
Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 1 of 24 http://www.ngssoftware.com

NGS NISR
Next Generation Security Software Ltd.

Stopping Automated Attack Tools

An analysis of web-based application techniques capable of
defending against current and future automated attack tools

Abstract

An almost infinite array of automated tools exist to spider and mirror application content,
extract confidential material, brute force guess authentication credentials, discover code-
injection flaws, fuzz application variables for exploitable overflows, scan for common files or
vulnerable CGI’s, and generally attack or exploit web-based application flaws. While of great
value to security professionals, the use of these tools by attackers represents a clear and
present danger to all organisations.

These automated tools have become increasingly popular for attackers seeking to
compromise the integrity of online applications, and are used during most phases of an
attack. Whilst there are a number of defence techniques which, when incorporated into a
web-based application, are capable of stopping even the latest generation of tools,
unfortunately most organisations have failed to adopt them.

This whitepaper examines techniques which are capable of defending an application against
these tools; providing advice on their particular strengths and weaknesses and proposing
solutions capable of stopping the next generation of automated attack tools.

Author

Gunter Ollmann, Professional Services Director, NGS – email: gunter [at] ngssoftware.com

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 2 of 24 http://www.ngssoftware.com

Stopping Automated Attack Tools ...1
Section 1: Background ... 3
Section 2: Automated Scanning .. 4

2.1. Developments in Automated Scanning.................................... 4
2.2. What is an automated scanner? .. 5
2.2.1. Automated Tool Classes.. 6

Section 3: Frequently Used Defences ... 7
3.1. Server Host Renaming .. 7
3.2. Blocking of HEAD Requests .. 8
3.3. Use of the REFERER Field ... 8
3.4. Content-Type Manipulation.. 9
3.5. HTTP Status Codes... 10
3.6. Client-side Redirection... 12
3.7. Thresholds and Timeouts .. 13
3.8. Onetime Links.. 14
3.9. Honeypot Links .. 15
3.10. Graphical & Audio Turing Tests... 16

Section 4: Anti-tool Client-side Code .. 18
4.1. The Strengths of Client-side Code... 18
4.2. Client-side Scripting Alternatives ... 18
4.2.1. Token Appending... 18
4.2.2. Token Calculator.. 20
4.2.3. Token Resource Metering.. 21

Section 5: Conclusions .. 22
5.1. Comparative Studies ... 22
5.1.1. Technique vs. Tool Generation and Classification 22
5.1.2. Technique vs. Implementation and Client Impact...................... 23
5.2. Authorised Vulnerability Scanning and Security Testing 23
5.3. Combining Defence Techniques.. 23
5.4. Custom Attack Tools.. 23
5.5. Additional Resources... 24

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 3 of 24 http://www.ngssoftware.com

Section 1: Background
For an increasing number of organisations, their web-based applications and content delivery
platforms represent some of their most prized and publicly visible business assets. Whether
they are used to provide interactive customer services, vital client-server operations, or just to
act as informational references, these assets are vulnerable to an increasing number of
automated attack vectors – largely due to limitations within the core protocols and insecure
application development techniques.

As these web-based applications become larger and more sophisticated, the probability of
security flaws or vulnerabilities being incorporated into new developments has increased
substantially. In fact, most security conscious organisations now realise that their web-based
applications are the largest single source of exploitable vulnerabilities.

Over recent years the ability to discover and identify these application flaws has become a
critical assessment phase for both professional security agencies and would-be attackers. To
increase the speed and reliability of identifying application-level vulnerabilities and potential
exploitation vectors, both groups make extensive use of automated scanning tools.

These automated scanning tools are designed to take full advantage of the state-less nature
of the HTTP protocol and insecure development techniques by bombarding the hosting server
with specially crafted content requests and/or data submissions. Depending upon the nature
of the scanning product its purpose may be to create a duplicate of the client-visible content
(e.g. content mirroring); search for specific content (i.e. administrative pages, backup files, e-
mail addresses for spam); fuzz application variables to elicit server errors and uncover
exploitable holes (e.g. SQL injection, cross-site scripting), or even to conduct a brute force
discovery of hidden content or customer authentication credentials.

While there are a vast number of defensive strategies designed to help protect a web-based
application against actual exploitation, very few of these strategies provide adequate defence
against the initial phases of an attack – in particular the high dependency upon automated
scanning tools.

By adopting a number of simple design criteria and/or incorporating minor code changes to
existing applications, many organisations will find that the current generation of application
scanning tools are ineffective in the discovery of probable security flaws; thereby helping
reduce the likelihood for future exploitation.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 4 of 24 http://www.ngssoftware.com

Section 2: Automated Scanning
Given the size and complexity of modern web-based applications, the use of automated
scanners to navigate, record and test for possible vulnerabilities has become a vital stage in
confirming an application’s security. Without the use of automated scanning tools, the
process of discovering existing security vulnerabilities is an extremely time consuming task
and, when done manually, dependant upon the raw skills of the security consultant or
attacker.

Therefore, automated scanning tools are a key component in any attacker’s arsenal –
particularly if they wish to identify and exploit a vulnerability with the least amount of effort and
within the shortest possible timescale.

2.1. Developments in Automated Scanning
Just as web-based applications have evolved over the past decade, so too have the
automated tools used to scan and uncover potential security vulnerabilities. Whilst the vast
majority of these tools and techniques have come from non-commercial and “underground”
sources, the quality of the tools is generally very high and they are more than capable of
discovering vulnerabilities in most current application developments and/or deployments.

These automated scanning tools have undergone a series of evolutionary steps in order to
overcome the security benefits of each advance in web-development technology, and can be
divided into a small number of technological groupings or “generations”.

This evolution of automated scanning tools can be quickly condensed into the following
“generations”:

 1st Generation – The first generation of automated application scanners did no
processing or interpretation of the content they attempted to retrieve. These tools
would typically use lists of known file locations (e.g. file locations associated with
common IIS administration pages, Compaq Insight Manager pages, Apache root
paths, etc.) and sequentially request each URL. At the end of the scan, the attacker
would have a list of valid file locations that could then be investigated manually. A
common example of a 1st generation tool is a CGI Scanner.

 2nd Generation – The 2nd generation of automated scanners used a form of
application logic to identify URL’s or URL components contained within an HTML-
based page (including the raw client-side scripting content) and navigate to any
relevant linked pages – repeating this process as they navigate the host content (a
process commonly referred to as ‘spidering’ or ‘spydering’). Depending upon the
nature of the specific tool, it may just store the content locally (e.g. mirroring), it may
inspect the retrieved content for key values (e.g. email addresses, developer
comments, form variables, etc.), build up a dictionary of key words that could be used
for later brute forcing attacks, or compile a list of other metrics of the application
under investigation (e.g. error messages, file sizes, differences between file contents,
etc.) for future reference.

