform any encryption, and have no encryp-
tion or decryption keys.

Law enforcement may be able to tap the (un-
encrypted) line from Alice to Charles, but that might
be difficult to arrange without Alice’s knowledge, as
Alice and Charles are in the same building, and may
even be friendly or colluding.  While Charles’ chaff-
ing activities may be suspicious, they don’t consitute
encryption and don’t involve any knowledge of keys
on his part; there is no key information he could
give to any law enforcement agency.

In a variation on the above scenario, Charles is not
“adding chaff” but merely multiplexing the stream
of packets from Alice to Bob with another stream of
packets (say from David to Elaine).  To Bob, the
stream of packets from David to Elaine looks like
chaff, and is discarded.  But to Elaine, the converse
holds, and she discards the stream of packets from
Alice to Bob as chaff.  What is wheat to one pair of
communicants is chaff to the other pair, and vice
versa.  Such a situation could arise where Charles is
managing a broadcast channel such as a satellite link;
here both parties naturally receive the stream of in-
termingled packets.  If the only way to distinguish
one stream from another is by the correctness of the
MACs, then an adversary will have a hard time sepa-
rating the streams.  (Of course, if there are exactly
two streams being multiplexed, then Alice and Bob
can read the stream from David to Elaine, and vice
versa.)

In such a scenario, the obvious tack for law enforce-
ment to take would be to demand to have access to

the secret authentication key shared by Alice and
Bob.  But access to authentication keys is one thing
that government has long agreed that they don’t
want to have.  Having such access would allow the
government to forge authentic-looking packets for
any pair of parties that are communicating.  This is
way beyond mere access to encrypted communica-
tions, as loss of such authentication keys could wreak
massive havoc to the structure and integrity of the
entire Internet, allow hackers not only to overhear
private messages, but to actually control computers,
perhaps to shut down power systems or to airline
traffic control systems, etc.  The power to authenti-
cate is in many cases the power to control, and hand-
ing all authentication power to the government is
beyond all reason, even if it were for well-motivated
law-enforcement reasons; the security risks would be
totally unacceptable.

One could imagine that Alice and Bob are merely
authenticating their packets to each other, and that
it is not Charles but instead a rogue law enforce-
ment agent who is introducing the chaff, and then
introducing the authenticated and chaffed message
as potential justification to a judge for demanding
the authentication key shared by Alice and Bob.  If
law enforcement had unrestricted right to plaintext,
then it could demand surreptitious access to all au-
thentication keys, even when confidentiality tech-
niques were not being used by the participants!
Again, such risks are too great to be accepted.

Similarly, a rogue law enforcement agent could in-
troduce the chaff to Alice and Bob’s authenticated
packet stream, and then attempt to bring Alice and
Bob to court for violating some anti-encryption or
anti-confidentiality law.  How can Alice and Bob
defend themselves against this framing attack?  They
did nothing but send authenticated packets to each
other!  Again, this shows the difficulty (or impossi-
bility) of drafting any kind of reasonable law restrict-
ing encryption or confidentiality technology.

It is possible to make the chaffing and winnowing
technique much more efficient, allowing many bits
per packet instead of just one.  Here is one approach.
Suppose Alice has a one-megabit message.  She
might pre-process the message using an “all-or-noth-
ing” or “package transform’’ (Rivest 1997)—this is a
keyless (non-encryption) transform that takes the
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message and produces a “packaged message” with the
property that the recipient (Bob) can’t produce the
original message unless he has received the entire
packaged message.  The packaging operation can be
undone by anyone who receives the packaged mes-
sage; as noted, packaging is not encryption and there
are no shared secret keys involved in the packaging
operation.  Alice might want to do so because she
wants to ensure that Bob either sees all of the mes-
sage or none of it; he doesn’t ever see just part of it.
Unless the entire packaged message is received, the
parts received effectively look like random noise.

Alice then breaks her packaged message into 1024-
bit blocks, authenticates each block with a MAC,
and transmits the result to Bob. This message is pack-
aged and authenticated, but not encrypted: an eaves-
dropper can easily reconstruct the message given all
of the blocks.

