Programming with

[cc-wing2

by

Jacob Navia and Q Software Solutions GmbH

Acknowledgements

Thanksto all people that have contributed to this work.

Thanksto the many people that sent me those bug reports that allowed meto improve the
software. To all that sent me messages of encouragement.

Thanks specialy to Friedrich Dominicus, John Finlay and Mike Cagtano among many
other people, that collaborated to make Icc-win32 what it is today.

© 2000-2003 Jacob Naviaand Q Software Solutions GmbH. This document is part of the
Icc-win32 documentation. Distribution in any form is explicitly not allowed.

Chapter 1 Introductionto C 1

Organization of C programs 2

Hello 3
Console mode programs and windows programs 5
An overview of the compilation process 5
Technical notes 6
The run time environment 7

We wrote the program first 8
We compiled our design 8
Run time 8

An overview of the standard libraries 9
The “stdheaders.h” include file 9
Windows specific headers 10

Passing arguments to a program 10

Iteration constructs 13

for 13
while 14
do 14

Basic types 14
Declarations and definitions 15
Variable declaration 16
Function declaration 18
Function definitions 19
Variable definition 19
Statement syntax 19
Errors and warnings 19
Reading from a file 21
Commentaries 26
Standard comments 27

Describing a function 27
Describing a file 29

An overview of the whole language 29
Statements 31
Declarations 34
Pre-processor 36

Windows specific defined symbols 37
Structured exception handling 37
Control-flow 38
Windows specific syntax 38
Extensions of lcc-win32 39
A closer view 40
Identifiers. 40
Constants. 40

Evaluation of constants 40
Integer constants 40

Floating constants 40
Character string constants 41

Arrays. 42

Function call syntax 42
Functions with variable number of arguments. 42
Assignment. 43

Postfix 43

Subtraction. 43
Conditional operator. 44
struct. 44

union. 44

typedef. 44

register. 44

sizeof. 45

enum. 45

Prototypes. 45

variable length array. 45
const. 46

unsigned. 46

bit fields 46

stdcall. 47

break and continue statements 47
Null statements 48
Comments 48

Switch statement. 48
inline 49

Logical operators 49

Bitwise operators 50

Address-of operator 51

Sequential expressions 51

Casts 52

Indirection 52

Precedence of the different operators. 54
The printf family 55

Conversions 55

The conversion flags 56

The minimum field width 56
The precision 56

The size specification 57

The conversions 58
setjmp and longjmp 59

Register variables and longimp() 61
Simple programs 63

strchr 63

strlen 63

ispowerOfTwo 64

Write ispowerOfTwo without any loops 65

striwr 66

paste 67
Using arrays and sorting 71

Summary of Arrays and sorting 79
Pointers and references 79
Structures and unions 82

Structures 82

Structure size 85

Defining new types 86

Unions 87
Using structures 89

Fine points of structure use 91
Identifier scope and linkage 92

Top-down analysis 93
Extending a program 96
Improving the design 102
Path handling 103
Security considerations 106
Traditional string representation in C 108
Memory management and memory layout 111
Functions for memory allocation 112
Memory layout under windows 112
Memory management strategies 114
Static buffers 114
Stack based allocation 114
“Arena” based allocation 115
The malloc / free strategy 115
The malloc with no free strategy 116
Automatic freeing (garbage collection). 116
Mixed strategies 117
Counting words 118
The organization of the table 119
Memory organization 121
Displaying the results 122
Code review 124
Time and Date functions 124
Using structures (continued) 128
Lists 128
Hash tables 131
A closer look at the pre-processor 133

Preprocessor commands 134

Preprocessor macros 135
Conditional compilation 136
The pragma directive 136
The ## operator 137

The # operator 137

Things to watch when using the preprocessor 137
Using function pointers 139

Function pointers as decision tables 141
An even shorter solution 143
Advanced C programming with lcc-win32 144
Operator overloading 144
How to use this facility 144
References 145
Generic functions 145
Default arguments 145
Structured exception handling 146

Why exception handling? 146
How do I use SEH? 146
Auxiliary functions 147
Giving more information 149
Catching stack overflow 150
The __retry construct 152

The signal function 153

Software signals 153
Using the signal mechanism 154

Numerical programming 156

Floating point formats 157

Float (32 bit) format 157
Double (64 bit) format 157
Long double (80 bit) format 158
The gfloat format 158

Special numbers 158

What can we do with those numbers then? 159

Range 159

Precision 161

Going deeper 163
Rounding modes 164

Numerical stability 166
Complex numbers 167
Complex constants: 168
Programming with security in mind 169
Always include a ‘default’ in every switch statement 169
Pay attention to strlen and strcpy 169
Do not assume correct input 171
Watch out for trojans 171
Pitfalls of the C language 172

Defining a variable in a header file 172

Confusing = and == 172

Forgetting to close a comment 172

Easily changed block scope. 172

Using the ++ or -- more than once in an expression. 173
Unexpected Operator Precedence 173

Extra Semi-colon in Macros 174

Watch those semicolons! 174

Assuming pointer size is equal to integer size 174
Careful with unsigned numbers 174

Changing constant strings 175

Indefinite order of evaluation 175

A local variable shadows a global one 175
Careful with integer wraparound 176

Problems with integer casting 176

Octal numbers 176

Chapter 2 Windows Programming 179

Introduction 179
WinMain 182
Resources 185
The dialog box procedure 189
A more advanced dialog box procedure 192
User interface considerations 194
Libraries 197
Dynamically linked libraries (DLLs) 203
Using a DLL 206
A more formal approach. 209
New syntax 209
Event oriented programming 209
A more advanced window 210
Working with keyboard accelerators 214
Customizing the wizard generated sample code 217
Making a new menu or modifying the given menu. 217