 2.5 Generation – A slight advance over second generation scanners, this generation
of scanners made use of a limited ability to reproduce or mimic the applications
presentation layer. This is typically accomplished by the tool memorising a number of
default user clicks or data submissions to get to a key area within the application (e.g.
logging into the application using valid credentials) and then continuing with standard
1st or 2nd generation tool processes afterwards. Automated scanning tools that
utilise this approach are commonly used in the load or performance testing of an
application. Also included within this generational grouping are scanning tools that
can understand “onclick” events that build simple URL’s.

 3rd Generation – 3rd generation scanning tools are capable of correctly interpreting
client-side code (whether that be JavaScript, VBscript, Java, or some other ”just in
time” interpreted language) as if rendered in a standard browser, and executing in a
fashion similar to a real user.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 5 of 24 http://www.ngssoftware.com

Whilst there are literally thousands of tools that can be classed as 1st, 2nd or even 2.5
generation, there are currently no reliable 3rd generation scanning tools capable of correctly
interpreting client-side code without a great deal of customisation or tuning for the specific
web-technology application under investigation.

2.2. What is an automated scanner?
As far as web-based applications are concerned, there are a number of methods and security
evaluation techniques that can be used to uncover information about an application that has a
security context. An automated scanner makes use of one or more discovery techniques to
request data and scans each page returned by the web server and attempts to categorise or
identify relative information.

Within the security sphere, in the context of an attack, the key functions and discovery
techniques that can be automated include the following:

 Mirroring – The attacker seeks to capture or create a comprehensive copy of the
application on a server or storage device of their choosing. This mirrored image of
the application content can be used for:

 Theft and repackaging of intellectual property.

 Part of a customer deception crime such as man-in-the-middle attacks,
Phishing, or identity theft.

 Site Scraping or Spidering – The attacker’s goal is to analyse all returned data and
uncover useful information within the visible and non-visible sections of the HTML or
client-side scripts. Information gleaned in this process can be used for:

 Harvesting of email addresses for spam lists.

 Social engineering attacks based upon personal data (such as names,
telephone numbers, email addresses, etc.).

 Ascertaining backend server processes and software versions or revisions.

 Understanding development techniques and possible code bypasses based
upon “hidden” comments and notes left behind by the application
developer(s).

 Uncovering application details that will influence future phases in the
exploitation of the application (e.g. references to “hidden” URL’s, test
accounts, interesting content, etc.).

 Mapping the structure of application URLs and content linking/referencing.

 CGI Scanning – The inclusion of exhaustive lists of content locations, paths and file
names to uncover existing application content that could be used in later
examinations or for exploitation. Typically, the information being sought includes:

 Likely administrative pages or directories.

 Scripts and controls associated with different web servers and known to be
vulnerable to exploitation.

 Default content and sample files.

 Common “hidden” directories or file path locations.

 Shared web services or content not directly referenced by the web-based
application.

 File download repository locations.

 Files commonly associated with temporary content or backup versions.

 Brute Forcing – Using this technique, an attacker attempts to brute force guess an
important piece of data (e.g. a password or account number) to gain access to
additional areas or functionality within the application. Common techniques make
use of:

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 6 of 24 http://www.ngssoftware.com

 Extensive dictionaries.

 Common file or directory path listings.

 Information gathered through site scraping, spidering and CGI scanning.

 Hybrid dictionaries that include the use of common obfuscation techniques
such as elite-speak.

 Incremental iteration through all possible character combinations.

 Fuzzing – Closely related to brute forcing, this process involves examining each form
or application submission variable for poor handling of unexpected content. In recent
years, many of the most dangerous application security vulnerabilities have been
discovered using this technique. Typically each application variable is tested for:

 Buffer overflows,

 Type conversion handling,

 Cross-site scripting,

 SQL injection,

 File and directory path navigation,

 Differences between client-side and server-side validation processes.

2.2.1. Automated Tool Classes
When discussing automated application scanning and security tools, the most common
references or classes for breakdown are:

 Web Spider – any tool that will spider, scrape or mirror content. Search engines can
often be included within this grouping.

 CGI Scanner – any tool that uses a file or path reference list to identify URL’s for
future analysis or attack.

 Brute Forcer – any tool capable of repetitive variable guessing – usually user ID’s or
passwords.

 Fuzzer – typically an added function to a web spider or personal proxy tool which is
used to iterate through a list of “dangerous content” in an attempt to elicit an
unexpected error from the application. Any unexpected errors would be manually
investigated later with the purpose being to extend the “dangerous content” into a
viable attack vector.

 Vulnerability Scanner – most often a complex automated tool that makes use of
multiple vulnerability discovery techniques. For instance the vulnerability scanner
may choose to use spidering techniques to map the application after which it then
inspects the HTML content to discover all data submission variables and then
proceeds to submit a range of knowingly bad characters or content to elicit an
unexpected response – finally it attempts to classify any discovered vulnerabilities.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 7 of 24 http://www.ngssoftware.com

Section 3: Frequently Used Defences
Over the years a number of defences have been experimented with in order to help protect
against the use of automated scanning tools. Most of the defensive research and
experimentation has been conducted by web sites that have to protect against tools that
capture the contents of the web application/site (e.g. downloading of all images from a ‘porn’
site) or brute force guessing customer login credentials.

The most 10 most frequently utilised defences are:

 Renaming the server hosting software

 Blocking HEAD requests for content information,

 Use of the REFERER field to evaluate previous link information,

 Manipulation of Content-Type to “break” file downloads,

 Client-side redirects to the real content location,

 HTTP status codes to hide informational errors,

 Triggering thresholds and timeouts to prevent repetitive content requests,

 Single-use links to ensure users stick to a single navigation path,

 Honeypot links to identify non-human requests,

 Turing tests to block non-human content requests.

3.1. Server Host Renaming
An early method of thwarting 1st generation automated tools exploited their reliance upon the
host server version information. Application logic within these early tools made use of a
check to see exactly what type of web server they were running against by reading the Server
variable within the HTTP headers and then using this information to select the most
appropriate list of checks it would then execute.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location: http://www.example.com/PageIsHere.html
Date: Fri, 01 Jan 2005 01:01:01 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Fri, 01 Jan 2005 01:01:01 GMT
Content-Length: 1337

By changing the Server variable from one server type/description to another (e.g. “Microsoft-
IIS/5.0” becomes “Apache/1.3.19 (Unix)”), this could often be enough to deceive the tool and
prevent it from discovering vulnerable CGI’s and URL’s.

Advantages Disadvantages

Easy to Implement
The changing of the host Server variable is a
simple process and can be done at any time
by the system administrator.

Low Impact
No changes to the web application are
necessary and there will be very little impact
(if any) to the hosted web application

Useful Against:
1st Generation CGI Scanners

Old Technique
Almost all later generation automated tools
have overcome this protection method and
ignore the Server variable.

