
CryptoBytes
V O L U M E 3 , N U M B E R 2 — A U T U M N 1 9 9 7

R S A L A B O R A T O R I E S ’

The technical newsletter of RSA Laboratories, a division of RSA Data Security, Inc.Contents

1

On the Foundations of

Modern Cryptography

2

Editor’s Note

6

Efficient DES Key

Search — An Update

8

The RSA Data Security

DES Challenge II

9

The Cryptographic Hash

Function RIPEMD-160

15

PKCS: The Next

Generation, Chapter 2

16

Announcements

(continued on page 3)

Oded Goldreich is currently visiting the Laboratory for Computer
Science of MIT, and is partially supported by DARPA grant
DABT63-96-C-0018. He can be contacted via e-mail at
oded@wisdom.weizmann.ac.il.

RSA Laboratories
A Division of RSA Data Security

®

Oded Goldreich
Department of Computer Science and Applied Mathematics

Weizmann Institute of Science, Rehovot, Israel

In our opinion, the Foundations of Cryptography are the

paradigms, approaches and techniques used to conceptual-

ize, define and provide solutions to natural cryptographic

problems. We survey some of these paradigms, approaches

and techniques as well as some of the fundamental results

obtained using them. Special effort is made in attempt to

dissolve common misconceptions regarding these paradigms

and results.

It is possible to build a cabin with no foundations,

but not a lasting building.

– Eng. Isidor Goldreich (1906-1995)

Cryptography is concerned with the construction
of schemes which are robust against malicious at-
tempts to make these schemes deviate from their
prescribed functionality. Given a desired function-
ality, a cryptographer should design a scheme which
not only satisfies the desired functionality under
“normal operation,” but also maintains this func-
tionality in face of adversarial attempts which are
devised after the cryptographer has completed his/
her work.

The fact that an adversary will devise its attack
after the scheme has been specified makes the de-
sign of such schemes very hard. In particular, the
adversary will try to take actions other than the
ones the designer had envisioned. Thus, our ap-
proach is that it makes little sense to make assump-
tions regarding the specific strategy that the adver-
sary may use.

The only assumptions which can be justified refer
to the computational abilities of the adversary. Fur-
thermore, it is our opinion that the design of cryp-
tographic systems has to be based on firm founda-
tions; whereas ad-hoc approaches and heuristics are
a very dangerous way to go. A heuristic may make
sense when the designer has a very good idea about
the environment in which a scheme is to operate,
yet a cryptographic scheme has to operate in a ma-
liciously selected environment which typically
transcends the designer’s view.

Providing firm foundations to Cryptography has
been a major research direction in the last two de-
cades. Indeed, the pioneering paper of Diffie and
Hellman [8] should be considered the initiator of
this direction. Two major (interleaved) activities
have been:

1) Definitional Activity: The identification,
conceptualization and rigorous definition of
cryptographic tasks which capture natural secu-
rity concerns; and

2) Constructive Activity: The study and design

On the Foundations of Modern Cryptography

2C R Y P T O B Y T E S A U T U M N 1 9 9 7 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

Editor’s Note

About RSA Laboratories

An academic environment within a commercial organization, RSA
Laboratories is the research and consulting division of RSA Data
Security, the company founded by the inventors of the RSA public-
key cryptosystem. Its purpose is to provide state-of-the-art exper-
tise on cryptography and information security for the benefit of
RSA Data Security and its customers. RSA Data Security is a
Security Dynamics company.

We encourage
any readers

with comments,
opposite opinions,

suggestions or
proposals for

future issues to
contact the

CryptoBytes
editor.

CryptoBytes Feedback Requested
The CryptoBytes publication schedule is
currently being revised. As part of that pro-
cess, we are interested to know if readers
have a preference for electronic or paper
versions of the newsletter. Please direct any
comments via e-mail to rsa-labs@rsa.com.
Also, to help with the distribution of the
newsletter and to provide updates on the
publication schedule, a mailing list will be
maintained. To put yourself on this list, send
e-mail to majordomo@rsa.com with the line
“subscribe cryptobytes-information” in the
message body. To remove yourself from this
list, send e-mail to majordomo@rsa.com with
the line “unsubscribe cryptobytes-informa-
tion” in the message body.

Newsletter Availability and
Contact Information

CryptoBytes is a free publication and all
issues, both current and past, are avail-
able via the World-Wide Web at <http://
www.rsa.com/rsalabs/pubs/cryptobytes.html>.

For each previous issue a limited number of
copies were printed. While available, cop-
ies of these printed issues can be requested
by contacting RSA Laboratories though a
nominal fee to cover handling costs may be
charged for individual requests.

RSA Laboratories can be contacted at:

RSA Laboratories
100 Marine Parkway, Suite 500
Redwood City, CA 94065
650/595-7703
650/595-4126 (fax)
rsa-labs@rsa.com

As years come to a close it is natural to look back at
past achievements. Some achievements in 1997
caught the attention of the popular press, but other
arguably more significant developments went unno-
ticed outside of the research community.

The RSA sponsored secret-key challenges very pub-
licly demonstrated a valuable point. However, the
challenges provided little surprise to cryptographers.
In fact many believe that the software-based search
efforts characterized by the challenges do not pose
the main threat. In 1993 Michael Wiener described
a design for a dedicated machine that could be built
for $1,000,000 and which would find a DES key in
3.5 hours on average. To many, this is the real threat.
In this issue Michael updates those estimates to al-
low for progress over the intervening four years.
Those that take comfort in the time required to find
a DES key by software-based exhaustive search might
find this article particularly interesting.

Perhaps the most remarkable cryptanalytic develop-
ments over the last year or two have been the ad-
vances made in the analysis of hash functions by
Hans Dobbertin. The net result of this work has been
a lack of options in the hash functions that are avail-
able for long-term use. In Europe, however,
RIPEMD-160 has been gaining in popularity and the
designers of this algorithm provide us with a sum-
mary of its features in this issue of the newsletter.

Finally, at the 1997 Crypto conference attendees
honored the work of Oded Goldreich. As one of the
pioneers in establishing a theoretical framework to
today’s cryptography Oded’s invited lecture was one
of the highlights of the conference. In our lead ar-
ticle Oded provides us with his perspective on the
foundations of modern cryptography.

The future success of CryptoBytes depends on input
from all sectors of the cryptographic community, and

as usual we would like very much to thank the writ-
ers who have contributed to this second issue of the
third volume. We encourage any readers with com-
ments, opposite opinions, suggestions or proposals
for future issues to contact the CryptoBytes editor at
RSA Laboratories or by E-mail to bytes-ed@rsa.com.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 7 3

On the Foundations of Modern Cryptography
Continued from page 1

of cryptographic schemes satisfying definitions as
in (1).

The definitional activity
An arcitypical example of this activity is the defini-
tion of the most classical of all cryptographic no-
tions — the notion of secure encryption [18]. The
reader may be surprised: what is there to define (be-
yond the basic setting formulated in [8])? Let us an-
swer with a question (posed by [18]): should an en-
cryption scheme which leaks the first bit of the plaintext
be considered secure? Clearly, the answer is negative
and so some naive conceptions regarding secure en-
cryption (e.g., “a scheme is secure if it is infeasible to
obtain the plaintext from the ciphertext when not
given the decryption key”) turn out to be unsatisfac-
tory. The lesson is that even when a natural concern
(e.g., “secure communication over insecure chan-
nels”) has been identified, work still needs to be done
towards a satisfactory (rigorous) definition of the un-
derlying concept.

The definitional activity also undertook the treat-
ment of unforgeable signature schemes [20]: One re-
sult of the treatment was the refutation of a “folklore
theorem” (attributed to Ron Rivest) by which “a sig-
nature scheme that is robust against chosen message
attack cannot have a proof of security”. The lesson
here is that unclear/unsound formulations (i.e., those
underlying the above folklore paradox) lead to false
conclusions.