However, Charles can add 1024-bit chaff blocks,
where each chaff block has 1024 bits of random data
and a random (and presumably wrong) MAC. Again,
adding the chaff provides extremely strong confiden-
tiality, since an eavesdropper can not distinguish the
chaff from the wheat. Other transforms, besides the
packaging transform, might work as well.

For an adversary, the difficulty of separating the
wheat blocks from the chaff will be proportional to
the number of ways a subsequence of blocks can be
picked as and tested for being wheat; this will be
exponential in the total number of blocks, assuming
that the fraction of chaff blocks is guaranteed not to
be close to zero or close to one. We note that when
packaging is used, it is not necessary to have as many
chaff packets as wheat packets, since the adversary
must identify the wheat packets precisely (with no
omissions or deletions) in order to retrieve the mes-
sage.  Thus, for long messages, the relative number
of chaff packets needed can be quite small, and the
extra bandwidth required for transmitting chaff
might be insignificant in practice.

Chaffing and winnowing bear some relationship to
steganography.  I am reminded of the steganographic
technique of sending an innocuous-looking letter
whose letters are written in two different, but very
similar fonts.  By erasing all letters in one font, the
hidden message written in the other font, remains.

For this technique (as with most steganographic
techniques), security rests on the assumption that
the adversary will not notice the use of two fonts.
With chaffing and winnowing, the adversary may
know (or suspect) that there are two different kinds
of packets, but he is unable to distinguish them be-
cause he does not possess the secret authentication
key.

Chaffing and winnowing also bear some resemblance
to encryption techniques.  Indeed, the process of au-
thenticating packets and then adding chaff achieves
confidentiality, and so qualifies as encryption by any-
one who uses a definition of encryption that is so
broad as to include all techniques for achieving con-
fidentiality.  But this fails to note the special struc-
ture here, wherein a non-encrypting key-dependent
first step (adding authentication) followed by a non-
encrypting keyless second step (adding chaff)
achieves confidentiality.  Since the second step can
be performed by anyone (e.g. Charles in our ex-
ample), and since the first step (adding authentica-
tion) may be performed for other good reasons, we
see something novel, where strong confidentiality can
even be obtained without the knowledge and per-
mission of the original sender.   (Variations on chaff-
ing and winnowing, such as omitting the plaintext
bits altogether and letting the receiver infer them
from the MAC’s, destroy these nice properties.)

I note that the use of MAC’s can be replaced by
digital signatures. Not the ordinary kind of digital
signatures, since then anyone would be able to dis-
tinguish wheat from chaff.  But the recent “desig-
nated verifier signatures’’ of Jakobsson, Sako, and
Impaglizazzo (Jakobsson et al ’96), which can only
be verified by those the signer designates, would work
fine.  (Chaum has also independently invented the
same concept.)

I note that it is possible for a stream of packets to
contain more than one subsequence of “wheat” pack-
ets, in addition to the chaff packets.  Each wheat
subsequence would be recognized separately using a
different authentication key.  One interesting con-
sequence of this is that if law enforcement were to
demand to see an authentication key so it could iden-
tify the wheat, the sender could yield up one such
key that identifies a wheat subsequence containing
an innocuous message as the wheat, and leaving ev-
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erything else as “chaff”.  The real message would still
be buried in the chaff.  This is reminiscent of the
technique of “deniable encryption” proposed by
Canetti et al. (1997).

In the chaffing and winnow approach, Alice and Bob
use standard authentication techniques, and then
someone adds chaff to the sequence of authenticated
packets.  It is worth observing that Alice and Bob
can obtain a covert or subliminal channel by replac-
ing a portion of each MAC for an ordinary message
by a portion of the ciphertext for a hidden message.
Without an authentication key, law enforcement
cannot detect this channel.  But this is outside our
model.

It is also worth noting that the ability to bootstrap
from authentication techniques to confidentiality
mechanisms is not new. For example, two parties can
use authenticated Diffie-Hellman to agree upon an
encryption key.  In such a case, the parties initially
have only each other’s signature verification keys.
After the protocol is over, they have a secret shared
key that they can use for encryption purposes.  Chaff-
ing and winnowing differ in that the two parties in-
volved may not even explicitly take any steps to
achieve confidentiality (if someone else is adding the
chaff).

