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col, which allows two parties Alice and Bob to
establish a secret key through an exchange of
public messages, works as follows.  Let p be a
large prime number, and let α be a generator of
the multiplicative group Ζ*

p; in layman’s terms
this means that the powers α0, α1, α2, . . . , αp -2

of α, each reduced modulo p, yield all the inte-
gers between 1 and p–1.  The parameters p and
α are public knowledge.  Alice then generates
a random integer a, 0 ≤ a ≤ p–2, and transmits
αa mod p to Bob.  Bob similarly generates a
random integer b, 0 ≤ b ≤ p–2, and transmits αb

mod p to Alice.  Both parties can now compute
the number αab mod p, which serves as their
secret key.

The security of the Diffie-Hellman key agree-
ment protocol is based on the apparent intrac-
tability of the discrete logarithm problem in Ζ*

p:
given a prime p, a generator α of Ζ*

p, and an
element β � Ζ*

p,determine the integer a, 0 ≤ a ≤
p–2, such that αa  β (mod p).  The best algo-
rithm known for this problem is the general
number field sieve by Dan Gordon, and has an
asymptotic running time of

exp((1.923 + o(1))(log p)1/3(log log p)2/3). (1)

The security of the RSA public-key cryptosystem
is based upon the difficulty of the problem of
factoring integers.  The number field sieve is
the best algorithm known for this problem, and
has an asymptotic running time of

exp((1.923 + o(1))(log n)1/3(log log n)2/3) (2)

Alfred Menezes
120 Math Annex

Auburn University

Auburn, AL  36849  USA

Elliptic curves have been intensively studied in
number theory and algebraic geometry for over
100 years and there is an enormous literature on
the subject.  To quote the mathematician Serge
Lang:

It is possible to write endlessly on elliptic curves.
(This is not a threat.)

Elliptic curves also figured prominently in the
recent proof of Fermat’s Last Theorem by Andrew
Wiles.  Originally pursued for purely aesthetic
reasons, elliptic curves have recently been utilized
in devising algorithms for factoring integers,
primality proving, and in public-key cryptogra-
phy. Although the high security per bit ratio for
elliptic curve cryptosystems has been known for
10 years, it is only recently that high speed
implementations have been available.

Discrete-log cryptosystems
In their landmark 1976 paper, Whit Diffie and
Martin Hellman invented the notion of public-
key cryptography, and introduced the Diffie-
Hellman key agreement protocol.  This proto-
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Editor�s Note

Welcome to the second issue of CryptoBytes. Dur-
ing May of this year, we launched this newsletter
with the aim of providing a forum for “results and
opnions that, while of great cryptographic interest,
would not appear at any of the more classical out-
lets because of their format.”  The initial response
to the general idea of a technical newsletter has
been very encouraging, and we are pleased to bring
a second issue which further fulfills the aims set out
in the first.

In this second issue of CryptoBytes, we are present-
ing two invited articles.

The first, Elliptic Curve Cryptosystems by A. Menezes,
provides us with an intriguing glimpse at what are
potentially very efficient alternatives to crypto-
systems based on the discrete logarithm problem.
This article is nicely complemented by news that
the IEEE P1363 standardization effort is moving
quickly towards standards for algorithms based
around the use of elliptic curves.

Our second invited article, The Future of Integer
Factorization by A. Odlyzko, provides a valuable
contemporary assessment of factoring ability. The
article also provides some thoughts on possible
trends for the future and potential developments
well into the next century. Because of the obvious
relevance of this article to the continuing safe use of
the RSA cryptosystem, we conclude the article with
the current RSA Laboratories minimum key-size
recommendations for users of RSA.

Following on pieces in the last issue of CryptoBytes
we include an article providing details of an initial
analysis of the RC5 encryption algorithm. In addi-
tion, readers interested in last issue’s article Message
Authentication with MD5 will find a short letter by
P. van Oorschot and B. Preneel essential reading.

We also include a short review of recent analysis
into the performance of MD5. Since one of the
original aims of CryptoBytes was to provide a basic,
reliable cryptographic news service, we are hoping
that this item will be the first of an occasional but
ongoing feature, Algorithms Update. By providing a
suitable forum, we hope that reports on major

algorithm developments, be they cryptographic,
cryptanalytic or implementational, can be brought
together for the benefit of the cryptographic com-
munity.

To include all these items, we have already had to
increase the number of pages in CryptoBytes. We
would very much like to thank all the writers who
have contributed to this second issue, and since the
future success of CryptoBytes depends on input from
all sectors of the cryptographic community, we
encourage any readers with comments, opposite
opinions, suggestions or proposals for future issues
to contact the CryptoBytes editor at RSA Laborato-
ries or by E-mail to bytes-ed@rsa.com.

 By providing a

suitable forum,

we hope that

repor ts on

major algorithm

developments,

be they

cryptographic,

cryptanalytic or

implementational,

can be brought

together for the

benefit of the

cr yptographic

communi ty.

RSA Laboratories is the research and development division of RSA
Data Security, Inc., the company founded by the inventors of the
RSA public-key cryptosystem. RSA Laboratories reviews, designs
and implements secure and efficient cryptosystems of all kinds. Its
clients include government agencies, telecommunications compa-
nies, computer manufacturers, software developers, cable TV
broadcasters, interactive video manufacturers, and satellite broad-
cast companies, among others.

Design and layout for CryptoBytes are provided by CodaGraphics,
Oakland, CA.

Subscription Information

CryptoBytes is published four times annually;
printed copies are available for an annual
subscription fee of U.S. $90. To subscribe,
contact RSA Laboratories at:

RSA Laboratories
100 Marine Parkway, Suite 500
Redwood City, CA 94065
415/595-7703
415/595-4126 (fax)
rsa-labs@rsa.com

Back issues in electronic form are available
via the World-Wide Web at

http://www.rsa.com/rsalabs/cryptobytes/.



C R Y P T O B Y T E ST  H  E    T  E  C H N I  C A L    N  E  W S  L  E  T  T  E  R    O F    R  S  A   L  A B  O R  A T  O R  I  E  S    �   S  U  M M E  R    1  9  9  5 3

Comparing these two running times, one can
conclude that with our current state of knowl-
edge, it is roughly as difficult to compute dis-
crete logarithms modulo a prime p as it is to fac-
tor an integer n of the same size.