Another existing concept which was re-examined
is the then-fuzzy notion of a “pseudorandom gen-
erator.” Although ad-hoc “pseudorandom genera-
tors” which pass some ad-hoc statistical tests may
be adequate for some statistical samplings, they are
certainly inadequate for use in Cryptography:
For example, sequences generated by linear
congruential generators are easy to predict and en-
danger cryptographic applications even when not
given in the clear. The alternative suggested in
[7,18,28] is a robust notion of pseudorandom gen-
erators — such a generator produces sequences
which are computationally indistinguishable from truly
random sequences, and thus, can replace truly ran-
dom sequences in any practical application. The ap-
proach was further extended to pseudorandom func-
tions [14].

The definitional activity has identified concepts
which were not known before. One well-known ex-
ample is the introduction of zero-knowledge proofs
[19]. A key paradigm crystallized in making the lat-
ter definition is the simulation paradigm: A party is
said to have gained nothing from some extra infor-
mation given to it if it can generate (i.e., simulate
the receipt of) essentially the same information by
itself (i.e., without being given this information).
The simulation paradigm plays a central role in the
related definitions of secure multi-party computa-
tions as well as in different settings.

The definitional activity is an on-going process. Its
more recent targets have included mobile adversar-
ies, Electronic Cash, Coercibility, Threshold Cryp-
tography and more.

The constructive activity
As new definitions of cryptographic tasks emerged,
the first challenge was to demonstrate that they can
be achieved. Thus, the first goal of the constructive
activity is to demonstrate the plausibility of obtaining
certain goals. Thus, standard assumptions such as
that the RSA is hard to invert were used to con-
struct secure public-key encryption schemes [18,28]
and unforgeable digital schemes [20]. We stress that
assuming that RSA is hard to invert is different from
assuming that RSA is a secure encryption scheme.
Furthermore, plain RSA (alike any deterministic
public-key encryption scheme) is not secure (as one
can easily distinguish the encryption of one predeter-
mined message from the encryption of another). Yet,
RSA can be easily transformed into a secure public-
key encryption scheme by using a construction
which is reminiscent of a common practice (of pad-
ding the message with random noise). The resulting
scheme is not merely believed to be secure, but rather
its security is linked to a much simpler assumption
(i.e., the assumption that RSA is hard to invert).
Likewise, although plain RSA signing is vulnerable
to “existential forgery” (and other attacks), RSA can
be transformed into a signature scheme which is
unforgeable (provided RSA is hard to invert). Using
the assumption that RSA is hard to invert, one can
construct pseudorandom generators [7,28], zero-
knowledge proofs for any NP-statement [16], and
multi-party protocols for securely computing any
multi-variant function [29,17].

[…] should an
encryption
scheme which
leaks the first
bit of the
plaintext be
considered
secure?

Using the
assumption that
RSA is hard to
invert, one can
construct
pseudorandom
generators,
zero-knowledge
proofs for any
NP-statement,
and multi-party
protocols for
securely
computing any
multi-variant
function.

4C R Y P T O B Y T E S A U T U M N 1 9 9 7 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

A major misconception regarding theoretical work
in Cryptography stems from not distinguishing work
aimed at demonstrating the plausibility of obtain-
ing certain goals from work aimed at suggesting
paradigms and/or constructions which can be used
in practice. For example, the results concerning
zero-knowledge proofs and multi-party protocols
[16,29,17] mentioned above are merely claims of
plausibility: What they say is that any problem of
the above type (i.e., any protocol problem) can be
solved in principle. This is a very valuable piece of
information. Thus, if you have a specific problem
which falls into the above category then you should
know that the problem is solvable in principle.
However, if you need to construct a real system then
you should probably construct a solution from
scratch (rather than employing the above general
results). Typically, some tools developed towards
solving the general problem may be useful in solv-
ing the specific problem. Thus, we distinguish three
types of results:

1) Plausibility results: Here we refer to mere state-
ments of the type “any NP-language has a zero-
knowledge proof system” (cf., [16]).

2) Introduction of paradigms and techniques which may
be applicable in practice: Typical examples include
construction paradigms as the “choose n out of
2n technique” of [26], the “authentication tree”
of [22,23], the “randomized encryption” paradigm
of [18], proof techniques as the “hybrid argument”
of [18] (cf., [13, Sec. 3.2.3]), and many others.

3) Presentation of schemes which are suitable for practi-
cal applications: Typical examples include the pub-
lic-key encryption schemes of [6], the digital sig-
nature schemes of [10,11], the session-key proto-
cols of [3,4], and many others.

Typically, it is quite easy to determine to which of
the above categories a specific technical contribu-
tion belongs. Unfortunately, the classification is not
always stated in the paper; however, it is typically
evident from the construction. We stress that all re-
sults we are aware of (and in particular all results
cited here), come with an explicit construction. Fur-
thermore, the security of the resulting construction
is explicitly related to the complexity of certain in-

tractable tasks. In contrast to some uninformed be-
liefs, for each of these results there is an explicit
translation of concrete intractability assumptions (on
which the scheme is based) into lower bounds on
the amount of work required to violate the security
of the resulting scheme.1

We stress that this translation can be invoked for
any value of the security parameter. Doing so deter-
mines whether a specific construction is adequate
for a specific application under specific reasonable
intractability assumptions. In many cases the answer
is in the affirmative, but in general this does depend
on the specific construction as well as on the spe-
cific value of the security parameter and on what is
reasonable to assume for this value. When we say
that a result is suitable for practical applications (i.e.,
belongs to Type 3 above), we mean that it offers rea-
sonable security for reasonable values of the security
parameter and reasonable assumptions.

Other activities
This brief summary is focused on the definitional and
constructive activities mentioned above. Other ac-
tivities in the foundations of cryptography include
the exploration of new directions and the marking
of limitations. For example, we mention novel modes
of operation such as split-entities [5,24], batching
operations [12], off-line/on-line signing [11] and In-
cremental Cryptography [1,2]. On the limitation
side, we mention [21,15]. In particular, [21] indicates
that certain tasks (e.g., secret key exchange) are un-
likely to be achieved by using a one-way function in
a “black-box manner.”

Bibliographic notes
This is a brief summary of an essay which appears in
the proceedings of Crypto97 (Springer’s LNCS Vol.
1294). Suggestions for further reading appear in Sec-
tion 10 of the essay.

A revised version of the essay is available from http://
theory.lcs.mit.edu/ oded/tfoc.html.

1 The only exception to the latter statement is Levin’s obser-

vation regarding the existence of a universal one-way function

(cf., [12, Sec. 2.4.1]).

[…] we
distinguish three
types of results:

1) Plausibility
results

2) Introduction
of paradigms

and techniques
which may

be applicable
in practice

3) Presentation
of schemes
which are

suitable for
practical

applications

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 7 5

Bibliographic abbreviations
• STOC is ACM Symposium on the Theory of Computing.

• FOCS is IEEE Symposium on Foundations of Computer

Science.

References
[1] M. Bellare, O. Goldreich and S. Goldwasser. Incremen-

tal Cryptography: the Case of Hashing and Signing. In

Proceedings of Crypto94, Springer-Verlag LNCS (Vol.

839), pages 216-233, 1994.

[2] M. Bellare, O. Goldreich and S. Goldwasser. Incremen-

tal Cryptography and Application to Virus Protection.

In 27th STOC, pages 45-56, 1995.

[3] M. Bellare and P. Rogaway. Entity Authentication and

Key Distribution. In Proceedings of Crypto93, Springer-

Verlag LNCS (Vol. 773), pages 232-249, 1994.

[4] M. Bellare and P. Rogaway. Provably Secure Session Key

Distribution: The Three Party Case. In 27th STOC,

pages 57-66, 1995.

[5] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson.

Multi-Prover Interactive Proofs: How to Remove Intrac-

tability. In 20th STOC, pages 113-131, 1988.

[6] M. Blum and S. Goldwasser. An Efficient Probabilistic

Public-Key Encryption Scheme which hides all partial

information. In Proceedings of Crypto84, LNCS (Vol.

196) Springer-Verlag, pages 289-302, 1985.

[7] M. Blum and S. Micali. How to Generate Cryptographi-

cally Strong Sequences of Pseudo-Random Bits. SIAM

J. on Comput., Vol. 13, pages 850-864, 1984.

[8] W. Diffie, and M.E. Hellman. New Directions in Cryp-

tography. IEEE Trans. on Info. Theory, IT-22 (Nov.