Specialist Tools
A new range of server-discovery tools have
been developed to specifically identify the
server type through discrepancies in how
HTTP responses are created.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 8 of 24 http://www.ngssoftware.com

3.2. Blocking of HEAD Requests
There are a number of legitimate methods in which a client browser can request content from
a web-based application. The most common, GET and POST, are used to elicit a response
from the application server and typically receive HTML-based content. If the client browser
does not want to receive the full content – but instead wishes to know whether a link exists or
that the content is unchanged for instance – it can issue a HEAD request (with formatting
almost identical to a GET request).

Many 1st generation automated scanners choose to use HEAD requests to spider an
application or identify vulnerable CGI’s instead of GET requests because less data is
transferred and consequently the scanning or enumeration can be conducted at a greater
speed.

Defending against automated scanners that rely upon HEAD requests is trivial. Almost all
web hosting servers can be configured to not respond to HTTP HEAD requests – and only
provide content via an approved list of HTTP options. This type of configuration is quite
common; however, there may be ramifications for data throughput (this may increase as any
content request must now retrieve the full volume of data instead of just the file/page headers)
and the number of dropped connections may also increase (some tools, after identifying that
HEAD requests do not work, will use GET requests and forcibly drop the connection once it
has received the header data within the GET response).

Advantages Disadvantages

Easy to Implement
Dropping support for the HTTP HEAD
response is easily achieved through
standard web server administration facilities.

Low Impact
No changes to the web application are
necessary and there will be very little impact
(if any) to the hosted web application

Useful Against:
1st Generation CGI Scanners
1st Generation Web Spiders
1st Generation Fuzzers

Higher Data Throughput
Dropping support for HTTP HEAD requests
means that client-browsers must perform a full
HTTP GET request, even if they are just trying
to discover the last update date/time.
Therefore higher volumes of network traffic are
likely.

Dropped Connections
Some tools will use the HTTP GET instead of
HEAD to pull down header information and will
just drop the TCP connection when they have
this information. This dropping process will
create extra web log entries.

3.3. Use of the REFERER Field
One of the most popular methods of governing access to the web applications content is often
through the use of the Referer entity-header field within the client browser’s submitted HTTP
header. Ideally, each time a client web browser requests content or submits data, the HTTP
header should contain a field indicating the source URL from which the client request was
made. The application then uses this information to verify that the users request has come
via an approved path – delivering the requested content if the referrer path is appropriate, or
stopping the request if the Referer field is incorrect or missing.

For instance, the user is browsing a content page with a URL of
http://www.example.com/IWasHere.html containing a link to the page
http://www.example.com/Next/ImGoingHere.html. By clicking on the link, the user will make a
HTTP request to the server (www.example.com) containing the following headers:

GET /Next/ImGoingHere.html HTTP/1.1
Host: www.example.com
Referer: http://www.example.com/IWasHere.html
Accept-Language: en-gb
Content-Type: application/x-www-form-urlencoded

The application must maintain a list (or use an algorithm) for validating appropriate access
paths to the requested content, and will use the Referer information to verify that the user has
indeed come from a valid link. It is not uncommon to reduce the amount of checking by

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 9 of 24 http://www.ngssoftware.com

restricting the check to verifying that it just contains the same domain name – if not, the client
browser is then redirected to the sites main/initial/login page.

Many 1st and 2nd generation automated scanners do not use (or update) the Referer field
within the HTTP header of each request. Therefore, by not processing content requests or
submissions with missing or inappropriate Referer data, the application can often block these
tools.

It is important to note that some browsers may be configured to not submit a Referer field, or
they may contain a link or data of the user’s choice as a method of reducing any leakage of
personal information. Additionally, if the user follows a link from another site (e.g. a search
engine) or their saved favourites, any content restrictions based upon Referer information will
also be triggered.

Advantages Disadvantages

Robust Method
Use of the REFERER method provides a
robust mechanism for tracking how a user
has reached the specific application content.

Identification of Page Editing
REFERER information can be used to
identify content pages that have been saved
locally for manual editing and consequential
attacks. In addition, in the case of frequent
data submissions, if the site content has
been copied or mirrored without permission
it is possible to identify the offending site
location. This process can be useful for
spotting man-in-the-middle attacks.

Useful Against:
CGI Scanners
Mirroring Software
1st & 2nd Generation Web Spiders
1st Generation Vulnerability Scanners

Direct Links
If an application user connects to application
resources from their client browser favourites,
emailed links, or types in the URL, no
REFERER information will be available.

Browser Privacy
Some client browsers can be configured to not
submit REFERER information as a form of
privacy control. In addition, some personal
firewalls and corporate proxies may also strip
away this information.

3.4. Content-Type Manipulation
Another method of preventing automated tools from downloading vast amounts of site content
is through the use of Content-Type entity-header field manipulation.

The Content-Type field is typically used to indicate the media type of the entity-body sent to
the recipient or, in the case of a HEAD request, the media type that would have been sent
had the request been a GET request. For example, in the following request the Content-Type
has been set by the server to be text/html:

HTTP/1.0 200 OK
Location: http://www.example.com/ImGoingHere.html
Server: Microsoft-IIS/5.0
Content-Type: text/html
Content-Length: 145

Alternatively, MIME Content-Type can be defined within the actual content through META
tags using the HTTP-EQUIV attribute. Tags using this form are supposed to have the
equivalent effect when specified as an HTTP header, and in some servers may be translated
to actual HTTP headers automatically or by a pre-processing tool.

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=koi8-r">

The application server can define a MIME Content-Type for each and every data object, and
is normally used to define how the client browser should interpret the data. There are dozens

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 10 of 24 http://www.ngssoftware.com

of content types defined and in common usage, with more being defined all the time. Some
of the most frequently encountered definitions include:

MIME Type File Extension What to Do

text/html
text/richtext
image/gif
image/jpeg
image/x-png
video/avi
video/mpeg
application/pdf
application/java
application/msword
application/octet-stream
application/x-zip

html, htm
doc, rft
gif
jpg, jpeg
png
avi
mpg, mpeg
pdf
java, class
doc
bin, exe
zip

view in browser
view in text editor
view in browser
view in browser
view in browser
play in media player
play in media player
view in Adobe Acrobat
execute in sandbox
open using Microsoft Word
download-to-disk dialog
ask user whether to download to disk, or
open with WinZip

By altering file extensions and assigning them non-default MIME types through the use of the
servers Content-Type response, it is often possible to trick 1st and 2nd generation automated
scanning tools into either ignoring application links or misinterpreting the data they receive.

Automated web spiders and vulnerability scanners are tuned to ignore files that do not contain
HTML content (e.g. GIF, JPG, PDF, AVI, DOC, etc.) and the majority of existing tools do not
analyse MIME information contained within server HTTP headers. Therefore, for example, by
renaming .HTML files to .JPG and ensuring that the Content-Type remains “text/html”, a
document containing valid HTML content but called “ImGoingHere.jpg” will be correctly
rendered as a web page in a browser, but will be ignored by an automated scanner.