There are many cryptographic protocols whose
security is based on the discrete logarithm prob-
lem in Ζ*

p, for example the ElGamal public-key
encryption and signature schemes, the Digital
Signature Algorithm (DSA), and the Schnorr sig-
nature scheme.  Originally these protocols were
all described in thealgebraic setting of the multi-
plicative group Ζ*

p.  However, they can equally
well be described inthe setting of any finite
group, for example the multiplicative group of
the finite field F2m of characteristic 2.

Why consider other groups?
There are two primary reasons for this.  Firstly,
other groups may be easier to implement in soft-
ware or hardware.  Secondly, the discrete loga-
rithm problem in the group may be harder than
the discrete logarithm problem in Ζ*

p.  Conse-
quently, one can use a group G that is smaller
than Ζ*

p while maintaining the same level of se-
curity.  This results in cryptosystems with smaller
key-sizes, bandwidth savings, and possibly faster
implementation.

Elliptic curves
In 1985, Neal Koblitz and Victor Miller indepen-
dently proposed using the group of points on an
elliptic curve in existing discrete-log cryptosys-
tems.  For an introduction to this subject, the
reader is referred to the books by Koblitz [2] and
Stinson [4]. A more complete treatment is given
by Menezes [3].  Without going into all the de-
tails, an elliptic curve over a finite field F is the
set of all solutions (also called points) (x,y), x � F,
y � F, to an equation of a special form.  For ex-
ample, if the finite field is F = Zp, the integers
modulo a prime p, then the equation has the
form y2 = x3 + ax + b, where a,b � Zp and
4a3 + 27b2 / 0 (mod p).  There is a simple group
law for adding two points on the curve to pro-
duce a third point.  The addition rule simply in-
volves a few operations (addition, subtraction,

Elliptic Curve Cryptosystems
Continued from page 1

multiplication and inversion) in the underlying
finite field F, and thus can be efficiently imple-
mented.

The main attraction of elliptic curve cryptosys-
tems arises because the analogue of the discrete
logarithm problem in these curves is apparently
much harder than the discrete logarithm prob-
lem in Z*

p and the integer factorization problem.
More precisely, let E be an elliptic curve defined
over a finite field Fq, where q is a prime or prime
power.  Let n denote the number of points on E;
it is always the case that n is roughly equal to q.
If n is a prime (or at least divisible by a large
prime) then the best method known for comput-
ing discrete logarithms in E are the fully expo-
nential algorithms of Shanks and Pollard, which
have an expected running time of about  q ellip-
tic curve operations.  What should be noted here
is that the function  q grows much faster than
the running time functions for discrete logs in Z*

p

(equation (1)) and factoring integers (equation
(2)).

As a concrete example, let E be an elliptic curve
over the field F2160.  As an optimistic estimate,
suppose that a machine rated at 1 mips can per-
form 40,000 elliptic curve operations per second.
(This estimate is indeed very optimistic — an
ASIC built by MÖBIUS Encryption Technologies
for performing elliptic curve operations over the
field F2155 has a 40 MHz clockrate and can per-
form roughly 40,000 elliptic operations per sec-
ond.)  Then the computing power required to
compute a single discrete  logarithm in E is about
1012 MY (mips-years).  By contrast, based on the
most recent implementation of the number field
sieve for factoring by Dodson and Lenstra [1], the
computing power required to factor a 1024-bit
integer is estimated to be about 3 . 1011 MY (see
Andrew Odlyzko’s article in this issue).  Thus an
elliptic curve cryptosystem over the 160-bit field
F2160 offers the same level of security as RSA or
DSA with a modulus size of 1024 bits.
The advantage of the elliptic curve system is that
arithmetic in the field F2160 is far easier to imple-
ment, both in hardware and software, than arith-
metic modulo a 1024-bit integer.  For example,
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creases. The smaller key sizes result in smaller sys-
tem parameters, smaller public-key certificates,
bandwidth savings, and faster implementations. El-
liptic curve systems are particularly beneficial in
applications where computational power and inte-
grated circuit space is limited, such as smart cards,
PCMCIA cards, and wireless devices.
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the ASIC mentioned above for performing ellip
In addition, the encryption and signature
schemes based on elliptic curves are an order of
magnitude faster than 1024-bit DSA and RSA.
Similar speedups are now possible in software
due to recent advances in the software imple-
mentation of elliptic curve cryptosystems over
F2m.
In summary, elliptic curve cryptosystems offer the
most security per bit of any known public-key
scheme. This will tend to increase their attractive-
ness relative to other cryptosystems as computing
power improvements warrant general key size in-
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Elliptic Curves in Draft IEEE Standard
Elliptic curve cryptosystems are taking another
step forward from theory to practice as part of a
draft standard being prepared by IEEE’s P1363
working group, Standard for RSA, Diffie-Hellman
and Related Public-Key Cryptography.

Four cryptographic mechanisms based on elliptic
curves are currently being considered:
• Elliptic Curve Encryption Scheme (ECES), an

analog of the ElGamal public-key crypto-
system;

• Elliptic Curve Signature Scheme (ECSS), an
analog of a variant of the ElGamal signature
scheme;

• Elliptic Curve Digital Signature Algorithm
(ECDSA), an analog of NIST’s Digital Signa-
ture Algorithm; and

• Elliptic Curve Key Establishment Protocol
(ECKEP), an extension of Diffie-Hellman key
agreement that provides implicit key authenti-
cation.

Other algorithms to be included in the standard
are RSA, Diffie-Hellman and ElGamal. The stan-
dard will also have sections on random number
generation and hardware support for public-key
cryptography.
ISO/IEC JTC 1/WG 2/SC 27 (Security Techniques
— Techniques and Mechanisms) is also drafting

a standard for cryptography based on elliptic
curves.
For more information on P1363, contact the work-
ing group’s chair, Burt Kaliski of RSA Laborato-
ries. Meeting notices and draft materials are avail-
able by anonymous ftp to ftp.rsa.com in the pub/
p1363 directory. The next meeting of P1363 will
review the elliptic curve material and is sched-
uled for August 31-September 1 at the University
of California, Santa Barbara, following the
CRYPTO ’95 conference.