1976), pages 644-654.

[9] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryp-

tography. In 23rd STOC, pages 542-552, 1991. Full ver-

sion available from authors.

[10] C. Dwork, and M. Naor. An Efficient Existentially

Unforgeable Signature Scheme and its Application. To

appear in J. of Crypto. Preliminary version in Proceed-

ings of Crypto94, LNCS (Vol. 839) Springer-Verlag,

pages 234-246, 1994.

[11] S. Even, O. Goldreich and S. Micali. On-line/Off-line

Digital signatures. J. of Crypto., Vol. 9, 1996, pages 35-

67.

[12] A. Fiat. Batch RSA. J. of Crypto., Vol. 10, 1997, pages

75-88.

[13] O. Goldreich. Foundation of Cryptography - Fragments of

a Book . February 1995. Available from http://

theory.lcs.mit.edu/~oded/frag.html.

[14] O. Goldreich, S. Goldwasser, and S. Micali. How to

Construct Random Functions. J. of the ACM, Vol. 33,

No. 4, pages 792-807, 1986.

[15] O. Goldreich and H. Krawczyk. On the Composition of

Zero-Knowledge Proof Systems. SIAM J. on Comput.,

Vol. 25, No. 1, February 1996, pages 169-192.

[16] O. Goldreich, S. Micali and A. Wigderson. Proofs that

Yield Nothing but their Validity or All Languages in

NP Have Zero-Knowledge Proof Systems. J. of the ACM,

Vol. 38, No. 1, pages 691-729, 1991. See also prelimi-

nary version in 27th FOCS, 1986.

[17] O. Goldreich, S. Micali and A. Wigderson. How to Play

any Mental Game - A Completeness Theorem for Pro-

tocols with Honest Majority. In 19th STOC, pages 218-

229, 1987.

[18] S. Goldwasser and S. Micali. Probabilistic Encryption.

J. of Comp. and Sys. Sci., Vol. 28, No. 2, pages 270-299,

1984. See also preliminary version in 14th STOC, 1982.

[19] S. Goldwasser, S. Micali and C. Rackoff. The Knowl-

edge Complexity of Interactive Proof Systems. SIAM J.

on Comput., Vol. 18, pages 186-208, 1989.

[20] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Sig-

nature Scheme Secure Against Adaptive Chosen-Mes-

sage Attacks. SIAM J. on Comput., April 1988, pages

281-308.

[21] R. Impagliazzo and S. Rudich. Limits on the Provable

Consequences of One-Way Permutations. In 21st

STOC, pages 44-61, 1989.

[22] R.C. Merkle. Protocols for public key cryptosystems. In

Proc. of the 1980 Symposium on Security and Privacy.

[23] R.C. Merkle. A Certified Digital Signature Scheme. In

Crypto89, Springer-Verlag LNCS (Vol. 435), pages 218-

238, 1990.

[24] S. Micali. Fair Public-Key Cryptosystems. In Proceedings

of Crypto92, Springer-Verlag LNCS (Vol. 740), pages

113-138, 1993.

[25] M. Naor and M. Yung. Universal One-Way Hash Func-

tions and their Cryptographic Application. In 21st

STOC, pages 33-43, 1989.

[26] M.O. Rabin. Digitalized Signatures. In Foundations of

Secure Computation (R.A. DeMillo et. al. eds.), Aca-

demic Press, 1977.

[27] R. Rivest, A. Shamir and L. Adleman. A Method for

Obtaining Digital Signatures and Public Key

Cryptosystems. CACM, Vol. 21, Feb. 1978, pages 120-

126.

[28] A.C. Yao. Theory and Application of Trapdoor Func-

tions. In 23rd FOCS, pages 80-91, 1982.

[29] A.C. Yao. How to Generate and Exchange Secrets. In

27th FOCS, pages 162-167, 1986.

6C R Y P T O B Y T E S A U T U M N 1 9 9 7 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

Michael J. Wiener
Entrust Technologies

750 Heron Road, Suite E08
Ottawa, Ontario

Canada K1V 1A7

An exciting moment in the history of DES was
reached this past June when a group coordinated
by Rocke Verser solved RSA Data Security’s DES
challenge by exhaustive key search on a large
number of computers. This result was useful be-
cause it served to underscore in a public way how
vulnerable DES has become. However, it may
also have left the false impression that one can-
not do much better than attacking DES in soft-
ware with a large distributed effort. The design
of DES is such that it is fairly slow in software,
but is compact and fast when implemented in
hardware. As a result, using software to attack
DES gives poor performance compared to what
can be achieved in hardware. This applies not
only to DES, but also to most other block ciphers,
attacks on hash functions, and attacks on elliptic
curve cryptosystems. Avoiding efficient hard-
ware-based attacks requires the use of algorithms
with sufficiently long keys, such as triple-DES,
128-bit RC5 [3], and CAST-128 [1].

In this article we assess the cost of DES key search
using hardware methods and examine the effec-
tiveness of some proposed methods for thwarting
attacks on DES.

Advancing technology
The best known way to attack DES is to simply try
all of the possible 56-bit keys until the correct key
is found. On average, one expects to go through
about half of the key space. In 1993, a design for
an exhaustive DES key search machine including
a detailed chip design was published [4]. A $1 mil-
lion version of this machine used 57600 key search
chips, each capable of testing 50 million keys per
second. Overall, the machine could find a DES
key in, on average, three and a half hours.

About four and a half years have passed since this
design was completed, and according to Moore’s

Law, processing speeds should have doubled three
times in that period. Of course, estimating in this
fashion is a poor substitute for the careful analysis
and design effort that went into the earlier design.
The original chip design was done in a 0.8 micron
CMOS process, and with the geometries available
today, it is possible to fit four instances of the origi-
nal design into the same silicon area. In keeping
with the conservative approach to estimates in the
1993 paper, we assume here that the updated key
search chip’s clock speed would increase to only
75 MHz from the original 50 MHz, making the mod-
ern version of the chip six times faster for the same
cost. It is interesting to note that just 21 of these
chips would give the same key searching power as
the entire set of computers used by the team who
solved the DES challenge.

Today’s version of the $1 million machine could find
a DES key in, on average, about 35 minutes (one-
sixth of 3.5 hours). This time scales linearly with
the amount of money spent as shown in the follow-
ing table.

Efficient DES Key Search — An Update

Note that the costs listed in the table do not include
the cost to design the chip and boards for the ma-
chine. Because the one-time costs could be as high
as half a million dollars, it does not make much sense
to build the cheaper versions of the machine, unless
several are built for different customers.

This key search engine is designed to recover a DES
key given a plaintext-ciphertext pair for the stan-
dard electronic-codebook (ECB) mode of DES.
However, the machine can also handle the follow-
ing modes without modification: cipher-block chain-
ing (CBC), 64-bit cipher feedback (CFB), and 64-
bit output feedback (OFB). In the case of OFB, two
consecutive plaintexts are needed. The chip design
can be modified to handle two other popular modes
of DES, 1-bit and 8-bit CFB, at the cost of a slightly
more expensive chip. Fewer chips could be pur-
chased for a $1 million machine causing the ex-

Key Search Machine Cost Expected Search Time

$10,000 2.5 days

$100,000 6 hours

$1,000,000 35 minutes

$10,000,000 3.5 minutes

Michael Wiener is a senior cryptologist at Entrust Technologies. He
can be contacted by e-mail at wiener@entrust.com.

[…] just 21 of
these chips

would give the
same key
searching

power as the
entire set of

computers
used by the

team who
solved the DES

challenge.

Today’s version
of the $1 million

machine could
find a DES key

in, on average,
about 35
minutes.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 7 7

pected key search time to go up to 40 minutes for all
modes, except 1-bit CFB, which would take 80 min-
utes, on average.