Another example of using authentication to achieve
confidentiality occurs in baseball—a coach will sig-
nal to a runner by giving a sequence of signals, but
the real signal is the one immediately following a
previously agreed-upon authenticator signal.

A final example of using authentication to achieve
confidentiality occurs in the Rex Stout’s novel “The
Doorbell Rang.” Two men wish to communicate pri-
vately, but fear that the FBI has bugged the room.
They agree when the speaker raises a finger, his state-
ments are to be disregarded.  Of course, the FBI’s
bugs can’t tell if the speaker has his finger raised or
lowered!

In summary, we have introduced a new technique
for confidentiality, called “chaffing and winnowing”.
This technique can provide excellent confidential-
ity of message contents without involving encryp-
tion or steganography.  As a consequence of the ex-
istence of chaffing and winnowing, one can argue

that attempts by law enforcement to regulate confi-
dentiality by regulating encryption must fail, as con-
fidentiality can be obtained effectively without en-
cryption and even sometimes without the desire for
confidentiality by the two communicants.  Law en-
forcement would have to seek access to all authenti-
cation keys as well, a truly frightening prospect.

Mandating government access to all communica-
tions is not a viable alternative.  The cryptography
debate should proceed by mutual education and vol-
untary actions only.
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Introduction
The Data Encryption Standard (DES) [21] is by far
the most popular block cipher.  Around the world,
governments, banks, and standards organizations
have made DES the basis of secure and authentic
communication [24].  DES can be seen as a special
implementation of a Feistel cipher, named after Horst
Feistel [14].  Four modes of operation for block ci-
phers and in particular for DES were standardized
[22].  The four modes are the Electronic Code Book
(ECB), the Cipher Block Chaining (CBC), the Ci-
pher Feedback (CFB), and the Output Feedback
(OFB).  The ECB mode is the native mode, well-
suited for encryption of short keys or very short
plaintexts.  It is not suited for the encryption of larger
plaintexts, since equal plaintext blocks are encrypted
into equal ciphertext blocks.  To avoid this, it is rec-
ommended to use the CBC mode, in which each
ciphertext block depends of the previous ciphertext
blocks, in addition to its plaintext block.  In some
applications there is a need for encryptions of one
character or one bit at a time, instead of full blocks
of eight bytes.  For that purpose the CFB and OFB
modes are suitable.  The OFB mode produces a
stream of randomly looking data, by encrypting an
initial value iteratively, and the ciphertext is the re-
sult of exoring this stream to the plaintext.

The Data Encryption Standard (DES) [21] has been
the subject of intense debate and cryptanalysis.  Im-
mediately after the introduction of DES in the mid
70’s, it was criticized for its short key length of 56
bits, and it was argued that brute-force attacks (inde-
pendent of the internal structure of the block ci-
pher) might be applicable.  Already in 1977, Diffie

and Hellman proposed a special purpose exhaustive
search machine at the cost of about $20,000,000
which can find a key within a day.  In 1993, Wiener
[28] designed a machine which costs only about
$1,000,000 and can find a key within 3.5 hours in
average.  Using today’s technology he estimates that
such a machine can find a key within 35 minutes in
average [29].  More recently, in response to RSA data
security challenges, exhaustive search for DES keys
was actually applied twice over the Internet within
90 and 40 calendar days [11, 13], confirming that
56-bit keys are too short for current applications.

Since 1990 three successful attacks on DES have
been reported, which find the key faster than by an
exhaustive search.  Such short-cut attacks exploit the
internal structure of the block cipher.  The two most
important short-cut attacks on block ciphers are the
differential cryptanalysis by Biham and Shamir [7]
and the linear cryptanalysis by Matsui [19].  Differ-
ential cryptanalysis makes use of so-called differen-
tials (A,B), that is, pairs of plaintexts with difference
A, which after a certain number of rounds result in a
difference B with a high probability.  Linear
cryptanalysis makes use of so-called linear hulls, that
is, the parity of a subset of plaintext bits which after
a certain number of rounds equals the parity of a
subset of ciphertext bits with a probability suffi-
ciently far away from one half.  The differentials and
hulls can be used to derive information on the secret
key.  Although, for DES both these attacks are faster
than an exhaustive search for the key, the attacks
require an unrealistic number of chosen or known
plaintexts encrypted under the secret (unknown)
key.