Adding a dialog box. 217
Drawing the window 218
Initializing or cleaning up 218
Getting mouse input. 218
Getting keyboard input 219
Handling moving/resizing 219
Window controls 220
Using controls without a dialog box 224
A more complex example: a "clone" of spy.exe 225
Creating the child windows 225
Moving and resizing the child windows 226
Starting the scanning. 226
Building the window tree. 227
Scanning the window tree 227
Review 228
Filling the status bar 230
Auxiliary procedures 231
Numerical calculations in C. 234
Filling the blanks 239
Using the graphical code generator 248
Customizing controls 252
Processing the WM_CTLCOLORXXX message 252
Using the WM_DRAWITEM message 254
Building custom controls 257
An Icd display 257
The Registry 260
The structure of the registry 260
Enumerating registry subkeys 261
Rules for using the registry 263
Interesting keys 264
Etc. 265
Clipboard 266
Serial communications. 267
Files 267

File systems 268
Graphics 269
Handles and Objects 269
Inter-Process Communications 269
Mail 270
Multimedia 270
Network 270
Hooks 270
Shell Programming 271
Services 271
Terminal Services 271
Windows 272
Advanced windows techniques 273
Memory mapped files 273
Letting the user browse for a folder: using the shell 276
Retrieving a file from the internet 279
Error handling under windows 280
Some tips for debugging 282

Check the return status of any API call. 282
Always check allocations 282

Some Coding Tips 284
Determining which version of Windows is running 284
Translating the value returned by GetLastError() into a readable string 284
Clearing the screen in text mode 284
Getting a pointer to the stack 285
Disabling the screen saver from a program 285
Drawing a gradient background 286
Capturing and printing the contents of an entire window 286
Centering a dialog box in the screen 289
Determining the number of visible items in a list box 289
Starting a non-modal dialog box 290
Propagating environment variables to the parent environment 290
Restarting the shell under program control 291
Translating client coordinates to screen coordinates 291
Passing an argument to a dialog box procedure 291

Calling printf from a windows application 291

Enabling or disabling a button or control in a dialog box. 291

Making a window class available for all applications in the system. 292
Accessing the disk drive directly without using a file system 292
Retrieving the Last-Write Time 293

Setting the System Time 293

Getting the list of running processes 293

Changing a File Time to the Current Time 295

Displaying the amount of disk space for each drive 295

Mounting and unmounting volumes in NTFS 5.0 296

Mount 296
Umount 297

FAQ 298
How do I create a progress report with a Cancel button? 298
How do I show in the screen a print preview? 300
How do I change the color of an edit field? 300
How do I draw a transparent bitmap? 301
How do I draw a gradient background? 303
How do I calculate print margins? 304
How do I calculate the bounding rectangle of a string of text? 305
How do I close an open menu? 306
How do I center a dialog box in the screen? 306
How do I create non-rectangular windows? 306
How do I implement a non-blinking caret? 306
How do I create a title window (splash screen)? 307
How do I append text to an edit control? 310
How do I spawn a process with redirected stdin and stdout? 311
How to modify the width of the list of a combo box 312
How do I modify environment variables permanently? 313
How do I add a menu item to the explorer right click menu? 314
How do I translate between dialog units and pixels? 315
How do I translate between client coordinates to screen coordinates? 315
When should I use critical sections and when is a mutex better? 315
Why is my call to CreateFile failing when I use conin$ or conout$? 316
How to erase a file into the recycle bin? 316

Finding more examples and source code 321
Overview of lcc-win32’s documentation 321
Bibliography 322

Introduction to C

This tutorial to the C language supposes you have the Icc-win32 compiler system installed.
You will need a compiler anyway, and Icc-win32 is free for you to use, so please (if you
haven't done that yet) download it and install it before continuing. http://www.q-softwar e-
solutions.com

What the C language concerns, this is not a full-fledged introduction to all of C. There are
other, better books that do that (see the bibliography at the end of this book). Even if | try to
explain things from ground up, thereisn’'t here adescription of all the features of the language.

Note too, that thisis not just documentation or a reference manual. Functions in the standard
library are explained, of course, but no exhaustive documentation of any of them is provided

in this tutorial .*
But before we start, just a quick answer to the question: why learn C?

C has been widely criticized, and many people are quick to show its problems and drawbacks.
But as languages come and go, C stands untouched. The code of |cc-win32 has software that
was written many years ago, by many people, anong others by Dennis Ritchie, the creator of

the language itself2. The answer to this guestion is very simple: if you write software that is
going to stay for some time, do not learn “the language of the day”; learn C.

C doesn’'t impose you any point of view. It is not object oriented, but you can do object ori-
ented programming in C if you wish.2 It isnot afunctional language but you can do functional

programming® with it if you feel like. Most LI1SP interpreters and Scheme interpreters/compil-
ers are written in C. You can do list processing in C, surely not so easily like in lisp, but you
can do it. It has all essential features of a general purpose programming language like recur-
sion, procedures asfirst class data types, and many others that this tutorial will show you.