Programmable hardware
The costs associated with chip design can present a
significant barrier to small-time attackers and hob-
byists. An alternative which has much lower start-
up costs is the use of programmable hardware. One
such type of technology is the Field Programmable
Gate Array (FPGA). One can design a circuit on a
PC and download it to a board holding FPGAs for
execution. In a report in early 1996 [2], it was esti-
mated that $50000 worth of FPGAs could recover a
DES key in, on average, four months. This is con-
siderably slower than what can be achieved with a
chip design, but is much more accessible to those
who are not well funded.

Another promising form of programmable hardware
is the Complex Programmable Logic Device
(CPLD). CPLDs offer less design freedom and tend
to be cheaper than FPGAs, but the nature of key
search designs seems to make them suitable for
CPLDs. Further research is needed to assess whether
CPLDs are useful for DES key search.

Avoiding known plaintext
The designs described to this point have relied on
the attacker having some known plaintext. Usually,
a single 8-byte block is sufficient. One method of
preventing attacks that has been suggested is to avoid
having any known plaintext. This can be quite dif-
ficult to achieve. Frequently, data begins with fixed
headers. For example, each version of Microsoft
Word seems to have a fixed string of bytes that each
file begins with.

For those cases where a full block of known plaintext
is not available, it is possible to adapt the key search
design. Suppose that information about plaintext is
available (e.g., ASCII character coding is used), but
no full block is known. Then instead of repeatedly
encrypting a known plaintext and comparing the re-
sult to a ciphertext, we repeatedly decrypt the
ciphertext and test the candidate plaintexts against
our expectations. In the example where we expect
7-bit ASCII plaintext, only about 1 in 28 keys will
give a plaintext which has the correct form. These
keys would have to be tried on another ciphertext

block. The added logic to handle this would add just
10 to 20% to the cost of a key search chip.

Even if we only know a single bit of redundancy in
each block of plaintext, this is enough to cut the
number of possible keys in half. About 56 such
blocks are needed to uniquely identify the correct
key. This does not mean that the run-time is 56
times greater than the known-plaintext case. On
average, each key is eliminated with just two
decryptions. Taking into account the cost of the
added logic required makes the expected run-time
for a $1 million machine about 2 hours in this case.

Frequent key changes
A commonly suggested way to avoid key search at-
tacks is to change the DES key frequently. The as-
sumption here is that the encrypted information is
no longer useful after the key is changed, which is
often an inappropriate assumption. If it takes 35
minutes to find a DES key, why not change keys ev-
ery 5 minutes? The problem with this reasoning is
that it does not take exactly 35 minutes to find a
key. The actual time is uniformly distributed be-
tween 0 and 70 minutes. We could get lucky and
find the key almost right away, or we could be un-
lucky and take nearly 70 minutes. The attacker’s
probability of success in the 5-minute window is
5/70 = 1/14. If after each key change the attacker
gives up and starts on the next key, we expect suc-
cess after 14 key changes or 70 minutes. In general,
frequent key changes cost the attacker just a factor
of two in expected run-time, and are a poor substi-
tute for simply using a strong encryption algorithm
with longer keys.

Conclusion
Using current technology, a DES key can be recov-
ered with a custom-designed $1 million machine in
just 35 minutes. For attackers who lack the resources
to design a chip and build such a machine, there are
programmable forms of hardware such as FPGAs and
CPLDs which can search the DES key space much
faster than is possible using software on PCs and
workstations. Attempts to thwart key search attacks
by avoiding known plaintext and changing keys fre-
quently are largely ineffective. The best course of
action is to use a strong encryption algorithm with
longer keys, such as triple-DES, 128-bit RC5, or
CAST-128.

In general,
frequent key
changes cost
the attacker
just a factor of
two in
expected run-
time, and are a
poor substitute
for simply
using a strong
encryption
algorithm with
longer keys.

8C R Y P T O B Y T E S A U T U M N 1 9 9 7 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

References
[1] C. Adams, “Constructing Symmetric Ciphers Using the

CAST Design Procedure”, Designs, Codes and Cryptog-

raphy, vol. 12, no. 3, pp. 283-316, Nov. 1997. Also avail-

able as “The CAST-128 Encryption Algorithm”, RFC

2144, May 1997.

[2] M. Bla ze , W. Di f f i e , R . Rives t , B . Schneie r,

T. Shimomura, E. Thompson, and M. Wiener, “Minimal

Key Lengths for Symmetric Ciphers to Provide Adequate

Commercial Security”, currently available at http://

www.bsa.org/policy/encryption/cryptographers.html.

[3] R. Rivest, “The RC5 Encryption Algorithm”, Fast Soft-

ware Encryption—Lecture Notes in Computer Science

(1008), pp. 86-96, Springer, 1995.

[4] M. Wiener, “Efficient DES Key Search”, presented at the

Rump session of Crypto ’93. Reprinted in Practical Cryp-

tography for Data Internetworks, W. Stallings, editor,

IEEE Computer Society Press, pp. 31-79 (1996). Cur-

rently available at ftp://ripem.msu.edu/pub/crypt/docs/

des-key-search.ps.

In January of 1997, RSA Laboratories launched what
came to be known as the DES challenge. The aim of
the challenge was to demonstrate that 56-bit secu-
rity, such as that offered by the government’s Data
Encryption Standard (DES), offers only marginal
protection against a committed adversary. On June
17, 1997 the key that was used for the encryption of
the DES challenge was recovered, thereby demon-
strating the intended point. Nevertheless it is widely
acknowledged that faster exhaustive search efforts
are possible (see for instance the article by Michael
Wiener in this issue of CryptoBytes) and to help as-
sess the true viability of exhaustive search attacks,
RSA Laboratories announces an ongoing series of
contests.

Twice a year, a new challenge will be posted on the
RSA Data Security WWW home page. The chal-
lenge will consist of the ciphertext that was produced
by DES-encrypting some unknown plaintext message.
While the text of the plaintext message will clearly
be known to a few employees of RSA Data Security,
the secret key used for the encryption will be gener-
ated at random and is destroyed within the challenge-
generating software. The key will never be revealed
to anyone — not even the challenge administrators.

The goal of each contest is for participants to recover
the secret randomly-generated key and to do so in a
faster time than that required for earlier challenges
in the series. As in previous contests, prizes will be
awarded for the first correct entry received and vali-
dated as being correct at RSA Data Security. How-
ever the prize money paid will depend on the CAL-
ENDAR time required to recover the correct key.

If the time required to solve the challenge for the
current contest is less than or equal to 25% of the
previous best time, then a prize of $10,000 will be
paid to the finder of the correct key. If the time re-
quired is greater than 25% but less than or equal to
50% of the previous best time, then a prize of $5,000
will be paid. Finally, if the time required to solve the
challenge is greater than 50% but less than or equal
to 75% of the previous best time, then a prize of
$1,000 will be paid.

If at the end of the contest period there is no solu-
tion within 75% of the previous best time, then the
contest will be closed. At the start of the next con-
test period a new challenge will be posted with the
same conditions attached to the payment of prizes.

New challenges will be posted at 9:00 am (PST) on
January 13th and July 13th of each year, as long as the
contest runs. The first challenge will be launched on
January 13th, 1998. The previous best exhaustive
search time for a DES key will be considered to be
90 days and so the prize structure for the first chal-
lenge will be:

Time for solution Prize

Less than or equal to 540 hours $10,000

Greater than 540 hours but
less than or equal to 1080 hours $5,000

Greater than 1080 hours but
less than or equal to 1620 hours $1,000

More information on this challenge and ongoing re-
sults are available from http://www.rsa.com/rsalabs/.