S/MIME Standardized
A group of leading networking and messaging
vendors, in conjunction with RSA Data Security,
Inc., recently endorsed a specification that will
enable encrypted messages to be exchanged be-
tween E-mail applications from different vendors.
Vendors participating in the announcement in-
cluded ConnectSoft, Frontier, FTP Software,
Qualcomm, Microsoft, Lotus, Wollongong, Ban-
yan, NCD, SecureWare, and VeriSign.
The specification — Secure/Multipurpose Internet
Mail Extensions (S/MIME) — is based on the
popular Internet MIME standard (RFC 1521) with
the secure portion of the message defined by the
public key cryptography standards PKCS #7 and
PKCS #10.
Developers interested in S/MIME can get more
information in “What’s New” on RSA’s web page
(http://www.rsa.com).

S T A N D A R D S  U P D A T E
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tic curve arithmetic over F2155 has only 12,000
gates, and would occupy less than 5% of the area
typically designated for a smart card processor.
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Introduction
How large should be the moduli in public key crypto-
systems such as RSA and  DSS (the US Digital Sig-
nature Standard)?  The answer depends on the an-
ticipated threats.  Even if those are known, there is
no way  to provide a definitive answer, since progress
in integer factorization and discrete logarithm algo-
rithms is not predictable.  (Furthermore, there is still
the possibility that RSA and DSS could be broken
by other methods than factoring or discrete log ap-
proaches.)  However, since choices of moduli have to
be made, it is necessary to make some estimates, and
this note attempts to do so, taking into account both
the increase in available computing power and fu-
ture algorithmic developments.  The projections
made below suggest that RSA and DSS moduli might
have to be unpleasantly large.  In particular, the 512-
bit moduli that have been adopted in a variety of
cryptosystems are already unsafe for all applications
except those with very modest security requirements.

I would like to stress that while the assertion about
insecurity of 512-bit moduli is easy to support with
solid technical evidence, the projections about the
future are much less certain, and should not be treated
as firm forecasts, but as possible ways that computa-
tional number theory might develop.

Only conventional algorithms and standard inte-
grated circuit technologies will be considered.  If ei-
ther quantum computers (à la Shor) or DNA com-
puters (à la Adleman) become practical, the outlook
might change, and even larger moduli might become
necessary.

Computing power will be measured in units of MY,
or mips-years.  By convention, a 1 mips machine is
equivalent to the DEC VAX 11/780 in computing
power, and so 1 MY is one year on a VAX 11/780.
This measure has many defects, and nowadays a wide

The Future of Integer Factorization

variety of other benchmarks are used in preference to
mips measures.  Still, given the uncertainty in any
projection far into the future, this measure seems ad-
equate.

43D will refer to an integer of 43 decimal digits.

Discussion will be restricted to integer factorization.
Discrete logarithms are, with the present state of
knowledge, slightly more difficult to compute modulo
an appropriately chosen prime than it is to factor a
“hard” integer of the same size, but the difference is
not large [11].  Therefore to be on the safe side in
designing  cryptosystems, one should assume that all
the projections about sizes of integers that it will be
possible to factor will also apply to sizes of primes
modulo which one can compute discrete logarithms.

Factorization records and
historical estimates
There is a long record (see Appendix A) of estimates
of sizes of integers that could be factored. They have
uniformly turned out to be too low, primarily because
of unanticipated algorithmic improvements. Faster
than expected growth in available computing resources
also played a role, though. Table 1 summarizes the
progress that has occurred in the last few decades. Table
2 shows how much the computing power available for
integer factorizations has increased.

Table 1 (see Appendix B)

Historical records in integer factorization

year record factorizations

1964 20D

1974 45D

1984 71D

1994 129D

Table 2 (see Appendix C)

Computing power used to achieve record factorizations

year MY

1974 0.001

1984 0.1

1994 5000

Projections of computing power
available in the future
The dramatic increase in computing power used for
factorization between 1984 and 1994 resulted largely

Andrew M. Odlyzko is Head of the Mathematics of Communica-
tion and Computer Systems Department at AT&T Bell Laborato-
ries in Murray Hill, New Jersey. His interests include computa-
tional complexity, cryptography, number theory, combinatorics,
coding theory, analysis, and probability theory. He can be contacted
at amo@research.att.com.
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from the introduction of distributed computing,
using the idle time on a network of workstations.
This trend was started by Bob Silverman.  (An ear-
lier instance was Richard Schroeppel’s attempt to
factor F8,  but that work did not attract much public
attention.)  It was fully developed by Arjen Lenstra
and Mark Manasse.  The RSA129 factorization used
idle time on around 1600 computers around the
world during an 8 month period.  Most modern fac-
toring methods do lend themselves to distributed
implementations.

In the remainder of this discussion, we will only con-
sider factoring attempts similar to that on RSA129,
namely ones that use idle time on networks of com-
puters.  Unlike attacks on DES, where effective at-
tacks appear to require a special purpose machine (see
Appendix J), these attacks do not require any major
commitment of financial or technical resources, and
can even be mounted surreptitiously.

Another projection of the future of integer factoriza-
tion has been made by Ron Rivest [14].  Rivest’s ex-
pectations for progress in computer technology and
algorithms do not differ much from mine, but he con-
siders what can be done with a fixed amount of money
using machines bought especially for factoring.

Table 3 (see Appendix D)

1994 computing power

mips rating

RSA129 project 104

Internet 3 . 107

the world 3 . 108

We note that even without an extensive effort, the
organizers of the RSA129 project were able to obtain
about 0.03% of the total computing power of the
Internet.  They also estimated [1] that without ex-
traordinary effort they could have organized a project
with 100 times as much power, or about 3% of the
capacity of the Internet.

We should also note that (and this is relevant for
cryptosystem security) there are relatively small or-
ganizations that have large amounts of computing
power all by themselves.  Silicon Graphics, for ex-
ample, has about 5,000 employees and 10,000 work-
stations, for total computing power of perhaps 105

mips, about 10 times the computing power of the

RSA129 project.  Thus it is conceivable that a few
individuals, such as systems administrators at a large
corporation, could organize a covert effort at factor-
ing that would dwarf that of the RSA129 project.  In
particular, using the current implementations of the
number field sieve, they could easily factor a 512-bit
integer in under a year of elapsed time, and could do
so now.