Advantages Disadvantages

Server Configuration
Setup of mime types can be done at the web
server without major modifications to the
web application.

Application Coding
Since “Content-Type” can be defined within
META tags, it is possible to implement this
solution from within the application itself.
Application developers can choose exactly
which content will be protected using this
mechanism.

Useful Against:
Mirroring Software
Web Spiders
1st Generation Vulnerability Scanners

Browser Presets
While client browsers are supposed to use the
information passed through the server
Content-Type variable, some browsers may
maintain a preset list of actions for a specific
file type causing the content to not be correctly
interpreted.

3.5. HTTP Status Codes
The majority of users are familiar with the common status codes “200 OK”, “302 Redirect” and
“404 File Not Found”. The HTTP protocol provides for a multitude of status codes which a
web server can select and send to the client browser following a data connection or request.
These status codes are divided into the following 5 key groupings:

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 11 of 24 http://www.ngssoftware.com

Status Code Allocated Meaning

1xx
2xx
3xx
4xx
5xx

Informational
Successful
Redirection
Bad Request
Internal Server Error

From an automated tools perspective, the “200 OK” status code is typically interpreted as a
valid request was made to the server (e.g. the page exists and the URL is correct), while any
other returned status code in the 4xx and 5xx groupings can be used to ascertain whether the
request was invalid or triggered a server-side fault. Depending upon the nature of the
automated tool, a 5xx status response could be indicative that malicious content insertion
may be possible (e.g. SQL injection, unsigned integer denial of service) and is worthy of
manual investigation and further attack.

For instance, a CGI scanner will cycle through a list of known files and file paths – rapidly
requesting content from the web-based application server. If a “200 OK” is received, the CGI
scanner then reports to the attacker that the path or vulnerable page/content exists. If a “404
Not Found” is received, the scanner assumes that the content doesn’t exists and is therefore
not vulnerable to that attack vector – and most likely will not report anything back to the
attacker.

However, all modern HTTP web servers allow for bespoke error handling and customisation
of status code representations. Consequently, a highly successful method of defeating the
usefulness of automated scanners is to always present the same status code (i.e. “200 OK”)
for every request – regardless of whether the request was legitimate, requested non-existent
content, or generate an unknown server error. This means that the automated scanner
cannot base its findings on HTTP status codes, and must then use some form of content
inspection logic to analyse the actual content of the HTML body instead.

Advantages Disadvantages

Simple
The process of turning all error messages or
status updates into “200 OK” messages is
an easy task and can be accomplished
without modification of the web application if
required.

User Experience Consistency
Legitimate web application users are likely to
be less confused or anxious if they are not
confronted with different error messages.

Developer Control
The application developer can also trap all
application error requests and issue a
standard response (or selection of
responses) that, while the rendered HTML
content will be different, will still be a valid
page with a “200 OK” status message. This
provides application-level flexibility in the
responses instead of modifying the web
server’s configuration.

Useful Against:
Fuzzers
Brute Forcers
CGI Scanners
Vulnerability Scanners

Log Analysis
If each response generates a “200 OK”
message even if the request is invalid, post
attack analysis of the web server logs will not
be particularly insightful. Instead an
alternative logging system must be built into
the custom web application.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 12 of 24 http://www.ngssoftware.com

3.6. Client-side Redirection
For many automated scanners, the process of identifying a link or embedded URL is done by
searching for relevant “HREF=” references within the HTML content. However, there are a
number of alternative methods for indicating URL’s within the HTML body of a server
response.

A mechanism called “client-side redirection” is commonly used to redirect browsers to the
correct content location after requesting invalid, nonexistent or recently moved content. The
most common non-scripted method is through the use of the “Refresh” field (note that the
“Refresh” field also allows for a wait period before being automatically redirected). Just like
the “Content-Type” field, the “Refresh” field can be contained within the HTTP header or used
within an HTTP-EQUIV META tag; for example:

HTTP/1.0 200 OK
Server: Microsoft-IIS/5.0
Content-Type: text/html
Refresh: 3;URL=http://www.example.com/ThisWay.html

Or

<META HTTP-EQUIV="Refresh" CONTENT="3;URL=http://www.example.com/ThisWay.html">

To use client-side redirection as a protective measure against automated scanners, the
application developer must ensure that each URL for (valuable) content is initially intercepted
by a page designed to automatically redirect the client browser to the correct/real content.
For additional security, the application server could also enforce a minimum “wait” time before
responding to requests for the real content.

The effect on many automated scanning tools is to induce a “200 OK” status code for each
request – therefore having many of the benefits described in the earlier section.

Advantages Disadvantages

Simple Configuration
The configuration of client-side redirection is
a simple process and can be achieved with
very little fuss or effort.

Controllable Delays
The Refresh variable allows for controllable
automatic redirection of the client browser.
The application could also validate that a
client browser has indeed waited the correct
amount of time before requesting the
redirected page content. If the client
browser hasn’t waited, the request could be
dropped or interpreted as a possible attack.

Choice of Location
The application developer can choose where
they wish to place the redirection field (i.e.
HTTP header or META data) and can switch
between methods as necessary.

Useful Against:
Web Spiders
Mirroring Software
Fuzzers
Vulnerability Scanners

Repetitive Delays
Overuse or reliance upon this method is likely
to affect the user experience of the application
– particularly if time delays are used.

Browser History
If the user relies upon their “browser history” to
navigate back and forward through previously
requested pages it can become difficult for
them to find the correct page.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 13 of 24 http://www.ngssoftware.com

3.7. Thresholds and Timeouts
In applications where session ID’s are used to maintain the state of a connection (e.g.
uniquely track the user or identify the fact that they have already successfully authenticated
themselves), it is also common practice to measure two key interaction variables – the time
and frequency of each request or data submission.

Normally, by monitoring the elapsed time since the last data submission, an application can
“timeout” a session and force the user to re-login if they have not used the application for an
extended period (e.g. an e-banking application that automatically logs out the user after 5
minutes of inactivity). However, it is also possible to monitor the time taken between data
submissions – thereby identifying whether an automated tool is processing URL’s at a speed
that is unattainable or unlikely for a legitimate human user.

In addition, multiple requests for the same application content using the same session ID can
also be monitored. This is commonly implemented as part of an authentication process
designed to identify brute force guessing attacks (e.g. repeated guesses at the password
associated with an email address on a free web-mail application server) – typically tied to
account lockout and/or session cancellation. A similar process can be used to identify
repeated attempts to access or submit to the same URL (e.g. a particular CGI or page) – as
would occur during a fuzzing attack using an automated tool.