The RSA Data Security DES Challenge II

The goal of
each contest is

for participants
to recover the

secret
randomly-

generated key
and to do so in

a faster time
than that

required for
earlier

challenges in
the series.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 7 9

Bart Preneel
Katholieke Universiteit Leuven,

ESAT-COSIC K. Mercierlaan 94
B-3001 Heverlee, Belgium

Antoon Bosselaers
Katholieke Universiteit Leuven,

ESAT-COSIC K. Mercierlaan 94
B-3001 Heverlee, Belgium

Hans Dobbertin
German Information Security Agency

P.O. Box 20 03 63
D-53133 Bonn, Germany

Introduction
RIPEMD-160 is a fast cryptographic hash function
that is tuned towards software implementations on
32-bit architectures. It has evolved from the 256-bit
extension of MD4, which was introduced in 1990 by
Ron Rivest [21, 22]. Its main design feature are two
different and independent parallel chains of compu-
tation, the result of which are combined at the end
of every application of the compression function. As
suggested by its name, RIPEMD-160 offers a 160-bit
result. It is intended to provide a high security level
for the next 10 years or more. RIPEMD-128 is a
faster variant of RIPEMD-160, which provides a 128-
bit result. Together with SHA-1, RIPEMD-160 and
RIPEMD-128 have been included in the Interna-
tional Standard ISO/IEC 10118-3, the publication
of which is expected in late 1997 [18]. The goal of
this article is to motivate the existence of RIPEMD-
160, to explain the main design features, and to pro-
vide a concise description of the algorithm.

Applications of hash functions
The main application of hash functions in cryptog-
raphy is the digital ‘fingerprinting’ of information
before applying a digital signature algorithm. Hash
functions have also been used to design Message Au-
thentication Codes or MACs [1, 19], and for key
derivation purposes.

Most applications require from hash functions that
they are (2nd) preimage resistant, i.e., that it is hard
to find an input (respectively a 2nd input) that
hashes to a given value. For digital signature algo-
rithms, one also typically needs collision resistance,
i.e., that it should be hard to find two distinct inputs
with the same hash result.

Hash function constructions
Historically, the first designs for hash functions have
been based on block ciphers; several successful pro-
posals are still widely in use. A second approach has
been the use of modular arithmetic. After many fail-
ures, it seems that finally a satisfactory solution has
been developed within ISO/IEC SC27 [18]. In order
to obtain a better performance, cryptographers
started in the late eighties to design efficient custom
hash functions based on ad hoc design principles. It
is not an understatement to say that designers have
typically overestimated the security of their hash
functions; new attacks often forced them to double
the number of operations per input word.

The most popular algorithms from the early nine-
ties were certainly MD4 and MD5, both designed
by R. Rivest [21, 22, 23]. On 32-bit machines, they
were about one order of magnitude faster than any
other cryptographic primitive (such as DES or other
hash functions). Both algorithms were submitted
to the RIPE consortium1, which was an EU-spon-
sored project active between ’88 and ’92 with a goal
to propose a portfolio of recommended integrity
primitives based on an open call for algorithms [20].
Its independent evaluation of MD4 and MD5 led
to the conclusion that these hash functions are less
secure than anticipated: for MD4, collisions for 2
rounds out of 3 were found [7], and collisions for
the compression function of MD5 for fixed mes-
sages and different initial values were discovered
[8]. As a consequence, the consortium proposed a
strengthened version of MD4, which was called
RIPEMD [20]. RIPEMD consists of essentially two
parallel versions of MD4, with some improvements
to the shifts and the order of the message words;
the two parallel instances differ only in the round

The Cryptographic Hash Function RIPEMD-160

Bart Preneel is a F.W.O. postdoctoral researcher, sponsored by the
Fund for Scientific Research, Flanders. He can be contacted at
bart.preneel@esat.kuleuven.ac.be.
Antoon Bosselaers is a postgraduate researcher and can be reached
at antoon.bosselaers@esat.kuleuven.ac.be.
Professor Hans Dobbertin develops and evaluates cryptographic
algorithms. His main research interests are applications of discrete
a l g eb ra i n c r yp t o g r aphy. He can b e c on t a c t e d a t
dobbertin@skom.rhein.de.

1 RIPE stands for RACE Integrity Primitives Evaluation; the
consortium members were C.W.I. (NL) prime contractor,
Aarhus University (DK), KPN (NL), K.U.Leuven (B), Philips
Crypto B.V. (NL), and Siemens AG (D).

RIPEMD-160
[…] is intended
to provide a
high security
level for the
next 10 years
or more.

It is not an
understatement
to say that
designers have
typically
overestimated
the security of
their hash
functions.

10C R Y P T O B Y T E S A U T U M N 1 9 9 7 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

constants. At the end of the compression function,
the words of left and right halves are added to yield
a 128-bit result. RIPEMD was believed to be stron-
ger than extended MD4, which consisted of two
parallel versions of MD4 with a 256-bit result [21].
RIPEMD was used in several European banking
projects, but did not enjoy the same commercial
success as MD4 and MD5.

Hash function cryptanalysis
On January 31, 1992, NIST (National Institute for
Standards and Technology, USA) published in the
Federal Register a proposed Secure Hash Standard
(SHS) that contains the description of the Secure
Hash Algorithm (SHA) [16]. While SHA borrows
many of its design features from MD4 and MD5, it
also has some remarkable differences in the message
processing: instead of reordering message blocks in
the different rounds, they were processed through a
linear function, which at bit level can be described
as a shortened cyclic code. Moreover, it has 80 steps
compared to 48 for MD4 and 64 for MD5. On July
11, 1994 NIST announced a revision of FIPS 180,
under the name SHA-1, which “corrects a technical
flaw that made the standard less secure than had been
thought. The algorithm is still reliable as a security mecha-
nism, but the correction returns the SHS to the original
level of security” [17].

In 1992 Th. Berson tried to cryptanalyze MD5 using
differential cryptanalysis [2]. A new cryptanalytic re-
sult on MD4 was obtained in 1994 by S. Vaudenay
[25]. One year later, the 2nd author started his
cryptanalytic work on the MD4-type hash functions.
This resulted in collisions for MD4 [9, 12], and colli-
sions for the compression function of MD5 [14] and
extended MD4 [13], in both cases for different mes-
sages and fixed initial values. Moreover, he devel-
oped collisions for 2 out of the 3 rounds of RIPEMD
[10]. Early 1997 he showed that it is also possible to
compute a preimage for 2 rounds out of 3 for MD4
[15]. The results on RIPEMD were of some concern
to the members of the RIPE consortium, as RIPEMD
was designed to withstand the partial attacks devel-
oped by the consortium on MD4 and MD5.

An independent reason to upgrade RIPEMD is the
limited resistance against a brute force collision
search attack. P. van Oorschot and M. Wiener dem-
onstrated in [24] a design for a $10 million collision

search machine for MD5 that could find a collision
in 24 days. It is clear that these results extend easily
to any similar hash function with a 128-bit result.
Taking into account ‘Moore’s law’ (the cost of com-
putation and memory is divided by four every three
years), a 128-bit hash-result does not offer sufficient
protection for the next ten years.

As a consequence, it was decided to upgrade
RIPEMD. RIPEMD-128, with a 128-bit result was
designed as a plug-in substitute for RIPEMD, while
RIPEMD-160 was intended to provide long term se-
curity (10 years or more) with a 160-bit result. In
addition, it was decided to stay as close as possible to
RIPEMD, in order to capitalize on the evaluation
effort for this algorithm. Moreover, all design crite-
ria and evaluation results should be public. Finally,
note that both designs are rather conservative:
RIPEMD-128 has four double rounds, and RIPEMD-
160 has five double rounds, while breaking even
three double rounds would require a substantial im-
provement of existing cryptanalytic techniques. This
means that RIPEMD-160 can provide the long term
security required for digital signatures; we believe
that this is worth the small penalty paid in terms of
performance.

Description of RIPEMD-160
Like all MD4-variants, RIPEMD-160 operates on 32-
bit words. Its primitive operations are:

• left-rotation (or “left-spin”) of words;
• bitwise Boolean operations (AND, NOT, OR, ex-

clusive-OR);
• two’s complement modulo 232 addition of words.

RIPEMD-160 compresses an arbitrary size input
string by dividing it into blocks of 512 bits each.
Each block is divided into 16 strings of 4 bytes each,
and each such 4-byte string is converted to a 32-bit
word using the little-endian convention, which is
a.o. used on the Intel 80x86 architecture; MD4,
MD5 and RIPEMD use the same convention, while
SHA-1 uses the big-endian convention.