It is also possible for small groups of people to as-
semble considerable amounts of distributed comput-
ing power surreptitiously.  As an example, a 384-bit
RSA key was recently broken by Muffett et al. [10]
using about 400 MY.  In a few years, we might see
teenage system administrators for local real estate
agents or laundries breaking 512-bit RSA keys with-
out anyone being aware of the attack.

What about the future?  Moore’s “Law” says that
microprocessor processing speed doubles every 18
months.  In 10 years, that means an increase by a
factor of about 100.  Let us assume that this “law”
will hold for the next 10 years (Appendix E), and
that a further increase in processing power of between
10 and 100 will be achieved in the following 10 years.
We then find that the typical processor in 2004 might
be rated at 103 mips, and in 2014 at 104 - 105 mips.

Since there are already over 108 computers in the
world, it seems safe to assume there will be at least
2 . 109 by 2004.  By the year 2014, we might have
1010 - 1011 (Appendix F). Further, by that time
almost all are likely to be networked together.
However, it is uncertain what fraction might be avail-
able for a factoring experiment.  Let us consider two
scenarios:

(a) Widely known collaborative effort to break some
challenge cipher. It does not seem out of the ques-
tion that up to 0.1% of the world’s computing power
might be made available for a year.  (The RSA129
project organizers estimated they could have obtained
access to 3% of the computing power of the Internet,
but this 3% factor might not scale as the networks
grow.)  This yields 2 . 109 MY available in 2004, and
1011 - 1013 MY in 2014.

(b) Surreptitious effort arranged by a handful of
people at an organization such as a corporation or
university.  They might have available to them 105
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computers in 2004, and up to 106 in 2014. Thus they
might have 108 MY at their disposal in 2004, and
1010 - 1011 in 2014.  (Would they attempt to attack a
single cryptographic system, or would they attempt
to attack 1000 different systems?  This would likely
depend on what moduli are used, and on the poten-
tial payoff.)

We summarize the projections above in Table 4.

Table 4

Computing power available for integer factorization

year covert attack open project

2004 108 MY 2 . 109 MY

2014 1010 - 1011 MY 1011 - 1013 MY

Factorization using current algorithms
Of the methods that are currently known and apply
to generally hard integers, the general number field
sieve (gnfs) has the best asymptotic running time
estimate.  It is also practical, and runs faster than pre-
vious algorithms on generally hard integers of more
than about 115D.  Since a 119D integer was factored
recently using gnfs with 250 MY (see Appendix C),
we can project, using standard methods (see Appen-
dix H), the amount of computing that is likely to be
required to factor various integers.  The results are
shown in Table 5.

Table 5

Computing power required to factor integers
with current version of gnfs

bits of n MY required

512 3 . 104

768 2 . 108

1024 3 . 1011

1280 1 . 1014

1536 3 . 1016

2048 3 . 1020

Thus, based on tables 4 and 5, moduli of 1280 bits
are likely to be safe for well over 20 years, and even
1024-bit moduli are not likely to be vulnerable,
unless they conceal extremely valuable information.
However, Table 5 assumes that the current version of
gnfs will remain the best algorithm.  This would be
an extremely imprudent assumption, as history shows
that algorithmic improvements are often crucial.

It is important to note that 512-bit integers, which
are used in a variety of commercial implementa-

tions of RSA, can already be factored with the
available computing power.  There is no need for
new algorithms or faster or more computers, just the
effort to find enough people willing to let their
workstations be used in their idle time. The ma-
chines at Silicon Graphics alone could factor a
single 512-bit integer in about half a year total time
(under the assumption that they are idle about two
thirds of the time).

Algorithmic improvements
The special number field sieve (snfs) applies to inte-
gers such as the Fermat numbers.  Based on the re-
cent factorization of a 162D special integer by
Boender et al. in about 200 MY, we can estimate how
long snfs takes to factor various integers, and the re-
sults are presented in Table 6.

Table 6

Computing power required to factor integers with the snfs

bits of n MY required

768 1 . 105

1024 3 . 107

1280 3 . 109

1536 2 . 1011

2048 4 . 1014

In particular, it appears that it might be possible to
factor F10 = 21024 + 1 by the year 2000 (continuing
the tradition in which F7 was factored in 1970, F8 in
1980, and F9 in 1990).

Is it reasonable to expect a breakthrough that would
enable generally hard integers to be factored in about
the same time that the snfs factors integers of com-
parable size?  I feel that it is prudent to expect even
larger improvements.  It is impossible to predict sci-
entific breakthroughs.  However, just as in other dis-
ciplines (cf. “Moore’s Law”), one can observe a steady
progress in integer factoring.  Every few years a new
algorithm appears that allows for factoring much
larger integers, and then there is a steady stream of
incremental improvements.  As one example, there
were wide concerns that the linear algebra step that
plays a crucial role in most of the fast integer factor-
ization algorithms might become a serious bottleneck
when factoring large integers, since it could not be
executed easily in a distributed way.  However, new
algorithms were developed in the last decade that
have allayed these concerns.
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To factor a 129D integer with the continued frac-
tion method that was used in the 1970s would have
required about 6 . 1011 times more computing power
than to factor a 45D integer, but the factorization
took only about 5 . 106 times as much because a
much better algorithm was used.  Thus here the al-
gorithmic improvement was comparable (on a loga-
rithmic scale) to the hardware one.  This is similar
to what has been reported in other areas, such as
numerical analysis, where again better mathemati-
cal ideas have contributed about as much as faster
computers.

Let us assume that algorithmic improvements will
continue to be comparable to those from increasing
computing power.  Then we can expect that even a
covert attack in 2004, which with present algorithms
could only factor about a 768-bit integer, will instead
be able to factor a 1024-bit one.  For the year 2014,
the threshold of what might be achievable rises to
1500 bits or even more.