There are other attacks on block ciphers which given
only the ciphertext can extract information about
the plaintext without recovering the key. An ex-
ample of such an attack is the matching ciphertext at-
tack [16, 10], which depends only the block size of
the cipher.  An attacker collects blocks of ciphertexts
and looks for two equal ciphertext blocks. When en-
crypted in the ECB mode of operation an attacker
gets the information that the two plaintext blocks
are equal.  The attack works also when the
ciphertexts are encrypted using the CBC and CFB
modes of operation.  Consider the CBC mode.  Let
Pi and Ci denote the plaintext and ciphertext blocks.
Then Ci = EK(Pi ⊕ Ci−1), that is, the current plain-
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text block is exclusive-ored with the previous
ciphertext block before being encrypted.  But if Ci =
Cj then since encryption with any key K is invert-
ible, the attacker can deduce that Pi ⊕ Ci−1 = Pj ⊕
Cj−1, and thus that the difference of the two plain-
text blocks Pi ⊕ Pj is Ci−1 ⊕ Cj−1.  With a block size
of n bits, a match Ci = Cj is expected after the en-
cryption of about 2n/2 blocks.  For DES this is only
232 blocks.

Triple-DES and its modes of operation
For a higher level of security against exhaustive key
search attacks it is often recommended to use triple-
DES [12], which encrypts a plaintext three times
with three different keys, or to use two-key triple
DES [25], which encrypts a plaintext with a key K1,
then decrypts with a key K2 and finally encrypts
again with the same key K1.  This increases the key
lengths to 168 or 112 bits respectively.  However,
the block lengths of 64 bits of these proposals are
the same as for DES, and the matching ciphertext
attack is still a problem.

For several years the X9.F.1 committee of the Ameri-
can National Standards Institute (ANSI) is working
on adopting a suite of modes of operation for triple-
DES encryption [1].  The proposed modes are based
on the four modes of operation of DES, with the
underlying cipher replaced by triple DES.  Inter-
leaved variants, which encrypt three partial streams
containing every third block of the original stream,
are also proposed for obtaining better speed in hard-
ware.

One of these proposed modes is the Triple DES Ci-
pher Block Chaining (TCBC) mode, where the feed-
back block is the ciphertext block (computed by
three DES encryptions).  This mode is also called
the outer-CBC mode [15].  This mode is described in
Figure 1.  However, this mode is vulnerable to the
matching ciphertext attack, and is inherently three
times slower than DES.  Therefore, it has been pro-
posed to use triple-DES in a cipher block chaining
mode with internal feedback, called the inner-CBC
mode [15], where the feedback is applied after each
single DES encryption, and therefore can be viewed
as applying the CBC mode three times with three
different keys.  This mode is described in Figure 2.
This mode is not vulnerable to the matching
ciphertext attack, and was expected to be as secure

as three-key triple-DES against key recovery attacks.
As the best published attack against three-key triple-
DES required 2112 complexity [20]1 it was expected
that attacks against this mode require more than 2112

operations, especially as the attacker is unable to
know the internal feedbacks, and therefore, cannot
even search for the key given a plaintext/ciphertext
pair.  Moreover, this mode can be pipelined in hard-
ware and therefore can be applied with the same
speed as of single DES.

1 Recently Lucks [18] devised an attack on three-key triple-

DES with complexity about 2109.

Figure 1: The
outer-CBC mode
(TCBC)