In order to guarantee that the total input size is a
multiple of 512 bits, the input is padded in the same
way as for all the members of the MD4-family: one
appends a single 1 followed by a string of 0s (the
number of 0s lies between 0 and 511); the last 64

P. van Oorschot
and M. Wiener

demonstrated in
[23] a design for

a $10 million
collision search

machine for
MD5 that could
find a collision

in 24 days.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 7 11

bits of the extended input contain the binary repre-
sentation of the input size in bits, least significant
byte first.

The result of RIPEMD-160 is contained in five 32-
bit words, which form the internal state of the algo-
rithm. The final content of these five 32-bit words is
converted to a 160-bit string, again using the little-
endian convention.

This state is initialized with a fixed set of 5 32-bit
words, the initial value. The main part of the algo-
rithm is known as the compression function: it com-
putes the new state from the old state and the next
16-word block. The compression function consists of
five parallel rounds, each containing 16 steps. The
total number of steps is thus 5 × 16 × 2 = 160, com-
pared to 3 × 16 = 48 for MD4 and 4 × 16 = 64 for
MD5. First, two copies are made from the old state
(five left and right registers of 32-bits). Both halves
are processed independently. Each step updates one
of the registers based on the other four registers and
one message word. At the end of the compression
function, we compute the new state by adding to each
word of the old state one register from the left half
and one from the right half (see Figure 1). Pseudo-
code for RIPEMD-160 is given in Appendix A.

1. Operations in one step. A := (A + f(B,C,D) + X
+ K)<<s + E and C := C<<10. Here <<s denotes cyclic
shift (rotation) over s bit positions.

2. Ordering of the message words. Take the fol-
lowing permutation ρ:

Further define the permutation π by setting π (i) =
9i + 5 (mod 16). The order of the message words is
then given by the following table:

RIPEMD-160 derives its strength from a judicious
choice of the parameters, combined with the fact

Figure 1: Outline
of the compression
function of
RIPEMD-160.
Inputs are a 16-
word message block
Xi and a 5-word
chaining variable
h0h1h2h3h4, output
is a new value of
the chaining
variable.

Xi

Xρ(i)

Xρ2(i)

Xρ3(i)

Xρ4(i)

Xπ(i)

Xρπ(i)

Xρ2π(i)

Xρ3π(i)

Xρ4π(i)

h0 h1 h2 h3 h4

h0 h1 h2 h3 h4

f1, K1

f2, K2

f3, K3

f4, K4

f5, K5

f5, K′1

f4, K′2

f3, K′3

f2, K′4

f1, K′5

that the processing of the two halves is much more
different than for RIPEMD: the order of the message
blocks in the two iterations is completely different
and the order of the Boolean functions is reversed.

The operation for RIPEMD-160 on the A register is
related to that of MD5 (but five words are involved);
the rotate of the C register has been added to avoid
the MD5 attack which focuses on the most signifi-
cant bit [8]. SHA-1 has two rotates as well, but in
different locations. The value of 10 for the C register
was chosen since it is not used for the other rotations.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρ(i) 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

Line Round 1 Round 2 Round 3 Round 4 Round 5

left id ρ ρ2 ρ3 ρ4

right π ρπ ρ2π ρ3π ρ4π

12C R Y P T O B Y T E S A U T U M N 1 9 9 7 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

The permutation of the message words of RIPEMD
was designed such that two words that are ‘close’ in
round 1-2 are far apart in round 2-3 (and vice versa).
This principle has been extended to RIPEMD-160,
but it required a small modification to the permuta-
tion ρ. The permutation π was chosen such that two
message words which are close in the left half will
always be at least seven positions apart in the right
half.

For the Boolean functions, it was decided to elimi-
nate the majority function because of its symmetry
properties and a performance disadvantage. The
Boolean functions are now the same as those used in
MD5. As mentioned above, the Boolean functions
in the left and right half are used in a different order.

The design criteria for the shifts are the following:

• the shifts are chosen between 5 and 15 (shifts that
are too small or large are considered not very good,
and a choice larger than 16 does not help much);

• every message block should be rotated over dif-
ferent amounts, not all of them having the same
parity;

• the shifts applied to each register should not have
a special pattern (for example, the total should
not be divisible by 32);

• not too many shift constants should be divisible
by four.

Note that the design decisions require a compromise:
it is not possible to make a good choice of message
ordering and shift constants for five rounds that is
also ‘optimal’ for three rounds out of five.

Performance
In this section we compare the performance of
RIPEMD-160, RIPEMD-128, SHA-1, MD5, and
MD4. Implementations were written in Assembly
language optimized for the Pentium processor (90
MHz); the optimizations are tuned to make use of
the instruction-level parallelism of this processor. In
spite of their serial design, the algorithms can still
make use of this feature. More implementation de-
tails concerning the MD4-family of hash functions
can be found in [3, 5, 6]. The relative speeds coin-
cide more or less with predictions based on a simple
count of the number of operations. RIPEMD-160 is
about 15% slower than SHA-1 and four times slower

than MD4. On a big-endian RISC machine, the dif-
ference between SHA-1 and RIPEMD-160 will be
slightly larger. Optimized C implementations are a
factor of 2.2 to 2.6 slower.

algorithm performance (Mbit/s)
Assembly C

MD4 190.6 81.4

MD5 136.2 59.7

SHA-1 54.9 21.2

RIPEMD-128 77.6 35.6

RIPEMD-160 45.3 19.3

Table 1: Performance of several MD4-based hash
functions on a 90 MHz Pentium

Status of RIPEMD-160
RIPEMD-160 has been put in the public domain by
its designers so that anyone can use it. Portable C
source code and test values are available at: http://
www.esat.kuleuven.ac.be/~bosselae/ripemd160.

We invite the reader to explore the security of
RIPEMD-160. We envisage that in the next years it
will become possible to attack one of the two lines
and up to three rounds of the two parallel lines, but
that the combination of the two parallel lines will
resist attacks.

References
[1] M. Bellare, R. Canetti, H. Krawczyk, “Keying hash func-

tions for message authentication,” Advances in Cryptology,

Proceedings Crypto’96, LNCS 1109, N. Koblitz, Ed.,

Springer-Verlag, 1996, pp. 1-15. Full version: http://

www.research.ibm.com/security/.

[2] T. Berson, “Differential cryptanalysis mod 232 with appli-

cations to MD5,” Advances in Cryptology, Proceedings

Eurocrypt’92, LNCS 658, R. A. Rueppel, Ed., Springer-

Verlag, 1993, pp. 71-80.

[3] A. Bosselaers, R. Govaerts, J. Vandewalle, “Fast hashing

on the Pentium,” Advances in Cryptology, Proceedings

Crypto’96, LNCS 1109, N. Koblitz, Ed., Springer-Verlag,

1996, pp. 298-312.

[4] A. Bosselaers, H. Dobbertin, B. Preneel, “The RIPEMD-

160 cryptographic hash function,” Dr. Dobb’s Journal, Vol.

22, No. 1, January 1997, pp. 24-28.

[5] A. Bosselaers, R. Govaerts, J. Vandewalle, “SHA: a de-

sign for parallel architectures?,” Advances in Cryptology,

Proceedings Eurocrypt’97, LNCS 1233, W. Fumy, Ed.,

Springer-Verlag, 1997, pp. 348-362.

RIPEMD-160
has been put in

the public
domain by its
designers so
that anyone

can use it.

We invite the
reader to

explore the
security of

RIPEMD-160.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 7 13

[6] A. Bosselaers, “Even faster hashing on the Pentium,” Pre-

sented at the rump session of Eurocrypt’97, Konstanz,

Germany, May 12-15, 1997, and updated on November

13, 1997. Available as ftp://ftp.esat.kuleuven.ac.be/pub/

COSIC/bosselae/pentiumplus.ps.gz.

[7] B. den Boer, A. Bosselaers, “An attack on the last two

rounds of MD4,” Advances in Cryptology, Proceedings

Crypto’91, LNCS 576, J. Feigenbaum, Ed., Springer-

Verlag, 1992, pp. 194-203.