Conclusions
For many applications, the conjectured progress in
factorization is not a serious threat.  For example,
for digital signatures, time-stamping  (à la Haber
and Stornetta) provides a way to maintain their
validity (although in a somewhat cumbersome way,
requiring recourse to a document trail) even as se-
cret moduli are factored.  (This assumes, or course,
that there are no totally unexpected breakthroughs,
so that it is possible to estimate at any given time
what are the largest integers that might be factor-
able in the next year, say.)  Also, for many records,
the security requirements are not serious, in that
loss of secrecy after 10 years or sometimes even 10
days is acceptable.  Hardware improvements favor
the cipher designer, since a 100-fold speedup in
commonly used processors allows for a 10-fold in-
crease in the modulus in DSS (assuming, as seems
reasonable, that the auxiliary prime q stays at 160
bits, or is increased to at most 240 bits), for ex-
ample. However, for some records, even 20-year
protection is not sufficient.  In those cases ex-
tremely large moduli appear to be required for many
of the most popular public key systems, such as
RSA and the various ElGamal-type algorithms,
such as the DSA. For extremely sensitive informa-
tion, it might sometimes be prudent to use 10,000-
bit moduli.

The main reason that the projections for lengths of
safe moduli are growing so fast is that the asymptotic
running time estimates for the latest factoring algo-
rithms are subexponential.  In particular, the growth
rate for the running time of the number field sieve is
not fast.  By comparison, there are problems where
the only known algorithms have exponential running
times, such as DES and related ciphers, and also many
public key schemes on elliptic curves (see Appendix
I). It might therefore be prudent to consider even
more seriously elliptic curve cryptosystems.
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Appendices

Appendix A: Historical estimates
of the difficulty of factoring

The problem of factoring integers has fascinated
mathematicians for a long time, and there is a fa-
mous quote of Gauss on what a fundamental ques-
tion this is.  A concrete estimate of how hard it might
be was provided in 1874 by W. Stanley Jevons, the
English economist and logician.  He conjectured [7]
that nobody but he would ever know the factors of
the 10D integer 8616460799.  However, he was
proved wrong by Bancroft Brown around 1925, and
perhaps by others even earlier.  In an unpublished
manuscript, a copy of which was kindly provided
by John Brillhart, Brown explained how he obtained
the factorization

8616460799  =  96079 . 89681.

In 1967, John Brillhart and John Selfridge [2] stated
that “...  in general nothing but frustration can be
expected to come from an attack on a number of 25
or more digits, even with the speeds available in mod-
ern computers.”  By 1970 their estimate was out of
date  because of a new factoring method that allowed
Mike Morrison and John Brillhart to factor an inte-
ger of 39D.  In 1976, Richard Guy [6] stated “I shall
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Peter Montgomery, Herman te Riele, Robby Robson,
Russell Ruby, and Dik Winter.

Appendix C: Computing power of
historical factorizations

According to John Brillhart, integer factorizations in
the early 1970s usually used up only about an hour of
cpu time on the mainframes of those days, which are
typically rated at 1-10 mips.

The 1984 Sandia factorization used 9.5 cpu hours on
a Cray X-MP, which is on the order of 100 mips.

1994:  This is the Atkins et al. estimate [1] for the
computation, which used the ppmpqs algorithm.
Since then a 119D integer has been factored by Scott
Contini, Bruce Dodson, Arjen Lenstra, and Peter
Montgomery  in about 250 MY using gnfs (the gen-
eral number field sieve), suggesting that today the
RSA129 factorization could be carried out in about
1000 MY instead of the 5000 MY that was used.  See
[3] for details.

Appendix D: Current computing power

The oft-quoted figure of 30M users of the Internet is
questionable, as it is obtained by assuming there are
10 users per computer.  However, the estimate that
about 3M machines of one kind or another are
hooked up to the Internet seems much more solid.
Since many of them are old, an average 10 mips rat-
ing seems reasonable for them.

There are well over 108 PCs in the world.  Since sev-
eral tens of millions of them already have the 486
chips, which are usually rated at tens of mips, the es-
timate of 3 . 108 mips is conservative.  On the other
hand, most of these machines are not easily usable
for factoring, since they are not networked, do not
have enough memory, do not have operating systems
that allow for background jobs to run easily in idle
time, etc.  All these factors will change in a few years,
but now it would be hard to harness a large fraction
of all the PCs in a factoring project.

We might note that all the supercomputers in the
world (about 103 in total) have a computing power
of about 3 . 106 mips, with  several sites having be-
tween 5% and 10% of  of that capacity.  (This esti-

mate equates 1 megaflop with 1 mips, which is not
very accurate, and is based on the June 1995 version
of the TOP500 report [4].) IBM mainframes shipped
in 1994 (which was a record year in terms of main-
frame computing power, although not in dollar vol-
ume of sales) amounted to only 2 . 105 mips.

Appendix E: Moore’s “Law”

There is some skepticism whether this law will con-
tinue to hold much longer.  Line widths will eventu-
ally be so small that entire new technologies might
be needed, architectural improvements (speculative
execution, etc.)  might run into the exponential com-
plexity blowup, and so on.  Even if the bare tech-
nologies are not a barrier, economics might present
one, since the costs of state of the art fabrication fa-
cilities are also escalating.  However, such concerns
are not new, and were already present a decade ago,
and yet progress has continued unhindered.  Thus it
seems imprudent to assume Moore’s “Law” will be
violated any time soon.  Since state of the art micro-
processors are already running close to 500 mips, the
projection that by 2004 the typical processor will
have a rating of 1000 mips (compared to around 10
mips today) seems safe.  Beyond that, there are big-
ger question marks.  Even if raw processor speed con-
tinues to increase, memories might be more of a
bottleneck.  Since most fast factorization algorithms
rely on substantial memories to perform sieving op-
erations, they are often already limited by memory
system performance more than by the processor.
However, this is a problem that is afflicting an in-
creasing range of problems.  Therefore there are
strong incentives towards dealing with it, and again
it seems imprudent to assume it will form an insur-
mountable barrier.