Figure 2: The
inner-CBC mode
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However, in a series of papers [3, 4, 6], the first au-
thor analyzed a large number of multiple modes of
operation, and in particular showed how to mount a
key-recovery attack [4] against the inner-CBC mode.
The complexity of this attack is considerably smaller
than one would expect for triple encryption schemes
and only slightly higher than the complexity of at-
tacking single modes.  The proposed attacks are
based on the ability of the attacker to control the
feedbacks, even though he does not know their ac-
tual values.  In the attack on the inner-CBC mode,
the attacker chooses tuples of ciphertexts of the form
(C,C,C,C), where all four blocks are the same.  Dur-
ing decryption, the inner-CBC mode ensures that
the decrypted data after decryption of one CBC layer
becomes of the form (?,X,X,X), where the three X
blocks are equal (but unknown to the attacker).
Similarly after decryption of two layers the data be-
comes (?,?,Y,Y), where the ?’s are unknown, but the
two Y’s are equal, and after decryption of all the three
layers the data becomes (?,?,?,Z) for some Z.  The
attack requires  233 such tuples for different values of
C.  Due to the birthday paradox, it is expected that
there is a pair of two tuples, say with values C1 and
C2 that lead to the same value of X and therefore
same values of Y and Z.  These C1 and C2 can be
identified given the plaintext since they have the
same Z.  Once they are identified, the attacker only
has to search exhaustively for one DES key K3 that
satisfies DK3(C1) ⊕ C1 = DK3(C2) ⊕ C2.  Given K3, it
is possible to find the other keys in a similar way.
The total complexity is only a few times larger than
an exhaustive search of a DES key, rather than be-
ing about 2112.

The CBCM mode
In [9, 10] Coppersmith, Johnson, and Matyas pro-
pose the CBC with OFB Masking (CBCM) mode of
operation for triple-DES.  The CBCM mode was spe-
cially designed to withstand the attacks described in
[4, 5], the dictionary attack, and the matching
ciphertext attack.  The CBCM mode is similar to
the CBC mode when two-key triple-DES is used as
the underlying cipher, with the addition of mixing
with an OFB mask between the first and the second
layers, and again with the same mask between the
second and the third layers.  The mask is the output
of an OFB mode using a third key.  Figure 3 describes
this mode, where E and D denote encryption respec-
tively decryption with the underlying block cipher.

The disadvantage of the proposal is, that it uses four
DES encryptions using three different DES keys to
encrypt each 64-bit plaintext block.  In [9, 10] it is
mentioned that the attacks in [4] that use internal
feedbacks for the benefit of the attacker leave little
hope for devising modes with internal feedbacks.  In
particular it is mentioned that the inner-CBC mode
is weak due to such feedbacks, while on the other
hand modes with only outer feedbacks are unsatis-
factory.  This motivated the design of a more com-
plex mode which has both outer feedbacks, and in-
ternal feedbacks, but in which the internal feedbacks
may not be controlled by the attacker, as they are
the output of an OFB mode.  It is claimed in [9] that
the CBCM mode is immune against the kind of at-
tacks described in [4].

The CBCM mode was included in the ANSI triple
DES modes of operation proposed standard [1], in
addition to the modes described earlier.  This stan-
dard was almost accepted in September 1997, and
was delayed only in order to correct some typos found
in the proposal.  The corrected version had to be
finally accepted a few weeks later, and this attack
was found just before this final vote.  As a conse-
quence of our attack, ANSI decided to remove the
CBCM mode from the standard.

The attack on the CBCM mode
In the attack on the CBCM mode, we replace the
need to control the feedbacks by making use of their
structure.  This is done using fixed points of the un-
derlying cipher.  A fixed point of a function f is a
value x, such that f(x) = x.  The first main observa-
tion in our attack is that when the input to the
middle decryption is a fixed point, the middle de-
cryption and the two mixings with the masks are
eliminated, and thus the whole triple encryption re-
duces to a double encryption using the same key
twice.  When generating sufficiently many plaintext
and ciphertext blocks, one has a high probability of
encountering one or several encryptions with fixed
points.  The remaining problem is to find the blocks
where this happens.  The second observation is that
for most functions f, there is exactly one fixed point
x.  The attack requires a huge number of chosen
ciphertext blocks, larger than the period of the OFB
stream.  We choose 264 ciphertext blocks of the same
value C1, followed by 264 ciphertext blocks of the
some other value C2.  Given the plaintexts, it is easy

The CBCM mode
was included in
the ANSI triple
DES modes of

operation
proposed

standard [1], in
addition to the

modes described
earlier.  This

standard was
almost accepted

in September
1997

As a
consequence

of our attack,
ANSI decided
to remove the

CBCM mode
from the

standard.
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to identify the period of the OFB stream.  Now, we
try all the 256 candidates K’ of the key K1, for each
we decrypt C1 and C2 under the same K’.  By com-
paring the results to the plaintext blocks we find can-
didate blocks with fixed points in the middle de-
cryption.  However, the fixed point is expected to be
unique, and thus we identify that the two middle
encryptions have the same data.  This information
allows us to identify relations between two additional
blocks with the same mask values but exchanged
ciphertexts.  These additional blocks are then used
to verify whether K’ is not K1.  The full details of the
attack appear in [8].