[8] B. den Boer, A. Bosselaers, “Collisions for the compres-

sion function of MD5,” Advances in Cryptology, Proceed-

ings Eurocrypt’93, LNCS 765, T. Helleseth, Ed., Springer-

Verlag, 1994, pp. 293-304.

[9] H. Dobbertin, “Alf swindles Ann,” CryptoBytes, Vol. 1,

No 3, 1995, pp. 5.

[10] H. Dobbertin, “RIPEMD with two-round compress func-

tion is not collisionfree,” Journal of Cryptology, Vol. 10,

No. 1, 1997, pp. 51-69.

[11] H. Dobbertin, A. Bosselaers, B. Preneel, “RIPEMD-160:

A Strengthened Version of RIPEMD,” Fast Software En-

cryption, LNCS 1039, D. Gollman, Ed., Springer-Verlag,

1996, pp. 71-82. Final (corrected) version: http://

www.esat.kuleuven.ac.be/~bosselae/ripemd160.

[12] H. Dobbertin, “Cryptanalysis of MD4,” Fast Software

Encryption, LNCS 1039, D. Gollmann, Ed., Springer-

Verlag, 1996, pp. 53-69.

[13] H. Dobbertin, “Cryptanalysis of MD4,” submitted to

Journal of Cryptology.

[14] H. Dobbertin, “The status of MD5 after a recent attack,”

CryptoBytes, Vol. 2, No 2, 1996, pp. 1, 3-6.

[15] H. Dobbertin, “The first two rounds of MD4 are not

one-way,” Fast Software Encryption, LNCS, Springer-

Verlag, 1998, to appear.

[16] FIPS 180, “Secure Hash Standard,” NIST, US Depart-

ment of Commerce, Washington D.C., May 1993.

[17] FIPS 180-1, “Secure Hash Standard,” NIST, US Depart-

ment of Commerce, Washington D.C., April 1995.

[18] ISO/IEC 10118, “Information technology — Security tech-

niques — Hash-functions, Part 1: General (IS, 1994); Part

2: Hash-functions using an n-bit block cipher algorithm,”

(IS, 1994); Part 3: Dedicated hash-functions (IS, 1997);

Part 4: Hash-functions using modular arithmetic, (FCD,

1997).

[19] B. Preneel, P.C. van Oorschot, “MDx-MAC and build-

ing fast MACs from hash functions,” Advances in

Cryptology, Proceedings Crypto’95, LNCS 963, D. Cop-

persmith, Ed., Springer-Verlag, 1995, pp. 1-14.

[20] RIPE, “Integrity Primitives for Secure Information Systems.

Final Report of RACE Integrity Primitives Evaluation (RIPE-

RACE 1040),” LNCS 1007, Springer-Verlag, 1995.

[21] R.L. Rivest, “The MD4 message digest algorithm,” Ad-

vances in Cryptology, Proceedings Crypto’90, LNCS 537,

S. Vanstone, Ed., Springer-Verlag, 1991, pp. 303-311.

[22] R.L. Rivest, “The MD4 message-digest algorithm,” Re-

quest for Comments (RFC) 1320, Internet Activities

Board, Internet Privacy Task Force, April 1992.

[23] R.L. Rivest, “The MD5 message-digest algorithm,” Re-

quest for Comments (RFC) 1321, Internet Activities

Board, Internet Privacy Task Force, April 1992.

[24] P.C. van Oorschot, M.J. Wiener, “Parallel collision

search with application to hash functions and discrete

logarithms,” Proceedings 2nd ACM Conference on Com-

puter and Communications Security, ACM, 1994, pp. 210-

218.

[25] S. Vaudenay, “On the need for multipermutations:

cryptanalysis of MD4 and SAFER,” Fast Software En-

cryption, LNCS 1008, B. Preneel, Ed., Springer-Verlag,

1995, pp. 286-297.

Appendix: Pseudo-code for RIPEMD-160
All operations are defined on 32-bit words. First we
define all the constants and functions.

RIPEMD-160: definitions
nonlinear functions at bit level: exor, mux, -, mux, -
f(j,x,y,z) = x ⊕ y ⊕ z (0 ≤ j ≤ 15)
f(j,x,y,z) = (x ^ y) ∨ (x ^ z) (16 ≤ j ≤ 31)
f(j,x,y,z) = (x ∨ y) ⊕ z (32 ≤ j ≤ 47)
f(j,x,y,z) = (x ^ z) ∨ (y ^ z) (48 ≤ j ≤ 63)
f(j,x,y,z) = x ⊕ (y ∨ z) (64 ≤ j ≤ 79)

added constants (hexadecimal)
K(j) = 00000000 x (0 ≤ j ≤ 15)
K(j) = 5A827999 x (16 ≤ j ≤ 31) 230 ⋅ 2
K(j) = 6ED9EBA1x (32 ≤ j ≤ 47) 230 ⋅ 3
K(j) = 8F1BBCDCx (48 ≤ j ≤ 63) 230 ⋅ 5
K(j) = A953FD4Ex (64 ≤ j ≤ 79) 230 ⋅ 7
K′(j) = 50A28BE6x (0 ≤ j ≤ 15) 230 ⋅ 2
K′(j) = 5C4DD124x (16 ≤ j ≤ 31) 230 ⋅ 3
K′(j) = 6D703EF3x (32 ≤ j ≤ 47) 230 ⋅ 5
K′(j) = 7A6D76E9x (48 ≤ j ≤ 63) 230 ⋅ 7
K′(j) = 00000000 x (64 ≤ j ≤ 79)

selection of message word
r(j) = j (0 ≤ j ≤ 15)
r(16..31) = 7,4,13,1,10,6,15,3,12,0,9,5,2,14,11,8
r(32..47) = 3,10,14,4,9,15,8,1,2,7,0,6,13,11,5,12
r(48..63) = 1,9,11,10,0,8,12,4,13,3,7,15,14,5,6,2
r(64..79) = 4,0,5,9,7,12,2,10,14,1,3,8,11,6,15,13
r′(0..15) = 5,14,7,0,9,2,11,4,13,6,15,8,1,10,3,12

3

3

3

3

14C R Y P T O B Y T E S A U T U M N 1 9 9 7 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

r′(16..31) = 6,11,3,7,0,13,5,10,14,15,8,12,4,9,1,2
r′(32..47) = 15,5,1,3,7,14,6,9,11,8,12,2,10,0,4,13
r′(48..63) = 8,6,4,1,3,11,15,0,5,12,2,13,9,7,10,14
r′(64..79) = 12,15,10,4,1,5,8,7,6,2,13,14,0,3,9,11

amount for rotate left (rol)
s(0..15) = 11,14,15,12,5,8,7,9,11,13,14,15,6,7,9,8
s(16..31) = 7,6,8,13,11,9,7,15,7,12,15,9,11,7,13,12
s(32..47) = 11,13,6,7,14,9,13,15,14,8,13,6,5,12,7,5
s(48..63) = 11,12,14,15,14,15,9,8,9,14,5,6,8,6,5,12
s(64..79) = 9,15,5,11,6,8,13,12,5,12,13,14,11,8,5,6
s′(0..15) = 8,9,9,11,13,15,15,5,7,7,8,11,14,14,12,6
s′(16..31) = 9,13,15,7,12,8,9,11,7,7,12,7,6,15,13,11
s′(32..47) = 9,7,15,11,8,6,6,14,12,13,5,14,13,13,7,5
s′(48..63) = 15,5,8,11,14,14,6,14,6,9,12,9,12,5,15,8
s′(64..79) = 8,5,12,9,12,5,14,6,8,13,6,5,15,13,11,11

Test Values for RIPEMD-160
Hash of “” = 0x9c1185a5c5e9fc54612808977ee8f548b2258d31
Hash of “a” = 0x0bdc9d2d256b3ee9daae347be6f4dc835a467ffe
Hash of “abc” = 0x8eb208f7e05d987a9b044a8e98c6b087f15a0bfc
Hash of “message digest” = 0x5d0689ef49d2fae572b881b123a85ffa21595f36
Hash of “abcdefghijklmnopqrstuvwxyz” =
0xf71c27109c692c1b56bbdceb5b9d2865b3708dbc
Hash of “abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq” =
0x12a053384a9c0c88e405a06c27dcf49ada62eb2b
Hash of “ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789”
= 0xb0e20b6e3116640286ed3a87a5713079b21f5189
Hash of 8 times “1234567890” =
0x9b752e45573d4b39f4dbd3323cab82bf63326bfb
Hash of 1 million times “a” = 0x52783243c1697bdbe16d37f97f68f08325dc1528