Appendix F: Number of computers

Since there will be about 1010 people on Earth in
2014, a projection of 1011 computers implies that
there will be over 10 computers per person.  This may
seem fanciful, but we should remember that there are
many embedded microprocessors in everyday appli-
ances such as cars, dishwashers, etc., and they will be
getting increasingly powerful.  To provide voice rec-
ognition capability for the coffee pot will require con-
siderable processing power.  (The TV set-top boxes
being designed today have more computing power
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than the Cray-1, the first supercomputer.  The new
32-bit video game machines, of which tens of mil-
lions are expected to be sold each year,  will have
similar power.)  We might note, as a forerunner of
what will be common, that there were two fax ma-
chines among the approximately 1600 processors in
the RSA129 project.

There is still a question, even if we assume that there
will be many computers around, of whether they will
all be networked together, and whether their com-
puting power will be easily accessible.  Will there be
computing-power brokers, selling time on millions of
machines? Will people be willing to tolerate some-
body else running jobs on their machines, even in
spare time?

Appendix G: Running time of algorithms

In a variant of the standard notation, we define

L[n, v, a] = exp(a . (log n)v . (log log n)(1-v) ),

where log n refers to the natural logarithm of n.

The heuristic running time (there are no rigorous
proofs, but experience and heuristics support the cal-
culations) of the gnfs  to factor an integer n is

L[n, 1/3, c0 + o(1)]  as  n ∅ �,

where c0 = (64/9)1/3 = 1.9229 . . ..  There is also a
variant, due to Don Coppersmith, which does not
seem to be practical, that allows the replacement of
c0 by c1 = 1.9018 . . ..  See [8,12] for presentations of
the gnfs.

The special number field sieve, which factors effi-
ciently integers of the form ak ± b, for example, where
a and b are small, and k large (k can also be small, but
then has to fall into certain ranges) has running time

L[n, 1/3, c2 + o(1)]  as  n ∅ �,

where c2 = (32/9)1/3 = 1.5262 . . ..

Previous methods, such as variants of the quadratic
sieve algorithm, have running times of the form

L[n, 1/2, 1 + o(1)] as  n ∅ �.

The continued fraction method, which was the
most widely used method in the 1970s, appears
(at least for the most common variant) to have run-
ning time

L[n, 1/2, c3 + o(1)]  as  n ∅ �,

where c3 = 21/2 = 1.4142 . . ..

Appendix H: Comparison of running times
of algorithms

The o(1) terms in the estimates of running times of
factorization algorithms are usually not computed
explicitly.  Instead, to estimate how long an algorithm
with asymptotic running time L[n, v, a + o(1)]
should take to factor an integer n, one takes the
observed running time X on an integer m and com-
putes X . L[n, v, a] / L[m, v, a].  This has worked well
in practice.  This method does ignore various impor-
tant practical aspects, such as the need for memory
and communication capacity as well as cpu cycles,
but those have been overcome in the past either
through better algorithms or general technological
improvements, so it seems reasonable to continue to
ignore them.

Appendix I: Exponential algorithms

Public key cryptosystems such as RSA and DSA
require use of large moduli because known general
algorithms for factoring integers and computing dis-
crete logarithms are subexponential, and so hardware
improvements by themselves lead to substantial
progress.  In addition, there have been steady and
rapid improvements in algorithms.  On the other
hand, there are some problems in which the best al-
gorithms known are exponential, and where there has
been no recent algorithmic improvement.  We cite
here as an example attacks on DSA, the US Digital
Signature Algorithm, that do not use the structure of
the multiplicative group of integers modulo the large
basic prime p.  The DSA uses discrete exponentia-
tion modulo a prime p, but the exponents are com-
puted modulo a prime q such that q divides p – 1.
(This is the Schnorr method that speeds up the algo-
rithm.)  Therefore all the integers are inside an abe-
lian group of order q.  To break DSA, one can either
solve the general discrete log problem modulo p,
which can be done using a variant of the number field
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RSA Laboratories Minimum Key
Size Recommendations

It is clear from articles like Andrew Odlyzko’s
in this issue of CryptoBytes, that considerable
thought is required in choosing the size of a
modulus used in an implementation of RSA.
Balancing the issues of security against per-
formance is difficult with any cryptosystem,
but it is particularly difficult when one wants
to make allowances for potential cryptana-
lytic developments.

Currently, RSA Laboratories make the fol-
lowing recommendations for the size of
RSA moduli:

User keys,
short-term security 768 bits

Organizational keys,
medium-term security 1024 bits

Root keys,
long-term security 2048 bits

Since developments in factoring can be very
unpredictable, implementations of RSA
should ideally allow for variable keysizes
where at all possible.

sieve, or else work inside the group of order q.  The
best algorithms for the second attack are those of Dan
Shanks and John Pollard, both of which take about
 q operations.  Since these  q operations involve
multiplications modulo p, though, even for q of 160
bits and p of 1024 bits or more, it would take at least
1014 MY on general purpose computers to implement
either the Shanks or the Pollard algorithm.  Hence
we can conclude that 160 bits for q is likely to be safe
for at least 20 years, and 200 bits (which would re-
quire at least 106 as much computing power to break)
for much longer.  (As with all the other projections
about algorithms, this one could turn out to be faulty
if a breakthrough occurs.)

As another example where only exponential attacks
are known, we can cite elliptic curve cryptosystems
[9], proposed initially by Neal Koblitz and Victor
Miller.  If the elliptic curve is chosen carefully, only
the Shanks and Pollard methods are known for com-
puting the analog of discrete logs on these curves.
There is still some reluctance to use elliptic curve
cryptosystems, though, since they have not been scru-
tinized as carefully as integer factorization and ordi-
nary discrete logs.

Appendix J: Attacks on DES

For comparison, we present some estimates of the
computing power needed to break DES. We consider
known plaintext attacks on cipher codebook mode.
We assume that only exhaustive key search will be
tried, so that on average 255 keys will have to be tested
to find the right one.  The best software implementa-
tions (written in C) appear to achieve rates of up to
about 200 KB/sec on 25 mips machines (such as 50
MHz 80486 PCs), which (since each iteration of DES
involves encrypting 8 bytes) corresponds to 25,000
encryptions per second, or about 1,000 encryptions
per second on a 1 mips computer. Hence 1 MY al-
lows us to test about 3 . 1010 encryptions.  Therefore
to find a single DES key will on average take 1.2 . 106

MY, or about 300 times as much as the factorization
of RSA129 required.