Many people feel that C lacksthe simplicity of Java, or the sophistication of C++ with its tem-
plates and other goodies. True. C is a ssimple language, without any frills. But it is precisely
thislack of featuresthat makes C adapted as afirst time introduction into a complex high-level
language that allows you fine control over what your program is doing without any hidden

1. For an overview of the lcc-win32 documentation see "How to find more information"

2. Dennis Ritchie wrote the pre-processor of the cc-win32 system.

3. Objective C generates C, as does Eiffel and several other object-oriented languages. C, precisely
because of this lack of a programming model is adapted to express al of them. Even C++ started as a pre-
processor for the C compiler.

4. See the “lllinois FP’ language implementations in C, and many other functional programming
languages that are coded in C.

http://www.q-software-solutions.com
http://www.q-software-solutions.com

2 C programming with lcc-win32

features. The compiler will not do anything else than what you told it to do. The language
remains transparent, even if some features from Java like the garbage collection are incorpo-

rated into the implementation of C you are going to use.”

Aslanguages come and go, C remains. It was at the heart of the UNIX operating system devel-

opment in the seventies®, it was at the heart of the microcomputer revolution in the eighties,
and as C++, Delphi, Java, and many others came and faded, C remained, true to its own
nature.

1.1 Organization of C programs

A program in C is written in one or several text files called source modules. Each of those

modules is composed of functions, i.e. smaller pieces of code that accomplish some task’, and
data, i.e. variables or tables that are initialized before the program starts. There is a special

function called main that is where the execution of the program begins. In C, the organization
of code in files has semantic meaning. The main source file given as an argument to the com-

piler defines a compilation unit.’

A unit can import common definitions using the #include preprocessor directive, or just by
declaring some identifier as extern.1°

C supports the separate compilation model, i.e. you can split the program in several indepen-
dent units that are compiled separately, and then linked with the link editor to build the final
program. Normally each module iswritten in a separate text file that contains functions or data
declarations. Interfaces between modules are written in “header files’ that describe types or
functions visible to several modules of the program. Those files have a “.h” extension, and
they come in two flavors: system-wide, furnished with lcc-win32, and private, specific to the
application you are building.

A function has a parameter list, a body, and possibly a return val ue The body can contain
declarations for local variables, i.e. variables activated when execution reaches the function
body.

5. Lisp and scheme, two list oriented languages featured automatic garbage collection since several
decades. APL and other interpreters offered this feature too. Lcc-win32 offers you the garbage collector
developed by Hans Boehm.

6. Andtoday, the linux kernel iswritten entirely in C as most operating systems.

7. Thereis no distinction between functions and procedures in C. A procedure is a function of return
type void.

8. Actually, the startup code calls main. When main returns, the startup code regains control and ends
the program. Thisis explained in more detail in the technical documentation.

9. Any program, in any computer in any language has two main types of memory at the start:

The code of the program, i.e. the sequence of machine instructions that the program will execute. This
section has an “entry point”, the above mentioned “main” procedure in C, or other procedure that is
used as the entry point

The static data of the program, i.e. the string literals, the numbers or tables that are known when the
program starts. This data area con be further divided into an initialized data section, or just empty,
reserved space that is initialized by the operating system to zero when the program is loaded.

10. Thereisno way to import selectively some identifiers from another included file. Either you import
all of it or none.

Hello 3

The body is a series of expressions separated by semicolons. Each statement can be an arith-
metic operation, an assignment, a function call, or a compound statement, i.e. a statement that
contains another set of statements.

1.2 Hello

To give you an idea of the flavor of C we use the famous exampl e given already by the authors

of the language™®. We build here a program that when invoked will put in the screen the mes-
sage “hello”.

#i ncl ude <stdio. h> (1)
int mai n(void) (2)
{ (3)
printf("Hello\n"); (4)
return O; (5)
} (6)

1) Using a feature of the compiler called ‘pre-processor’, you can textually include a whole
file of C source with the “#include” directive. In this example we include from the standard

includes of the compiler the “stdio.h” header file.'3

2) We define a function caled “main” that returns an integer as its result, and receives no
arguments (void). 14

3) The body of the function isalist of statements enclosed by curly braces.

4) We call the standard function “printf” that formats its arguments in a character string that is
displayed in the screen. A function call in Ciswritten like this:f uncti on- name * (
argunment -1ist ‘). Inthis casethe function nameis“pri ntf”, and its argument

list is the character string “Hel | o\ n”1°. Character strings are enclosed in double quotes.
They are represented in C as an array of characters finished by a zero byte.

5) The return statement indicates that control should be returned (hence its name) to the
calling function. Optionally, it is possible to specify areturn result, in this case the integer
zero.

6) The closing brace finishes the function scope.

11. In C, only one return value is possible. A function, however can return several return values if it
modifies its environment.

12. Thisexampleis aclassic, and appears already in the tutorial of the C language published by B. W.
Kernighan in 1974, four years before the book “The C programming language” was published. Their example
would still compile today, albeit with some warnings:

main() { printf(“Hello world\n"); }

13. The name of the include file is enclosed within a <> pair. This indicates the compiler that it should
look for this include file in the standard include directory, and not in the current directory. If you want to
include a header file in another directory or in the compilation directory, use the double quotes to enclose the
name of the file, like #include “myfile.h”

14. Thisisone of the two possible definitions of the “main” function. Later we will see the other one.

15. Character strings can contain sequences of characters that denote graphical characters like new line
(\n) tab (\t), backspace (\b), or others. In this example, the character string is finished by the new line
character \n.