RIPEMD-160: pseudo-code
for i := 0 to t−1 {

A := h0; B := h1; C := h2; D := h3; E := h4;
A′ := h0; B′ := h1; C′ := h2; D′ := h3; E′ := h4;
for j := 0 to 79 {

T := rols(j) (A f(j,B,C,D) Xi[r(j)] K(j)) E;
A := E; E := D; D := rol10(C); C := B; B := T;
T := rols′(j) (A′ f(79−j,B′,C′,D′) Xi[r′(j)] K′(j)) E′;
A′ := E′; E′ := D′; D′ := rol10(C′); C′ := B′; B′ := T;

}
T := h1 C D′; h1 := h2 D E′; h2 := h3 E A′;
h3 := h4 A B′; h4 := h0 B C′; h0 := T;

}

initial value (hexadecimal)
h0 = 67452301 x; h1 = EFCDAB89x;
h2 = 98BADCFEx; h3 = 10325476 x;
h4 = C3D2E1F0x;

Padding is identical to that of MD4 and MD5 [20,
21, 22]. The message after padding consists of t 16-
word blocks that are denoted with Xi[j], with 0 ≤ i ≤
t−1 and 0 ≤ j ≤ 15. The symbol denotes addition
modulo 232 and rols denotes cyclic left shift (rotate)
over s bit positions. The pseudo-code for RIPEMD-
160 is then given below; an outline of the compres-
sion function is given in Figure 1. The final output
string then consists of the concatenation of h0, h1, h2,
h3, and h4 after converting each hi to a 4-byte string
using the little-endian convention.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 7 15

Burt Kaliski
RSA Laboratories
20 Crosby Drive

Bedford, MA 01730 USA

RSA Laboratories’ Public-Key Cryptography Stan-
dards (PKCS), first published in 1991, were estab-
lished to provide a catalyst for interoperable security
based on public-key cryptographic techniques, and
they have become the basis for many formal stan-
dards and are implemented widely. In late 1996, RSA
Laboratories launched the development of “the next
generation” of PKCS, which has continued through
1997, and will move into another phase in 1998.

Major revisions
RSA Laboratories plans to launch or continue ma-
jor revisions to three PKCS documents in 1998.

• PKCS #1: RSA Encryption Standard will be revised
to v2.0. Currently, PKCS #1 defines specific en-
cryption and signature algorithms based on the
RSA public-key cryptosystem. Since the publica-
tion of PKCS #1, several alternative RSA-based
algorithms have emerged, including those in SET,
ISO/IEC 9796, ANSI X9.31, ANSI X9.44, and
IEEE P1363. The revised version will summarize
and provide usage guidelines for each of these al-
ternatives. Key size recommendations may also be
added, as well as object identifiers (OIDs) for the
various techniques.

• PKCS #5: Password-Based Encryption Standard will
also be revised to v2.0, following the discussions
at the June 1997 PKCS workshop, as summarized
to the pkcs-tng mailing list. The revised version
will support password-based message authentica-
tion as well as encryption. Development will be
in conjunction with PKCS #14.

• PKCS #7: Cryptographic Message Syntax Standard
will be revised to v2.0, following discussions at
the June 1997 PKCS workshop and drafts of syn-
tax presented to the pkcs-tng list. The revised ver-
sion incorporates a number of design improve-
ments suggested over the years including support
of multiple algorithms and key management tech-
niques and a more flexible format.

PKCS: The Next Generation, Chapter 2

Burt Kaliski is chief scientist at RSA Laboratories and can be con-
tacted at burt@rsa.com.

Impending publication
Two projects that were the major focus of work in
1997 will be completed in early 1998.

• PKCS #11: Cryptographic Token Interface Standard
(Cryptoki), which defines a technology-indepen-
dent programming interface for cryptographic de-
vices, will be published as v2.01. The document
is now nearly complete, incorporating significant
implementation experience.

• PKCS #12: Public-Key User Information Syntax
Standard, an interchange syntax for users’ private
keys and certificates, will be published as v1.0.
Consensus on syntax has been reached on the
pkcs-tng mailing list and implementations are al-
ready available.

New documents
Expanding the suite of PKCS documents, RSA Labo-
ratories will launch two new documents in 1998.

• PKCS #13: Elliptic Curve Cryptography Standard,
will be a counterpart to PKCS #1 v1.5 for en-
cryption and digital signatures based on elliptic
curve cryptosystems. Intended to be compatible
with ANSI X9.62 and IEEE P1363 drafts, it will
provide a reference for incorporating elliptic curve
cryptography into other PKCS-based applications
including those based on PKCS #11 and #7.

• PKCS #14: Pseudorandom Generator Standard will
define a standard pseudorandom generator for a
variety of cryptographic applications including
key generation, parameter generation, and gen-
eration of random bits for encryption and digital
signature algorithms. Pseudorandom generation
has been left as an appendix in many standards,
without a general reference; this standard will
help establish common, secure techniques in this
important area.

Development process
The PKCS development process is an open one,
moderated by RSA Laboratories and involving the
contributions of many security developers and users.
The activities listed above will be carried on on mail-
ing lists as well as at workshops. More information
on the mailing lists, the workshops, and the PKCS
documents is available on the Web at www.rsa.com/
rsalabs/pubs/PKCS/, or from pkcs-editor@rsa.com.

RSA Laboratories’
Public-Key
Cryptography
Standards (PKCS),
first published in
1991, were
established to
provide a catalyst
for interoperable
security based on
public-key
cryptographic
techniques, and
they have
become the basis
for many formal
standards and
are implemented
widely.

100 Marine Parkway, Suite 500
Redwood City, CA. 94065-1031

Tel 650/595-7703
Fax 650/595-4126

rsa-labs@rsa.com
http://www.rsa.com/rsalabs

FIRST CLASS

U.S. POSTAGE

PAID

MMS, INC

Copyright © 1997 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics Company. All rights reserved.

In this issue:
• On the

Foundations of
Modern
Cryptography

• Efficient DES
Key Search —
An Update

• The Cryptographic
Hash Function
RIPEMD-160

• PKCS: The Next
Generation,
Chapter 2

A N N O U N C E M E N T S

For contact and
distribution
information, see
page 2 of this
newsletter.

RSA Laboratories
A Division of RSA Data Security

®

The RSA Data Security Conference ’98

The seventh annual RSA Data Security Con-
ference is scheduled to be held in San Fran-
cisco on January 13-16, 1998.

Virtually all of San Francisco’s Nob Hill will be
dedicated to the event, including the Masonic
Auditorium, the Fairmont Hotel, the Stanford
Court, and the Ritz Carlton.

The conference will deliver four full days of cov-
erage of the latest trends in cryptographic re-
search, product development, market analysis
and social thought in the field of cryptography,
all presented by some of the leading minds in
the industry. An annual pilgrimage for the
world’s cryptography systems experts, policy-
makers, business people and technology devel-
opers, the RSA Conference delivers breadth and
depth far beyond any other computer security
gathering.

Computerworld called it “the sine-qua-non
event of the crypto community”. From very
humble beginnings in 1991, when 50 develop-
ers gathered to discuss the state of the nascent
crypto industry, the annual RSA Conference
has grown to become the biggest event on the
crypto-circuit. Planners are projecting that over
3,000 cryptographers, policy-makers, business
people and technology developers will attend
the 1998 conference.

An increasingly significant element of the
conference is the RSA Data Security Confer-
ence Partner Fair. Scheduled to take place
January 13-15 at the Fairmont Hotel, this ex-
hibit hall provides an unparalleled opportunity
for attendees to see the very latest develop-
ments in cryptographic and computer security
products.

For more information or to register, please visit
http://www.rsa.com/conf98/.