DES was made to run fast in hardware, and special
purpose machines can provide substantial assistance
in breaking it.  Michael Wiener [15] has proposed a
pipelined parallel computer that could be built for
about $1.5M (both development and construction

cost) and would find a single DES key in about 4
hours.  What this shows is that special purpose hard-
ware can be of great help in breaking DES. On the
other hand, general integer factorization and dis-
crete logarithm algorithms do not benefit that much
from special designs, and it is the threat of the free
computing power on the Internet that seems most
serious.  Special designs for sieve processors for
factoring have been proposed (see [13]), but the
economics of the electronics industry favors general
purpose computers.  (Fast parallel modular  multi-
plication units could be of use in the implementa-
tion of the Pollard and Shanks exponential-time
algorithms, though, or of the subexponential-time
elliptic curve method.)
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Burt Kaliski  and  Yiqun Lisa Yin
RSA Laboratories

100 Marine Parkway, Suite 500

Redwood City, CA  94065  USA

In this article, we give a brief report on the security
of the RC5 encryption algorithm [5] against three
different types of attack including exhaustive search,
differential cryptanalysis [1], and linear cryptanalysis
[3].  RC5 is a new block cipher recently designed by
Ron Rivest.  It has a variable block size, a variable
number of rounds, and a variable-length secret key.
The secret key is used to fill an expanded key table
which is then used in encryption.  A detailed descrip-
tion of the RC5 encryption algorithm was provided
in the Spring issue of CryptoBytes [6].

To attack RC5, we can try to find either the original
secret key or the expanded key table. Clearly, if the lat-
ter approach is used, the attack is independent of the
length of the secret key.

The secret key used in RC5 has a variable length
with allowed values from 0 to 2,040 bits and the
expanded key table for RC5 with r rounds has 25(2r+2)

bits (for the 64-bit block size). Hence, if both the
length of the secret key and the number of rounds
are sufficiently large, RC5 is secure against exhaus-
tive search.

Differential and linear cryptanalysis are two powerful
techniques developed in recent years for analyzing
the security of block ciphers. For differential crypt-
analysis, the basic idea is that two chosen plaintexts
P and P* with a certain difference P’= P ≥ P* provide
two ciphertexts C and C* such that C’= C ≥ C* has
a specific value with non-negligible probability;
such a “characteristic” (P’,C’) is useful in deriving
certain bits of the key.  For linear cryptanalysis, the
basic idea is to find linear approximations (parity
relations among certain bits of plaintext, ciphertext,
and key) which hold with probability p  1/2 (i.e.,
bias = ≠ p – 1/2≠  0); such approximations can be
used to obtain information about the key.

On the Security of the RC5 Encryption Algorithm

We have developed differential and linear attacks [2]
on RC5 that are quite effective when the number of
rounds is very small. Both attacks recover every bit of
the expanded key table.  However, the plaintext re-
quirement is strongly dependent on the number of
rounds, and the requirement for RC5 with 64-bit
block size is summarized in the following table.

Table 1

Plaintext Requirements

rounds 4 5 6 7 9 12 13

differential
cryptanalysis 222 226 232 237 246 263 >264

linear
cryptanalysis 237 247 257 >264

The chosen plaintext requirements for differential cryptanalysis of
64-bit RC5 with the indicated number of rounds are shown in the
first row of the table. The known plaintext requirements for linear
cryptanalysis are shown in the second row.

One can see that for the 64-bit block size, our differ-
ential attack on nine-round RC5 uses 246 chosen
plaintexts (about the same as DES [4]); the plaintext
requirement becomes increasingly impractical for
more rounds. Similarly, our linear attack on five-
round RC5 uses 247 known plaintexts (about the same
as DES) and the plaintext requirement increases rap-
idly with additional rounds.

We now briefly describe the idea used in the two at-
tacks on RC5. Since RC5 is iterative, if we can derive
the subkey in the last round, we can derive all the
subkeys in the expanded key table.  In our differential
attack, the characteristics for each round have the
property that the differences in the pair of inputs do
not affect the rotation amounts and they can easily
be joined together. Moreover, the characteristics for
the last round have a special form, allowing us to
recover the subkey in the last round. In our linear at-
tack, the linear approximations relate the least sig-
nificant bits of the input, the output, and the subkey
in each round. When enough plaintext/ciphertext
pairs are obtained, the experimental biases of the ap-
proximations reveal the subkey in the last round.
There is strong evidence that the characteristics and
the linear approximations used in our attacks are close
to optimal. Thus, Rivest’s suggested use of 12 rounds
for RC5 with a 64-bit block size is sufficient to make
differential and linear cryptanalysis impractical.

Burt Kaliski is chief scientist and Yiqun Lisa Yin is a research scien-
tist at RSA Laboratories. They can be contacted at burt@rsa.com
and yiqun@rsa.com.
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In sum, we can conclude that RC5 provides good se-
curity against all three types of attacks when both
the length of the secret key and the number of rounds
are sufficiently large. Unlike DES, RC5 is a param-
eterized algorithm, giving flexibility in the level of
security. As a next step, we will consider other pos-
sible forms of analysis and study the key expansion
algorithm of RC5.

Finally, we want to point out two distinguishing
features of RC5. The first feature is the heavy use of
data-dependent rotations. Our analysis shows that
data-dependent rotations are very helpful for prevent-
ing differential and linear attacks. The second fea-
ture is the exceptional simplicity of the encryption
algorithm.  Such a simple design makes the analysis
easier and will help fully determine the security of
RC5 in a rather rapid way.
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MD5 Performance for IP Security
Questioned

A paper to be presented at ACM SigComm ’95 ques-
tions whether the MD5 message-digest algorithm is
fast enough to handle packets on high-speed Inter-
net links.

The paper, “Performance Analysis of MD5” by Joe
Touch of ISI, argues that with today’s hardware
MD5 can achieve at best a speed of 256 million bits/
second (Mbps), not enough to keep up with Asyn-
chronous Transfer Mode (ATM) data rates of up to
622 Mbps. Though hardware performance will likely
improve over time, so will network requirements,
keeping MD5 behind.

MD5 has been proposed as a basis for authenticating
messages in version 6 of the Internet Protocol (IPv6),
where a message and a secret key are hashed together
to form an authentication code that prevents intrud-
ers from modifying messages. As such, it could be re-
quired to handle packets at network speeds.