4 C programming with lcc-win32

Programsin C are defined in text files that normally have the.c extension. You can create those
text files with any editor that you want, but Icc-win32 proposes a specialized editor for this
task called “Wedit”. This program allows you to enter the program text easily, since it is
adapted to the task of displaying C source text.

To make this program then, we start Wedit and enter the text of that program above.*®
Once thisis done, you can compile, and link-edit your program by just clicking in the compile
menu or pressing F9.1’

To run the program, you use the “ execute” option in the compile menu (Ctrl+F5), or you open
a command shell and type the program’s name. Let’s do it the hard way first.

The first thing we need to know is the name of the program we want to start. Thisis easy; we
ask Wedit about it using the “ Executable stats’ option in the “Utils’ menu. We get the follow-
ing display.

We see at the first line of the bottom panel, that the program executable is called:
h:\ I cc\projects\hello.exe.18

ki wedit-hello - [i: tempihello.c] R =1o] =|
=l File Edit Search Projectk Design Compiler Ukils Versions Window Help _|E|£|

finclude <stdio. h:»
int mainf{woid)

printf{"hello~n");
return 0;

hello.exe built succes=fully. (0.3 =ec).

B build zearch 1:1

16. You start wedit by double clicking in itsicon, or, if you haven’'t anicon for it by going to the “ Start”
menu, run, and then type the whole path to the executable. For instance, if you installed lcc-win32 in c:\lcc,
wedit will bein c:\Icc\bin\wedit.exe

17. If this doesn’'t work or you receive warnings, you have an installation problem (unless you made a
typing mistake). Or maybe | have a bug. When writing mail to me do not send messages like: “It doesn't
work”. Those messages are anuisance since | can’t possibly know what iswrong if you do not tell me exactly
what is happening. Wedit doesn’t start? Wedit crashes? The computer freezes? The sky has a black color?

Keep in mind that in order to help you | have to reproduce the problem in my setup. This is impossible
without a detailed report that allows me to see what goes wrong.

Wedit will make a default project for you, when you click the “compile” button. This can go wrong if
there is not enough space in the disk to compile, or the installation of lcc-win32 went wrong and Wedit can't
find the compiler executable, or many other reasons. If you see an error message please do not panic, and try
to correct the error the message is pointing you to.

A common failure happens when you install an older version of Wedit in a directory that has spacesinit.
Even if there is an explicit warning that you should NOT install it there, most people are used to just press
return at those warnings without reading them. Then, lcc-win32 doesn’t work and they complain to me. | have
improved thisin later versions, but still problems can arise.

18. For understanding the rest of the output see the technical notes bel ow.

Hello 5

We open a command shell window, and type the command:

C.\>h:\Ilcc\projects\lccl\hello.exe
Hel | o
C\>
Our program displays the character string “Hello” and then a new line, as we wanted. If we
erase the \n of the character string, press F9 again to recompile and link, the display will be:
C:\>h:\Icc\projects\lccl\hello.exe

Hel | o
C\>

But how did we know that we have to call “printf” to display a string?

Because the documentation of the library told us so... The first thing a beginner to C must do
is to get an overview of the libraries provided already with the system so that he/she doesn’'t
waste time rewriting programs that can be already used without any extra effort. Printf is one
of those, but are several thousands of pre-built functions of all types and for all tastes. We
present an overview of them in the next section.

1.2.1 Console mode programs and windows programs

Windows makes a difference between text mode programs and windows programs. In the first
part of this book we will use console programs, i.e. programs that run in a text mode window
receiving only textual input and producing text output. Those are simpler to build than the
more complicated GUI (Graphica User Interface) programs.

Windows knows how to differentiate between console/windows programs by looking at cer-
tain fields in the executable file itself. If the program has been marked by the compiler as a
console mode program, windows opens a window with a black background by default, and
initializes the standard input and standard output of the program before it starts. If the program
Is marked as a windows program, nothing is done, and you can't use the text output or input
library functions.

For historical reasons this window is called sometimes a “DOS’ window, even if there is no
MSDOS since more than a decade. The programs that run in this console window are 32 bit
programs and they can open awindow if they wish. They can use all of the graphical features
of windows. The only problem is that an ugly black window will be always visible, even if
you open a new window.

You can change the type of program Icc-win32 will generate by checking the corresponding
boxes in the “Linker” tab of the configuration wizard, accessible from the main menu with
“Project” then “Configuration”.

Under other operating systems the situation is pretty much the same. Linux offers a console,
and even the Macintosh has one too. In many situations typing a smple command sequenceis
much faster than clicking dozens of menus/optionstill you get where you want to go. Besides,
an additional advantage is that console programs are easier to automate and make them part of
bigger applications asindependent components that recelve command-line arguments and pro-
duce their output without any human intervention.

1.2.2 An overview of the compilation process

When you press F9 in the editor, a complex sequence of events, all of them invisible to you,
produce an executable file. Here is a short description of this, so that at least you know what’s
happening behind the scene.

6 C programming with lcc-win32

Wedit calls the C compiler proper. This program is called |cc.exe and is in the installation
directory of lcc, inthe bin directory. For instance, if you installed Iccinc: \ | cc, the compiler
will beinc: \' | cc\ bi n.

This program will read your source file, and produce another file called object file,'° that has
the same name as the source file but a..obj extension. C supports the separate compilation
model, i.e. you can compile several source modules producing severa object files, and rely in
the link-editor Icclnk.exe to build the executable.