Consider the following HTTP POST data submission:

POST /Toys/IWantToBuy.aspx HTTP/1.1
Host: www.example.com
Referer: http://www.example.com/Toys/ILikeThisOne.aspx
Accept-Language: en-gb
Content-Type: application/x-www-form-urlencoded
Content-Length: 437
Cookie: SessionID=sse9d7783790

Postcode=SW11%201SA&Var1=Yes&Var2=Yes&Account=';--<H1>

In this example we see one captured POST submission to the application server. The
attacker is fuzzing the “Account” field of the “/Toys/IwantToBuy.aspx” page by repeatedly
trying different attack strings (e.g. ‘;--<H1> in this instance). We know that it is the same
attacker because all previous requests have used the same session ID. To identify the
attack, the application server maintains a couple of extra data variables associated with the
session ID information in its backend database – in this case “last requested URL” and a
numeric counter. Each time the “last requested URL” is the same, the counter is
incremented. Once the counter threshold is reached (e.g. 5 repeated requests), the session
ID is revoked and any subsequent data submissions using that session ID are then ignored.

The use of thresholds and timeouts within an application can prove to be successful against
all generations of automated scanner. However, once an attacker understands the limits of
these two mechanisms (i.e. how many times can he request the same page, and how “slow”
the requests need to be to pretend to be human) the automated tools can often be configured
to not trigger these application responses.

Advantages Disadvantages

Request Frequency
The ability to identify how fast a user is
requesting new application content or
submitting data requests is an important
advantage in identifying an automated
attacks – regardless of the type of tool the
attacker is using.

Multiple Request Thresholds
By counting the number of repeated
requests to the same page content, it is easy
to identify a malicious attack (automated or
manual) and trigger an appropriate response
system – regardless of the type of request or

Robust Session Management
This solution requires a robust and well
thought out session management system.
This type of management must be custom built
by the application developer as current off-the-
shelf solutions are currently inadequate.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 14 of 24 http://www.ngssoftware.com

content that may have been submitted.

Controlled through Session Management
By tying these thresholds and timeouts to
the SessionID, it becomes an easier task to
manage more sophisticated responses to an
attack in progress.

Per-page Control
Different thresholds and responses can be
associated with individual application pages
or requirements. This enables an
application developer to fine tune responses
to an automated attack.

Useful Against:
Web Spiders
Mirroring Software
Fuzzers
Brute Forcers
Vulnerability Scanners

3.8. Onetime Links
Related to the application logic utilised in managing URL request and data submissions
through the HTTP Referer field, in some cases it is possible to assign a unique “referrer
value” to each page the client browser requests. This “referrer value” is then used to manage
the location of the user within the application and identify any requests deemed to be out of
order.

For instance, consider the online retailers purchasing page
/BuyStageOne.aspx?track=1104569 which contains the following URL’s in the page content:

http://www.example.com/Index.aspx?track=1104569
http://www.example.com/BuyStageTwo.aspx?track=1104569

Each URL, including the users current location, identifies a tracker variable (“track=”) with a
numeric value (initially “1104569”). If the user clicks on any link, this tracker value will also be
submitted to the application server. Now, assuming that the user clicks on the last link to
proceed with the purchasing process, he will proceed to the page “BuyStageTwo.aspx”, but
will also be issued with a new unique tracker number and, for example, the contents of the
new page (e.g. /BuyStageTwo.aspx?track=1104570) may also contain the following URL’s:

http://www.example.com/Index.aspx?track=1104570
http://www.example.com/BuystageTwo.aspx?track=1104570
http://www.example.com/BuyStageThree.aspx?track=1104570

Key things to note with this onetime link anti-scanner implementation are:

 The tracking number changes with each page, and the earlier number is revoked so
that it cannot be used again by the user.

 Tracking numbers are bound to a per-user session ID.

 Before the application will process any page request or data submission, it must first
verify the integrity of the session (i.e. is the session ID real and make sure it hasn’t
been revoked) and then verify that the tracking value is correct.

 Each URL or link, including the link “back” to the previous page (/BuyStageTwo.aspx)
has a new tracking number. The default browser “back” and “forward” buttons will not
work – therefore this functionality must be provided within the page itself.

 Any attempt to follow a URL without a tracking number, or use an invalid tracking
number, would be handled by the application as either a user error or seen as an
attack (automated or otherwise).

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 15 of 24 http://www.ngssoftware.com

 Although this example uses a sequential increase in tracker numbers, this is not
necessary and the values could be random if required (the use of random tokens is
recommended).

 Whenever the user requests application content containing the correct tracker
number, the tracking value can only be used once as a new value is assigned with
the server response.

This kind of implementation is successful against most 1st and 2nd generation automated
scanners. Many Spidering and Mirroring tools parallelise their requests to speed up the
discovery/download process and would therefore fail to handle the per-request changing
tracking numbers. Fuzzers too would be affected by this location state management system.

Note: whilst the examples above make use of URL’s containing tracking numbers, the use of
HTTP POST submissions instead of GET requests are to be recommended. For a full
discussion on the best security practices for URL handling, readers are directed to the paper
“Host Naming and URL Conventions” also written by the same author.

Advantages Disadvantages

One Way
The application users can only navigate the
application content in a manner governed by
the onetime linking.

Control of “Back” functionality
The default browser “back” button will not
function as the user expects, therefore the
application can prevent users from using this
method of navigation. This control is useful
for shopping cart applications.

Prevents Multithreaded Attacks
Since a new tracker ID is created with each
submission and must be used for the next
user request, automated tools can not multi-
thread requests and instead must follow a
single thread.

Slows Manual Attacks
Since the user must follow a strict path to
their requests, even manual attacks are
affected and are slowed down considerably.

Useful Against:
Web Spiders
Mirroring Software
Fuzzers
Brute Forcers
CGI Scanners
Vulnerability Scanners

Dynamic Page Generation
This method requires that the application
dynamically generate page content.

Navigation History
The user will not be able to use navigation
history or the browser “back” button to review
previous application content. Users may
become frustrated with this limitation.

Saved Links
Due to the tie between SessionID’s and URL
tracker information, users will not be able to
use application links that are saved – e.g. “Add
to Favourites” or emailed to others.

3.9. Honeypot Links
Since many scanning tools will automatically identify URL’s within the HTML body of a page
and blindly request linked content, it is possible to include “hidden” links within an applications
content that will direct an automated tool to a continually monitored page. Fake or monitored
links such as these fall under generic the category of “honeypots”. By embedding these links
within the HTML body in such a way that they would never be visibly rendered or “clickable”
by a human user, any client request for this “hidden” content is most probably associated with
an attack.

For example, the following content extract uses comment fields (i.e. <!-- and -->) and
background colours (i.e. setting the link colour to be the same as the background colour) to

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 16 of 24 http://www.ngssoftware.com

“hide” two URL’s that would not normally be followed by a human user, but are typically
followed by automated tools.

<BODY BGCOLOR="white">
Valid Links

Home

Mine!