The attack needs about 265 chosen ciphertext blocks,
runs in time equivalent to 258 triple-DES encryp-
tions and also requires the memory for keeping the
plaintexts.  Thus the attack is theoretical, and is not
expected to be applied in practice.  However, the
complexity is several orders of magnitude lower than
the claimed complexity of attacking this mode, and
is crucially lower than the complexity of the best
key-recovery attack on triple DES.

Possible improved solutions
There are several straightforward measures to thwart
this attack, by modifying the CBCM mode.  How-
ever, there is no certainty that these measures actu-
ally increase the strength.  We believe that chang-
ing the key of the last encryption layer to a fourth
key K4 would thwart the attack.  On the other hand,
we recommend not to change the second OFB mix-
ing to a different stream, as there are attacks on other
modes which can recover the two OFB streams in
such case [6].

Another possible solution is to use other (hopefully
more secure) modes of operation.  For example, the
first author proposed the OFB[CBC,CBC,CBC−1]
mode in [6] (this notation means, exor the plaintext
with an OFB stream generated by one DES key, en-
crypt with the CBC mode with a second key, exor
again with the same OFB stream, encrypt again with
the CBC mode with a third key, exor once again
with the same OFB stream, apply CBC mode decryp-
tion with a fourth key and finally exor with the same
OFB stream), with the initial value computed as the
result of a message authentication code (MAC) on
the transmitted initial value [8].  This mode is still
unbroken, and the best known attack has complex-

ity about 2112, even under the most extreme attack-
ing assumptions (such as attacks in which the at-
tacker can get many decrypted chosen ciphertexts
with the same chosen initial values [27]).  This mode
can be pipelined, and thus can be as fast as single
DES in hardware, and as fast as CBCM in software.

The solution might also be using DES as a building
block of a more secure block cipher.  In [17] the sec-
ond author devised such a block cipher, called
DEAL, with a conjectured security level of about
2120.  The construction is simple.  The plaintext
blocks of 128 bits are divided into two blocks of 64
bits each; the left half is input to DES using a key
K1, the output is exclusive-ored to the right half, and
the two halves are swapped.  The ciphertext is the
output of the sixth such round, where in each round
a new DES key is used.  In other words, DEAL is a
six round Feistel cipher using DES in the round func-

M1, M2, …, etc, are the output blocks of an OFB mode with
IV1 as the initial value, encrypted under the key K3:

Figure 3: The
CBCM mode
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tion.  DEAL encrypts two 64-bit blocks using six
encryptions and is as fast as triple-DES.  The total of
six 56-bit subkeys are generated from the user-se-
lected key of 128, 192, or 256 bits.

Advanced Encryption Standard (AES)
All the above modes and possible solutions were pro-
posed in order to improve the security of DES, due
to its short keys and short blocks, and due to the
reported theoretical cryptanalysis.  A much better
solution would be to replace DES with a new block
cipher with larger keys and larger blocks, which is
immune to all kinds of attacks reported so far in the
cryptographic literature.  Indeed, such an initiative
has been announced by the U.S.  National Institute
of Standards and Technology (NIST), the same in-
stitute that standardized DES in the 70’s.  NIST in-
tends to standardize a new encryption algorithm, the
Advanced Encryption Standard (AES) [23], as a re-
placement for DES.  In this initiative NIST encour-
ages parties world-wide to submit proposals for the
new standard.  Following submission (in June 15,
1998) all proposals will become publicly available.
The proposals are required to support at least a block
size of 128 bits, and three key sizes of 128, 192, and
256 bits.  It is the hope of NIST that the end result
is a block cipher “with a strength equal to or better
than that of Triple-DES and significantly improved
efficiency.”  With the minimum requirements for the
key sizes it is clear that an exhaustive key search will
be infeasible for many years.  Also with a block size
of 128 bits the matching ciphertext attack requires a
huge number of about 264 ciphertext blocks to find
even one relation of two plaintext blocks.