Lcclnk.exe is the link-editor, or linker for short. This program reads different object files,
library files and maybe other files, and produces either an executable file or a dynamically
loaded library, aDLL.

When compiling your hello.c file then, the compiler produced a“hello.obj” file, and from that,
the linker produced a hello.exe executable file. The linker uses several files that are stored in
the\ |l cc\ | i b directory to bind the executable to the system DLLS, used by all programs:
kernel 32.dll, crtdll.dll, and many others.

The workings of the lcc compiler are described in more detail in the technical documentation.
Herewe just tell you the main steps.
» The source fileis first pre-processed. The #include directives are resolved, and the text
of theincluded filesis inserted into the source file.?

» Thefront end of the compiler proper processes the resulting text. Itstask isto generate a
series of intermediate code statements.?’ The code generator that emits assembler
instructions from it processes these.??

» Eventually the compiler produces an object file with the .obj extension. This file is
passed then (possibly with other object files) to the linker Icclnk that builds the
executable.

Organizing al those steps and typing all those command lines can be boring. To easy this, the
IDE will do al of thiswith the F9 function key.

1.2.3 Technical notes
The output shown in the wedit window above means the following:

1 Sizeof code. Thisisthe number of bytes that the instructions of your program will use.
This includes the startup, and the code for the statically linked c-runtime functions like
printf, if necessary. Lcc-win32 uses the standard windows library CRTDLL.DLL, aC run
time library provided by windows itself. Most of the functionsin that library are not usable
If you want to support the latest ANSI standard however, so they have been rewritten in a
static library libc.lib, that is used by the linker. That is why the size of your code can grow

19. This has nothing to do with object oriented programming of course!

20. Theresult of this process can be seen if you call the compiler with the —E flag. For instance, to see
what isthe result of pre-processing the hello.c file you call the compiler in a command shell window with the
commandline:l cc -E hel | 0. c. Theresulting fileiscalledhel | 0. i .

21. Again, you can see the intermediate code of Icc by calling the compiler withl cc -z hel |l o. c.
This will produce an intermediate language file called hel 1 0. | i | that contains the intermediate language
statements.

22. Assembly code can be generated with the l cc -S hell 0. ¢ command, and the generated
assembly file will be called hel | 0. asm The generated file contains a listing of the C source and the
corresponding tranglation into assembly language.

Hello 7

suddenly by several kilobytes when you add just one single line to your program source.

2 Size of initialized data. This is the number of bytes that the tables, constants and other
initial data use. In this case we see that besides the character string “hello” we have many
other constants added to the program by the C library.

3 Uninitialized data. Thisisthe part of your program that reserves space for variables that
will be zeroed by the system at the start.

4 Size of image. This the place the whole will take in memory when loaded, including all
the above items. For alignment reasons this is greater than a ssmple sum of the above parts.
This size must be a multiple of 4096 bytes, a page.

What does this mean?

Program size has lately become a* non-issue’. Machines have grown so enormously, that most
people think that if the program makes 2MB or 20MB it doesn’t matter. This has some justifi-
cation, of course, but it is not the philosophy of Icc-win32 or C in general. Wedit has several
tools to get the size of each function, and it reports summaries for size information about your
program. Remember that smaller programs fit better in the cache of the CPU, and execute
faster since they require less resources.

1.24 The run time environment

The program starts in your machine. A specific operating system is running, a certain file and
hard disk configuration is present, you have so many RAM chipsinstalled, etc. Thisisthe run-
time environment.

Thefile built by the linker lcclnk is started through a user action (you double click in itsicon)
or by giving its name at a command shell prompt, or by the action of another program that
requests to the operating system to start it.

The operating system accesses the hard disk at the specified location, and reads all the datain
thefileinto RAM. Then, it determines where the program starts, and sets the program counter
of the printed circuit in your computer to that memory location.

The piece of code that startsisthe “startup” stub, asmall program that does some initialization
and calls the “main” procedure. It pushes the arguments to main in the same way as for any
other procedure.

The main function starts by calling another function in the C library called “printf”. This func-
tion writes characters using a “console” emulation, where the window is just text. This envi-
ronment is simpler conceptually, and it is better suited to many things for people that do not
like to click around alot.

The printf function deposits characters in the input buffer of the terminal emulation program,
that makes the necessary bits change color using the current font, and at the exact position
needed to display each glyph.

Windows calls the graphic drivers in your graphic card, that control the video output of the
machine with those bits to change. The bits change before your hand has had the time to move
amillimeter. Graphic drivers are fast today, and in no time they return to windows that returns
control to the printf function.

The printf function exits, then control returns to main, that exits to the startup, that calls Exit-
Process, and the program is finished by the operating system

Your hand is still near the return key.

8 C programming with lcc-win32

We have the following phasesin this process:
1: Design-time. We wrote the program first.
2: Compile-time. We compiled our design.

3: Run-time. The compiled instructions are started and the machine executes what wetold it to
do.

1.2.4.1 We wrote the program first

The central point in communicating with a printed circuit is the programming language you
use to define the sequence of operations to be performed. The sequence is prepared using that
language, first in your own circuit, your brain, then written down with another (the keyboard
controller), then stored and processed by yet another, a personal computer (PC).

1.2.4.2 We compiled our design

Compiled languages rely on piece of software to read a textual representation first, translating
it directly into a sequence of numbers that the printed circuit understands. This is optionally
done by assembling several pieces of the program together as a unit.

1.2.4.3 Runtime

The operating system loads the prepared sequence of instructions from the disk into main
memory, and passes control to the entry point.