A significant reason for the limitation in perfor-
mance is that MD5 has an iterative design where

message blocks are processed one after another, each
one being combined with the result of previous
computation through a compression function.  Thus
the only hardware optimization possible is within
the compression function;  it is not possible to
process multiple blocks at the same time with addi-
tional hardware.  Moreover, the compression func-
tion itself is complex and somewhat hard to
parallelize.  Many other hash algorithms including
NIST’s Secure Hash Algorithm (SHA) are subject
to the same limitations.

Alternatives recommended by Touch include tree-
based hashing;  and internal modifications to the
algorithm.

MD5 remains sufficient for many applications, such
as hashing as part of a digital signature algorithm. In-
deed, Touch reports software performance for MD5
ranging from 31 Mbps on a 66MHz Intel ‘486 to 87
Mbps on a 190 MHz DEC Alpha. On such proces-
sors, files even as large as 10 Mbytes can be hashed
with MD5 in only a few seconds.

A report by Touch summarizing these results is avail-
able as Internet RFC 1810.
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Further Comments on Keyed MD5

This note follows on the excellent overview by Burt
Kaliski and Matt Robshaw (“Message authentication
with MD5,” CryptoBytes vol.1 no.1) in which three
schemes are recommended to the IPSEC working
group. Citing forthcoming work, it was suggested the
best attack (forgery) on these schemes required 264

chosen message texts (“ ... except when the known
messages are all the same length and end with the
same suffix”).

We have improved this attack in our recent paper(*)

“MDx-MAC and building fast MACs from hash
functions,”  Proc. Crypto’95. A generic attack is given
requiring 264 known text-MAC pairs and a single
chosen text, independent of message lengths or suf-
fixes — only for the second recommended scheme
we need the messages to be of the same length.  (Per-
haps more significantly, the attack applied to CBC-
MAC requires only 232 known text-MAC pairs for
MAC forgery.) The attack requires an additional 264

chosen text-MAC pairs if only 64 bits of the hash re-
sult are retained; this suggests modifying the method
to retain only 64 bits, which also saves bandwidth.
The number of text-MAC pairs required can be fur-
ther reduced if the known messages contain a com-
mon (not necessarily chosen) sequence of trailing
blocks. The attack also applies if messages are fixed-
length or prepended by length fields.

Adapting the same attack strategy allows a divide-
and-conquer attack if the envelope method is used
with distinct front and tail keys, effectively reducing
security to the larger of the two. We also provide
analysis of the secret prefix and secret suffix meth-
ods, and add here that the secret suffix method is sub-
ject to an off-line, memoryless, parallelizable attack
requiring 264 operations and a single chosen text
(P. van Oorschot and M. Wiener, ACM-CCS’94,
Fairfax).

Recent partial attacks on MD4, MD5, and the re-
lated RIPEMD, including in particular those of S.
Vaudenay (Leuven Algorithms Workshop Dec.’94)

and H. Dobbertin (Rump Session, Eurocrypt’95),
suggest these functions are susceptible to manipula-
tions of their internal structures. This raises concerns
about hash-based MACs being susceptible to attacks
exploiting properties of the underlying hash. We
therefore advise caution in constructing such MACs,
and recommend a design more conservative than the
envelope method. We agree customized MACs may
be preferable, but are reluctant to discard the experi-
ence gained over time with MD4 and MD5.

With exquisite timing, our paper already (as submit-
ted Feb.’95) makes a proposal in line with most of
the suggestions of Kaliski and Robshaw: MD5-MAC,
a customized MAC involving key processing at every
compression function step, and built with only mi-
nor modifications from MD5 (to minimize the likeli-
hood of introducing new flaws). The same construc-
tion yields MACs based on any of MD5, SHA, or
RIPEMD.

In addition to being more conservative than the en-
velope method, only slightly slower (5-20%, depend-
ing on processor and implementation), and easily
implemented from MD5, the theoretical underpin-
nings supporting the security of the envelope method,
which assume the compression function of MD5 is
pseudorandom, appear to similarly apply to MD5-
MAC. We caution, however, that we are aware of no
results regarding the pseudorandomness of MD5, and
note this property may be independent of collision-
resistance, the primary property studied to date.

— Bart Preneel, Katholieke Universiteit Leuven
bart.preneel@esat.kuleuven.ac.be
Paul C. van Oorschot, Bell-Northern Research
paulv@bnr.ca

( * ) the paper is available by FTP at ftp.esat.kuleuven.ac.be,

in the directory pub/COSIC/preneel.

We welcome comments from our readers at any time. In particular
we are keen to expand and keep up-to-date issues that have previ-
ously appeared in CryptoBytes. Comments can be sent via E-mail
to bytes-ed@rsa.com.
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tion are reports on the hardware implementa-
tions of RSA, an overview of electronic pay-
ment systems and an internal assessment of the
security of the new RC5 encryption algorithm.

Contact RSA Laboratories for more infor-
mation about the RSA Laboratories Technical
Report subscription service.

The 1996 RSA Data Security
Conference
The 1996 RSA Data Security Conference will
be held January 17-19 in the Fairmont Hotel,
San Francisco. In addition to daily keynote
speeches, the conference will include separate
strategic, development and cryptography tracks
which the expected 800-1000 attendees will
be able to mix and match at will.  More infor-
mation can be found on RSA’s web page
(http://www.rsa.com) or by contacting the
conference organizer, Layne Kaplan Events, at
415/340-9300.
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RSA Laboratories Technical
Reports
The RSA Laboratories Technical Reports are
now available via a subscription service.  These
reports offer detailed summaries of current
research on a variety of topics and they bring
together information from a wide variety of
sometimes obscure sources.  Subscription to the
Technical Reports will be at one of two levels:
individual or corporate.  As well as receiving
all previously written reports, subscribers will
receive new reports as they appear as well as
current research notes on items of major sig-
nificance.

Technical reports that are currently available
include recently updated surveys of block ci-
phers, stream ciphers and the MD family of hash
functions. Other reports offer substantial infor-
mation on such topics as the RSA Factoring
Challenge, fair cryptography and the software
implementation of RSA. In immediate prepara-
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