Invalid Link

<!-- HREF="../Bad.HTML"> -->
Hidden Link

hidden
</BODY>

The web-based application would be designed in such a way that automated responses (e.g.
session ID cancellation, automatic logoff, blocking of the attackers IP address, detailed
forensics logging, etc.) are initiated should any request be made to access a honeypot link.
Against standard automated scanners, the most likely response is to issue a default page
(e.g. the home page) for all requests from that IP address or session ID – no matter what the
request is – and initiate any background investigative processes.

Advantages Disadvantages

Simple Setup
It is a simple task to add honeypot links to
the HTML content of the application and
they can be obfuscated from standard
browser rendering in a multitude of ways.

Customised Responses
The application developer can choose any
response they wish to initiate after a request
for a honeypot link is requested. Responses
may range from informing the user that they
are being monitored, through to session
cancellation or detailed forensic logging.

Useful Against:
Web Spiders
Mirroring Software

Search Engine False Positives
Since search engines use the same
techniques as automated spidering attack
tools to identify and build URL’s, there is a
high probability of false positives. However,
use of robots.txt to restrict which paths a
search engine may navigate to would help
prevent these false positives.

3.10. Graphical & Audio Turing Tests
There are a number of ways in which the application can force the user to interpret onscreen
or audio information, and submit a response that could not normally be supplied through an
automated process (unless you include brute-force guessing) before proceeding into another
section of the application. The most common implementations make use of graphical images
containing a key word or value that cannot be discovered using tools (such as OCR), but
must be manually entered in to a form field by the user.

For example, the following graphic is copied from the account creation phase of the Microsoft
Passport online service. The background squiggles and leaning text is designed to help
prevent automated OCR (Optical Character Recognition) packages from evaluating the text
“597UTPH7”.

Unfortunately, graphics such as the one above can be very difficult to understand for some
people due to its complexity or personal circumstances (e.g. colour blindness, failing sight).

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 17 of 24 http://www.ngssoftware.com

Therefore, alternative Turing tests that make use of audio sound bites can be used as an
alternative. Microsoft’s Passport registration also allows users to listen to a voice saying the
pass phrase which must be entered correctly to set up the account. To make the process
more difficult for automated dictation tools, some background noises and hisses may be
included with the real pass phrase data. An example of Microsoft Passport support for a
voice-based Turing test is shown below.

This kind of user identification testing is typically used at key points within high-volume
applications (e.g. popular webmail services, online domain registration queries, etc.) that
have, or are likely to, experience attacks or be used for non-authorised activities. Their
purpose is to validate that it is a real person using the application – not an automated tool.

In theory, the ability to differentiate between a real person and a tool or computer system can
be done through a specific test. These tests are often called Turing tests, and recent work in
this area has led to the development of CAPTCHA (Completely Automated Public Turing Test
to Tell Computers and Humans Apart – http://www.captcha.net/) systems for web-based
applications.

Advantages Disadvantages

Strong Non-Human Identification
This type of testing is very difficult for
automated tools to overcome – even tools
that have been tuned for targeting a specific
application.

Useful Against:
Web Spiders
Mirroring Software
Vulnerability Scanners

High Failure Rate
As the tools become smarter, the Turing tests
must become more difficult. Consequently
some legitimate application users may also
have trouble interpreting the information
necessary for passing the test.

Cumbersome
Adding application functions that rely on
passing a Turing test cannot be used too often
as they will adversely affect usage of the
application by legitimate users. These tests
should only be used at key points within the
application – such as initially creating the
users new account or as part of an
authentication process.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 18 of 24 http://www.ngssoftware.com

Section 4: Anti-tool Client-side Code
Whilst the techniques examined in the previous section provide various degrees of protection
against automated tool attacks, there exists an additional array of defences capable of
defending against all but 3rd generation scanners. These additional defences make use of
client-side code.

The use of client-side code, from a security perspective, tends to be overlooked – largely due
to a poor understanding of the different coding techniques and adverse publicity associated
with frequent client-server content validation flaws. Although an attacker can indeed bypass
client-side scripting components that validate content or enforce a sequence of events within
the client browser fairly easily, it is still possible to use client-side code as a positive security
component as long as suitable validation occurs at the server-side.

4.1. The Strengths of Client-side Code
As a mechanism for protecting against automated attack tools and scanners, client-side code
provides numerous advantages over other protection mechanisms. However the greatest
advantage is derived from the fact that current automated tools either cannot execute the
code, or are extremely limited in their ability to interpret any embedded code elements.

The trick to using client-side code in a security context lies in ensuring that the client browser
really did execute the code (i.e. validating execution) and did not simply ignore or bypass it.
This can be achieved by forcing the client browser to submit a unique value that can only be
obtained as part of the actual code execution. These code execution values, or “tokens”, are
submitted with any data request or submission, and validated by the server-side application
prior to the processing of any other client-supplied data. This process can be referred to as
“tokenisation”

While the final client-side code implementation may take on many forms, this functionality can
be achieved using any modern client-side interpreted language including JavaScript,
VBScript, Java, or even Flash. In fact, if so required, even compiled client-side components
(e.g. ActiveX) could be used so long as the client-browser is likely to have it installed -
although this is not recommended due to probable code flexibility issues. For ease of
implementation it is recommended that client-side interpreted languages, which are available
by default within modern client browsers, be used.

4.2. Client-side Scripting Alternatives
There are a near infinite number of ways to utilise client-side code elements as a protection
device against automated attack tools – with each one influenced by factors such as the
nature of the web-based application (e.g. e-banking, retailing, informational, etc.), the type of
user (e.g. customer, administrator, associate, etc.), or even the personal preferences of the
development staff.

However, there are three primary classes of client-side code elements capable of defending
against most automated attack tools:

 Token Appending.

 Token Calculator.

 Token Resource Metering.

4.2.1. Token Appending
The simplest of the client-side scripting techniques, token appending makes use of pre-
calculated tokens embedded within the HTML body of the server-supplied content which must
then be appended to any data submission or request by the client browser.

For instance, in the example below the HTML content contains a dynamically built link that
uses JavaScript to populate the missing “token” value. Any tool that inspects the raw HTML
is likely to identify the HREF entity but fail to include the necessary token value.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 19 of 24 http://www.ngssoftware.com

<SCRIPT LANGUAGE="javascript">
 var token="0a37847ea23b984012"
 document.write("Link")
</SCRIPT>

Alternatively, in the second example below, we see a POST submission form version. A
JavaScript function, “addtoken()”, exists in the head section of the HTML document which is
called from the submission form (“myform”) with the onClick routine. By default, the “token”
field is set to “Fail” – meaning that any failure to process the JavaScript correctly will result in
a POST submission containing the data “token=Fail” and would be interpreted by the server-
side application as a possible attack.

The only valid way of submitting data using this form is by executing the “addtoken()” function
after clicking on the submit button. This JavaScript function then modifies the “token” value
by replacing the default “Fail” with the real value (“0a37847ea23b984012”) and completes the
submission.