Thisisdone in severa steps. First the main executable file is loaded, then all the libraries the
program needs.

When everything has been mapped in memory, and all the references in each part have been
resolved, the OS calls the initialization procedures of each loaded library. If everything goes
well, the OS gives control to the program entry point.

An overview of the standard libraries 9

1.3 An overview of the standard libraries

This headers and the associated library functions are found in all ANSI compliant compilers.?®

Header Purpose

assert.h Diagnostics for debugging help.

complex.h Complex numbers definitions. See page 167.

ctype.h Character classification (isalpha, islower, isdigit)

errno.h Error codes set by the library functions

fenv.h Floating point environment. Functions concerning the precision of the
calculations, exception handling, and related items. See page 156.

float.h Characterigtics of floating types (float, double, long double, gfloat). See
page 156.

inttypes.h Characteritics of integer types

i1S0646.h Alternative spellings for some keywords. If you prefer writing the opera-
tor “&&” as*“and”, use this header.

limits.h Size of integer types.

locale.h Definitions for the formatting of currency values using local conven-
tions.

math.h Mathematical functions.

setjmp.h Non local jumps, i.e. jumps that can go past function boundaries. See
page 59.

signal.h Signal handling. See page 153.

stdarg.h Definitions concerning functions with variable number of arguments.

stdbool.h Boolean type and values

stddef.h Standard definitions for the types of a pointer difference, or others.

stdint.h Integer types

stdio.h Standard input and outpuit.

stdlib.h Standard library functions.

stddef.h This file defines macros and types that are of general use in a program.
NULL, offsetof, ptrdiff_t, size t, and several others.

string.h String handling. Here are defined all functions that deal with the standard
representation of strings as used in C. See “ Traditional string representa-
tionin C” on page 108.

stdarg.h Functions with variable number of arguments are described here. See
page 42.

time.h Time related functions.See page 124.

wchar.h Extended multibyte/wide character utilities

wctype.h Wide character classification and mapping utilities

1.3.1 The “stdheaders.h” include file

Normally, it is up to you to remember which header contains the declaration of which func-
tion. Thiscan beapain, and it is easy to confuse some header with another. To avoid this over-
loading of the brain memory cells, lcc-win32 proposes a “ stdheaders.h” file, that consists of :

23. Inthe user's manual there is an exhaustive list of the entire set of header files distributed with Icc-
win32. Please |ook there for an in-depth view.

10 C programming with lcc-win32

#i ncl ude <assert. h>
#i ncl ude <conpl ex. h>

etc
Instead of including the standard headers in severa include statements, you just include the

“stdheaders.h” file and you are done with it. True, there is a very dlight performance lost in
compilation time, but it is not really significant.

1.3.2 Windows specific headers

There are several megabytes of windows header files, and we will not explain them all here.

windows.h All windows definitions. Creating a window, opening a window, thisis
an extensive header file, makes approx half a megabyte of definitions.
Note that under lcc-win32, several headers like winbase.h of other distri-
butions are concentrated in asinglefile.

winsock.h Network (tcpip)

shellapi.h Windows Shell

1.4 Passing arguments to a program

We can’'t modify the behavior of our hello program with arguments. We have no way to passit
another character string for instance, that it should use instead of the hard-wired “hello\n”. We
can't even tell it to stop putting atrailing new line character.

Programs normally receive arguments from their environment. A very old but still quite effec-
tive method is to pass a command line to the program, i.e. a series of character strings that the
program can use.

Let's see how arguments are passed to a program.?*

#i ncl ude <stdio. h> (1)
int main(int argc,char *argv[]) (2)
{

int count; (3)

for (count=0;count < argc;count++) {(4)
printf((5)
"Argunent %d = %\n",
count,
argv[count]);
} (6)
return O;

}
1) Weinclude again stdio.h

2) We use a longer definition of the “main” function as before. This one is as standard as the
previous one, but allows us to pass parameters to the program. There are two arguments.

24. Here we will only describe the standard way of passing arguments as specified by the ANSI C
standard, the one Icc-win32 uses. Under the Windows operating system, there is an alternative entry point,
called WinMain, and its arguments are different than those described here. See the Windows programming
section later in thistutorial.

Passing arguments to a program 11

int argc Thisisan integer that in C isknown as “int”. It contains the number of arguments
passed to the program plus one.

char *argv[] Thisis an array of pointers to characters® containing the actual arguments
given. For example, if we call our program from the command line with the arguments
“foo” and “bar”, the argv|] array will contain:

argv[0] The name of the program that is running.
argv[1] Thefirst argument, i.e. “foo”.
argv[2] The second argument, i.e. “bar”.

We use amemory location for an integer variable that will hold the current argument to be

printed. Thisis alocal variable, i.e. a variable that can only be used within the enclosing

scope, in this case, the scope of the function “main”.2°

3) Weusethe“for” construct, i.e. an iteration. The “for” statement has the following structure:

e |nitidization. Things to be done before the loop starts. In this example, we set the
counter to zero. We do this using the assign statement of C: the “=" sign. The general
form of this statement is

e variable“=" value

» Test. Things to be tested at each iteration, to determine when the loop will end. In this
case we test if the count is still smaller than the number of arguments passed to the
program, the integer argc.

* Increment. Things to be updated at each iteration. In this case we add 1 to the counter
with the post-increment instruction: counter++. This is just a shorthand for writing
counter = counter + 1.