We hope that the AES process will result with a
block cipher for which no practical attacks are ap-
plicable, and that it will remain so for the next 20-
30 years.  To help this goal to succeed, we (together
with Ross Anderson) are designing one of the AES
candidates, called Serpent [2].  The designers of AES
candidates are requested by NIST not only design a
secure block cipher; they are also required to write
three different implementations in two programming
languages, and to measure the number of gates re-
quired in hardware.  Although this is a tedious and
time consuming task, more than a dozen other groups
are also designing AES candidates.  Once a few can-
didates have been selected by NIST, the increased
attention of the worlds cryptanalysts will result in

new analysis and would lead to several sorts of com-
parisons of the candidates (by speed, claimed
strength, simplicity of design, scalability, simplicity
and size of implementation in software and hardware,
etc.).  It is not expected that the final AES cipher
will be provably secure, as the current knowledge in
this area can only provide hints that some attacks
are impossible, but cannot provide complete proofs
of security.  However, we expect that the final result
of the AES process will be several orders of magni-
tude more secure than DES, while it will be only
slightly slower than DES.  This cipher will be ad-
equate to serve as the main world wide block cipher
for many years.
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DES-II Challenges Solved
On January 13, 1998 the first of two recent DES
challenges was offered to the cryptographic commu-
nity.  While the total prize money for each of the
DES-II challenges is $10,000, the full amount is paid
only when the time required to find the solution is
less than or equal to 25% of the time required for
the previous challenge.  The prize drops to $5,000
when the time for solution is less than or equal to
50% of the previous time and $1,000 is paid for a
time within 75% of that mark.

The organization distributed.net used the idle time of
computers throughout the world to solve the first
DES-II challenge of 1998.  They coordinated the ef-
forts of 22,000 participants and linked together over
50,000 CPUs.  The team searched over 61 quadril-
lion, 254 trillion keys at a peak rate of 26 trillion
keys per second.  After searching through 85% of
the keyspace, the winning key was found which re-
vealed the hidden message “Many hands make light
work.”  While the team had to search nearly the

entire keyspace before finding the key, the calendar
time for solving the contest was 40 days thereby net-
ting a reward of $5,000.

The second challenge was launched on July 13,
1998 and was solved in under three days by the
Electronic Frontier Foundation (EFF).  EFF was well
within the ten calendar day mark determined by
distributed.net’s solution of the previous challenge,
and hence, EFF received the full $10,000 prize.  EFF
used a single machine called the EFF DES Cracker
to win the contest.  The Cracker was built for less
than $250,000, and is able to search through 88
billion keys per second. It took the Cracker 56 hours
to find the key with which to reveal the hidden
message, “It’s time for those 128-, 192-, and 256-bit
keys.”

More information on these and other challenges
maintained by RSA Laboratories can be found at
http://www.rsa.com/rsalabs/html/challenges.html.
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The RSA Data Security Conference ‘99
RSA invites you to participate in The 1999 RSA
Data Security Conference and Expo. This, our
eighth annual Conference, will be held at the
San Jose McEnery Convention Center January
17th through the 21st, 1999.  The
conference will be the single larg-
est computer security gathering
in history, with over 5,000
representatives from busi-
ness, academia, govern-
ment, Wall Street, and the
media expected to attend.

General Sessions will open
and close the conference,
bringing everyone together
for special keynote ad-
dresses, expert panels, and
discussions of general interest.  The conference
will also offer attendees a menu of over 150 dif-
ferent class sessions on topics ranging from the

most technical of cutting-edge crypto research
to the most practical implementation case-stud-
ies. Seven simultaneous Class Tracks will fea-
ture a wide variety of workshops, seminars and
talks.  Special tutorials and immersion training

sessions will educate newcomers on
the basics of cryptography, en-

terprise security and secure
application development
techniques.

This year’s Expo will be
larger and more compre-
hensive than ever, featur-
ing over 100 vendors dem-
onstrating hundreds of the
very latest products.

Exhibitor and sponsorship
information is available on the web at http://
www.rsa.com/conf99/, or call LKE Productions
at 415-544-9300 for more information.