<HTML>
 <HEAD>
 <TITLE>Example Post</TITLE>
 <SCRIPT>
 function addtoken() {
 document.myform.token.value="0a37847ea23b984012";
 document.myform.submit();
 }
 </SCRIPT>
 </HEAD>
<BODY>
 <FORM NAME="myform" ACTION="http://www.example.com/BuyIt.aspx" METHOD="POST">
 <INPUT TYPE="TEXT" NAME="ItemName" >Item Name

 <INPUT TYPE="RADIO" NAME="Buy" VALUE="Now">Now
 <INPUT TYPE="RADIO" NAME="Buy" VALUE="Later">Later

 <INPUT TYPE="HIDDEN" NAME="token" VALUE="Fail">
 <INPUT TYPE="BUTTON" VALUE="SUBMIT" onClick="addtoken()">
 </FORM>
</BODY>
</HTML>

The principles governing this tokenisation of a link are very similar to those discussed in
section 3.8 “Onetime Links”, and the server-side responses to an identified attack can be the
same.

Advantages Disadvantages

Easy to Implement
The process of including client-side scripting
tokenisation is very simple and can be
achieved without any major changes to the
web-based application.

Stops 1st, 2nd and 2.5 Gen Scanners
Current scanners and automated attack
tools are incapable of correctly interpreting
client-side code. Therefore, they cannot
perform this kind of URL tokenisation.

Non-visible Impact on Users
Assuming that client-side scripting is
enabled (the default for most client
browsers), there is no visible or perceived
impact on the users experience of the
application

Useful Against:
All automated scanners

Relies on Client-side Code
Some older browser types may not support the
chosen client-side scripting language. In
addition, some legitimate users may have
disabled scripting support. Therefore, they are
not able to use applications that make use of
token appending strategies.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 20 of 24 http://www.ngssoftware.com

4.2.2. Token Calculator
Using almost identical techniques as the Token Appending class discussed previously, the
Token Calculator class extends these principles by adding a dynamic token creation process.

Instead of using static tokens (e.g. token.value="0a37847ea23b984012"), the client-side
script functionality is extended to include routines that actually calculate a token from scratch.
For example, in the code snippet below, JavaScript is used to combine the “fake” default
token with the session cookie and the page name, and then calculate a CRC32 checksum –
that then replaces the “fake” token – and submits the form data to the application.

<HEAD>
 <TITLE>Example Post</TITLE>
 <SCRIPT TYPE="text/javascript" SRC="crc32.js"></SCRIPT>
 <SCRIPT TYPE="text/javascript" SRC="cookies.js"></SCRIPT>
 <SCRIPT>
 function encodetoken() {
 var token = document.myform.token.value;
 var cookie = getCookie("SessionID");
 var page = location.pathname;
 document.myform.token.value = crc32(token + cookie + page);
 document.myform.submit();
 }
 </SCRIPT>
</HEAD>

The routines used to calculate the token can take practically any form and may be as complex
or as simple as the application developer feels comfortable with. The only limitation is that
the server-side application must be able to verify the integrity and correctness of the token
with each client browser data request or submission. Some examples of token calculation
include:

 Concatenating several text variables embedded within the HTML document to create
a single submission token.

 Performing a mathematical routine based upon variables embedded within the HTML
document to create a numeric submission token.

 Using HTML document properties (e.g. session cookies, browser-type, referrer field,
etc.) or other user supplied form fields (e.g. user name, date of birth, etc.) to create a
unique submission token for that page.

Advantages Disadvantages

Easy to Implement
The process of including client-side scripting
tokenisation is very simple and can be
achieved without any major changes to the
web-based application.

Stops 1st, 2nd and 2.5 Gen Scanners
Current scanners and automated attack
tools are incapable of correctly interpreting
client-side code. Therefore they cannot
perform this kind of URL tokenisation.

Non-visible Impact on Users
Assuming that client-side scripting is
enabled (the default for most client
browsers), there is no visible or perceived
impact on the users experience of the
application

Stronger than Token Appending
Since the token must be calculated instead
of just appending a static value, any
automated tool that can understand simple
client-side scripting commands (such as

Relies on Client-side Code
Some older browser types may not support the
chosen client-side scripting language. In
addition, some legitimate users may have
disabled scripting support. Therefore they are
not able to use applications that make use of
token appending strategies.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 21 of 24 http://www.ngssoftware.com

taking variable A and appending it to string
B) will be thwarted.

Token Versatility
Since the token is created “on the fly”, it is
possible to include additional information
about the client browser than can only come
from the client (e.g. language, local time,
etc.) which can be used to make a stronger
token.

Useful Against:
All automated scanners

4.2.3. Token Resource Metering
Token Resource Metering extends and refines the principles of the Token Calculator and
Token Appending strategies by increasing the complexity of the client-side code execution so
that the client browser, when calculating the token, incurs a measurable time delay. The
calculated token forms an “electronic payment” and can be used to slow down an automated
attack. This process of slowing down data requests or submissions is commonly referred to
as “Resource Metering”.

The trick to a successful resource metering strategy lies in ensuring that the calculated token
is easily calculated and validated at the server-side, but requires measurable effort to
calculate at the client-side. For a full explanation of Resource Metering and how it can be
used in a security context, readers are directed to the comprehensive paper titled “Anti Brute
Force Resource Metering”, also by the same author.

Advantages Disadvantages

Stops 1st, 2nd and 2.5 Gen Scanners
Current scanners and automated attack
tools are incapable of correctly interpreting
client-side code. Therefore, they cannot
perform this kind of URL tokenisation.

Slows down 3rd Generation Attacks
Any automated attack tool must first
correctly interpret the client-side code and
execute it. This execution incurs a
computational overhead that causes a time
delay in data submission which means that
the attack is slowed down.

Works Against Multithreaded Attacks
Due to processing overheads, conducting
multithreaded attacks will cause the client
machines CPU to maximum load and slow
down the attack to the equivalent of
calculating and submitting one token at a
time.

Works Against Manual Attacks
The time delays incurred during the
calculation of the token resource also affects
manual attacks and will slow down the
attack – most likely forcing the attacker to
seek a softer target.

Useful Against:
All automated scanners
Most manual repetitive attack techniques

Relies on Client-side Code
Some older browser types may not support the
chosen client-side scripting language. In
addition, some legitimate users may have
disabled scripting support. Therefore, they are
not able to use applications that make use of
token appending strategies.

Client Machine Specification
Since Token Resource Metering requires the
client machine to carry out a computationally
intensive routine, the code will take different
amounts of time to execute for each hardware
configuration. Therefore, the same code
executing on a new desktop computer will be
many times faster than that executing on a
small PDA device over WAP.

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 22 of 24 http://www.ngssoftware.com

Section 5: Conclusions
The use of automated tools to identify security weaknesses within web-based applications
and to attack vulnerable content is an increasingly common practice. Therefore, it is
important that organisations take adequate precautions to defend against the diverse range of
tool techniques and increasingly sophisticated automated scanners used by current and
future attackers.