* Note that we start at zero, and we stop when the counter is equal to the upper value of
the loop. Remember that in C, array indexes for an array of size n elements always start

at zero and run until n-1.%7

4) We use again printf to print something in the screen. This time, we pass to printf the
following arguments:

25. Thismeansthat you receive the machine address of the start of an integer array where are stored the
start addresses of character strings containing the actual arguments. In the first position, for example, we will
find an integer that contains the start position in RAM of a sequence of characters containing the name of the
program. We will see thisin more detail when we handle pointers later on.

26. Local variables are declared (as any other variables) with:
<type> identifier;
For instance
inta
double b;
char c;
Arrays are declared in the same fashion, but followed by their size in square brackets:
int a[23];
double b[45];
char ¢[890];

12 C programming with lcc-win32

"Argunent % = ‘%’ \n"
count
ar gv[count]

Printf will scan its first argument. It distinguishes directives (introduced with a per-cent
sign %), from normal text that is outputted without any modification. We have in the
character string passed two directives a %d and a %s.

The first one, a %d means that printf will introduce at this position, the character
representation of a number that should also be passed as an argument. Since the next
argument after the string is the integer “count”, its value will be displayed at this point.

The second one, a %s means that a character string should be introduced at this point.
Since the next argument is argv[count], the character string at the position “count” in the
argv[] array will be passed to printf that will display it at this point.

5) We finish the scope of the for statement with a closing brace. This means, the iteration
definition ends here.

Now we are ready to run this program. Suppose that we have entered the text of the programin
thefile “args.c”. We do the following:

h:\lcc\projects\args> lcc args.c
h:\1 cc\projects\args> | ccl nk args. obj

We first compile the text file to an object file using the Icc compiler. Then, we link the result-
ing object file to obtain an executable using the linker |ccink. Now, we can invoke the program

just by typing its name:®

h:\1 cc\projects\args> args
Argunent 0 = args

We have given no arguments, so only argv[0Q] is displayed, the name of the program, in this
case“args’. Note that if we write:

h:\l cc\projects\args> args. exe
Argunent 0 = args. exe

We can even write:

h:\lcc\projects\args> h:\lcc\projects\args. exe
Argument 0 = h:\lcc\projects\args. exe

But that wasn’t the objective of the program. More interesting isto write:

h:\lcc\projects\args> args foo bar zzz

Argunent 0 = args
Argunment 1 = foo
Argunment 2 = bar
Argunent 3 = zzz

The program receives 3 arguments, so argc will have a value of 4. Since our variable count
will run from O to argc-1, we will display 4 arguments: the zeroth, the first, the second, etc.

27. An error that happens very often to beginners is to start the loop at 1 and run it until its value is
smaller or equal to the upper value. If you do NOT use the loop variable for indexing an array this will work,
of course, since the number of iterationsis the same, but any accessto arrays using the loop index (a common
case) will make the program access invalid memory at the end of the loop.

28. The detailed description of what happens when we start a program, what happens when we compile,
how the compiler works, etc., are in the technical documentation of lcc-win32. With newer versions you can
use the compilation driver ‘Ic.exe’ that will call the linker automatically.

Passing arguments to a program 13

1.4.1 lteration constructs

We introduced informally the “for” construct above, but a more general introduction to loops
IS necessary to understand the code that will follow.

There are three iteration constructsin C: “for”, “do”, and “while”.

1411 for
The“for” construct has

1. Aninitialization part, i.e. code that will be always executed before the loop begins,

2: A test part, i.e. code that will be executed at the start of each iteration to determine if the
loop has reached the end or not, and

3: Anincrement part, i.e. code that will be executed at the end of each iteration. Normally, the
loop counters are incremented (or decremented) here.

The general form isthen:

for(init ; test ; increment) {
stat ement bl ock

}

Within a for statement, you can declare variables local to the “for” loop. The scope of these
variablesis finished when the for statement ends.

#i ncl ude <stdi o. h>
int main(void)

{
for (int i =0; i< 2;i++) {
printf("outer i is %\n",i);
for (int i = 0;i<2;i++) {
printf("i=%@\n",i);
}
}
return O;
}
The out put of this programis:
outer i is O
i =0
i =1
outer i is 1
i =0
i =1

Note that the scope of theidentifiers declared within a‘for’ scope ends just when the for state-
ment ends, and that the ‘for’ statement scope is a new scope. Modify the above example as
follows to demonstrate this:

#i ncl ude <stdi o. h>
i nt mai n(voi d)

{

for (int i =0; i< 2;i++) {1
printf("outer i is %l\n",i);?2
int i = 87,
for (int i = 0;i<2;i++) {4

printf("i=%\n",i);5

} 6

} 7

return O; 8

14 C programming with lcc-win32

At the innermost loop, there are three identifierscalled ‘i’.
*Thefirst i isthe outer i. Its scope goes from line 1 to 7 — the scope of the for statement.

*The second i (87) isalocal identifier of the compound statement that beginsin line 1 and
endsin line 7. Compound statements can always declare local variables.

*Thethird i is declared at the innermost for statement. Its scope startsin line 4 and goes up
to line 6. It belongs to the scope created by the second for statement.

Note that for each new scope, the identifiers of the same name are shadowed by the new ones,
as you would normally expect in C.