The methods described within this whitepaper provide varying degrees of protection against
these attack tools. Simple techniques such as changing host service names, blocking of
HTTP HEAD requests and the use of non-informative status codes should be considered an
absolute minimum for today’s environments. More sophisticated techniques requiring tighter
integration with the dynamically generated application content help to provide better
protection, but must be factored early on into the application development lifecycle if they are
to be effective.

As the attack tools become even more sophisticated and overcome many of the simpler
defence techniques, organisations will be forced to consider the use of client-side code
techniques. These techniques currently have the ability to stop all of the generic automated
attack tools currently available – including most of the more sophisticated commercial
vulnerability scanners (this is important since keygen’s and license-bypass patches are in
common use).

5.1. Comparative Studies
The techniques explained within this whitepaper for stopping automated attack tools all have
their own unique strengths and weaknesses. For an organisation seeking to protect their web-
based application from future attack, it is important that the appropriate defensive strategy be
adopted and that the right anti-automated tool technique is applied. The following tables help
to provide a comparative study of the different techniques previously discussed – however, it
is important that application designers realise that these comparisons are of a general nature
only (due to the phenomenal array of different automated attack tools which are currently
available).

5.1.1. Technique vs. Tool Generation and Classification

Technique Tool Generation Tool Classification

Host Server Renaming ** * * *
Blocking HEAD * * *
REFERER Fields *** ** * ** *** *
Content-Type Manipulation *** ** * **
Client-side Redirection ** * * * * *
HTTP Status Codes ** ** ** * * * * *
Thresholds & Timeouts *** *** ** ** * * *** *** **
Onetime Links * *** ** * * *** *** **
Honeypot Links *** *** ***
Turing Tests *** ** *** **
Token Appending *** *** *** * ** *** *** ** ***
Token Calculators *** *** *** * ** *** *** ** ***
Token Resource Metering *** *** *** *** *** *** *** *** ***

1s
t G

en
er

at
io

n

2nd
 G

en
er

at
io

n

2.
5

G
en

er
at

io
n

3rd
 G

en
er

at
io

n

W
eb

 S
pi

de
rin

g

C
G

I S
ca

nn
in

g

B
ru

te
 F

or
ci

ng

Fu
zz

er
s

Vu
ln

. S
ca

nn
in

g

Key: [] No benefit, [*] Some benefit, [**] Noticeable Benefit, [***] Valuable Protection

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 23 of 24 http://www.ngssoftware.com

5.1.2. Technique vs. Implementation and Client Impact

Technique Implemented By Client Ease

Host Server Renaming Y N N Trivial
Blocking HEAD Y Y N N Trivial
REFERER Fields Y N Y Average
Content-Type Manipulation Y Y Y N Simple
Client-side Redirection Y N Y Simple
HTTP Status Codes Y Y N Y Simple
Thresholds & Timeouts Y N Y Average
Onetime Links Y Y Y Average
Honeypot Links Y N N Trivial
Turing Tests Y Y Y Very Hard
Token Appending Y N N Average
Token Calculators Y N N Average
Token Resource Metering Y Y Y Hard

Sy
st

em

A
dm

in
is

tr
at

or
s

A
pp

lic
at

io
n

D
ev

el
op

er
s

C
lie

nt
 V

is
ib

le

C
lie

nt
 Im

pa
ct

Ea
se

 o
f

Im
pl

em
en

ta
tio

n
5.2. Authorised Vulnerability Scanning and Security Testing
It is important to understand that the use of automated attack tools play an important role in
the legitimate identification of security vulnerabilities. Organisations should be mindful to
ensure that any anti-tool defences they install can be overcome for authorised security
testing. Failure to include such a mechanism is likely to result in extended and difficult
security assessment and penetration testing exercises, which is likely to lead to high costs or
a less thorough evaluation.

It is recommended that system administrators and application developers provide a
mechanism to turn off many of the more sophisticated anti-automated tool defences based
upon factors such as IP address, connection interface or even reserved SessionID’s. For
most of the defensive techniques discussed in this paper, any of these mechanisms could be
used. However, care should be taken to ensure that this “bypass” mechanism is by default
switched off, and must be temporarily enabled to allow automated security testing of the
application and its hosting environment.

5.3. Combining Defence Techniques
It is important organisations design their online web-based applications in such a manner as
to take advantage of as many of the anti-tool defensive techniques as possible. The ability to
stack and combine compatible techniques will strengthen the application against attack –
providing a valuable defence in depth.

5.4. Custom Attack Tools
The techniques outlined in this whitepaper provide varying degrees of defence against
automated attack tools which are available through most commercial, freeware and
underground sources. However, it is important to note that, should an attacker seek to
purposefully target an organisation and take the necessary time and effort to fully engage or
evaluate an applications defence, it is likely that they will be able to construct a custom
automated attack tool capable of bypassing most of them.

Organisations should evaluate the likelihood of a potential attacker crafting a custom tool to
overcome the applications anti-tool defences and seek to adopt appropriate strategies for

Stopping Automated Attack Tools

NGSSoftware Insight Security Research Page 24 of 24 http://www.ngssoftware.com

detecting anomalies in application usage (e.g. repetitive data submissions, high volumes of
network traffic at odd hours from out of zone IP addresses, repeated use of the same credit
card, etc.).

That being said, organisations that incorporate several of the defence techniques discussed
in this paper (in particular adopting client-side code elements) will find that potential attackers
are more likely to turn their attention to softer targets

5.5. Additional Resources
“The Phishing Guide”, Gunter Ollmann, 2004

“Hacker Repellent”, Amit Klein, 2002

“Security Best Practice: Host Naming and URL Conventions”, Gunter Ollmann, 2005

“Anti Brute Force Resource Metering”, Gunter Ollmann, 2005

About Next Generation Security Software (NGS)

NGS is the trusted supplier of specialist security software and hi-tech consulting services to
large enterprise environments and governments throughout the world. Voted “best in the
world” for vulnerability research and discovery in 2003, the company focuses its energies on
advanced security solutions to combat today’s threats. In this capacity NGS act as adviser on
vulnerability issues to the Communications-Electronics Security Group (CESG) the
government department responsible for computer security in the UK and the National
Infrastructure Security Co-ordination Centre (NISCC). NGS maintains the largest penetration
testing and security cleared CHECK team in EMEA. Founded in 2001, NGS is headquartered
in Sutton, Surrey, with research offices in Scotland, and works with clients on a truly
international level.

About NGS Insight Security Research (NISR)

The NGS Insight Security Research team are actively researching and helping to fix security
flaws in popular off-the-shelf products. As the world leaders in vulnerability discovery, NISR
release more security advisories than any other commercial security research group in the
world.

Copyright © April 2005, Gunter Ollmann. All rights reserved worldwide. Other marks and trade names are the
property of their respective owners, as indicated. All marks are used in an editorial context without intent of
infringement.