1.4.1.2 while

The “while” construct is much more simple. It consists of a single test that determines if the
loop body should be executed or not. Thereis no initialization part, nor increment part.
The general formis:

while (test) {
st at enent bl ock

}

Any “for” loop can be transformed into a “whil€” loop by just doing:
init
while (test) {

st at enent bl ock
i ncr ement

1413 do

The“do” construct isakind of inverted while. The body of the loop will always be executed
at least once. At the end of each iteration the test is performed. The general formis:

do {
st at enment bl ock
} while (test);

Using the “break” keyword can stop any loop. This keyword provokes an exit of the block of
the loop and execution continues right afterwards.

The “continue” keyword can be used within any loop construct to provoke a jump to the end
of the statement block. The loop continues normally, only the statements between the continue
keyword and the end of the loop are ignored.

1.4.2 Basic types

The implementation of the C language by the |cc-win32 compiler has the following types built

in:2%All this types are part of the standard ANSI C language. With the exception of the
_Complex type they should appear in most C implementations and they do appear in all win-

dows compilers.®

29. 1n most compilers the char/short/int/long types are present but their sizes can change from machine to
machine. Some embedded systems compilers do not support floating point. Many compilers do not
implement the recent types _Bool, long long, or long double. Within the windows environment how-
ever, the char/short/int/long/float/double types are identical to thisonesin all 32 bit windows compil-
ers| know of.

30. Microsoft Visual C implements "long double" as double, and callsthe long long type"__int64".To
remain compatible with this compiler, lcc-win32 accepts __int64 as an equivalent of long long.

Declarations and definitions 15

Type Size Description
(bytes)
Booll 1 Logical type, can be either zero or one.

char 1 Character or small integer type. Comes in two fla
vors: signed or unsigned.

short 2 Integer or unicode character stored in 16 bits. Signed
or unsigned.

int 4 Integer stored in 32 bits. Signed or unsigned.

| ong 4 Identical to int

l'ong | ong 8 Integer stored in 64 bits. Signed or unsigned.

f1 oat 4 Floating-point single precision. (Approx 7 digits)

doubl e 8 Floating-point double precision. (Approx. 15 digits)

| ong doubl e 12 | Floating point extended precision (Approx 19 digits)

float _Conpl ex 32 | Complex numbers. Each _Complex is composed of

doubl e _Conpl ex 372 | two parts: red and imaginary part. Each of those

| ong doubl e _Conpl ex 2 partsisa}floating point number. Include <complex.h>
when using them.

1. Theactual type of the Boolean type should be “bool”, but in the standard it was specified that this
type wouldn't be made the standard name for now, for compatibility reasons with already running
code. If you want to use bool, you should include the header “ stdbool .h”.

These are the basic types of ANSI-C. Lcc-win32 offers you other types of numbers. To use
them you should include the corresponding header file, they are not “built in” into the com-
piler. They are built using a property of this compiler that allows you to define your own kind

Type Header Size (bytes) | Description
gfloat gfloat.h 56 352 bits floating point
bignum bignum.h variable Extended precision number

of numbers and their operations. Thisis called operator overloading and will be explained fur-
ther down.

1.5 Declarations and definitions

It isvery important to understand exactly the difference between a declaration and a definition
inC.
A declaration introduces an identifier to the compiler. It saysin essence: thisidentifier isaxxx
and its definition will come later. An example of adeclaration is

ext ern doubl e sqrt (double);

With this declaration, we introduce to the compiler the identifier sgrt, telling it that it isafunc-
tion that takes a double precision argument and returns a double precision result. Nothing
more. No storage is allocated for this declaration, besides the storage allocated within the

compiler internal tables.3

16 C programming with lcc-win32

A definition tells the compiler to allocate storage for the identifier. For instance, when we
defined the function main above, storage for the code generated by the compiler was created,
and an entry in the program’s symbol table was done. In the same way, when we wrote:

i nt count;
above, the compiler made space in the local variables area of the function to hold an integer.

And now the central point: You can declare a variable many times in your program, but there
must be only one place where you defineit. Note that a definition is al so a declaration, because
when you define some variable, automatically the compiler knows what it is, of course. For
instance if you write:

doubl e bal ance;

even if the compiler has never seen the identifier balance before, after this definition it knows
it is a double precision number.3?

151 Variable declaration
A variable is declared with

<type> <identifier> ;

like
int a;
doubl e d;
I ong I ong h;

All those are definitions of variables. If you just want to declare a variable, without allocating
any storage, because that variable is defined elsewhere you add the keyword extern:

extern int a;
extern doubl e d;
extern long | ong d;

Optionally, you can define an identifier, and assign it avalue that is the result of some calcula
tion:

doubl e fn(double f) {
double d = sqrt(f);
// nore statenents

}

Note that initializing a value with a value unknown at compile time is only possible within a
function scope. Outside a function you can still write:

int a=7;
or
int a = (1024*1024)/ 16;

but the values you assign must be compile time constants, i.e. values that the compiler can fig-
ure out when doing its job.

Pointers are declared using an asterisk:

31. Notethat if the function so declared is never used, absolutely no storage will be used. A declaration
doesn’t use any space in the compiled program, unless what is declared is effectively used. If that is the case,
the compiler emits arecord for the linker telling it that this object is defined elsewhere.

32. Notethat when you do not provide for a declaration, and use this feature: definition is a declaration;
you can only use the defined object after it is defined. A declaration placed at the beginning of the program
module or in a header file frees you from this constraint. You can start using the identifier immediately, even
if its definition comes much later, or even in another module.

Declarations and definitions 17

int *a;
This means that awill contain the machine address of some unspecified integer. 33

You can save some typing by declaring severa identifiers of the same type in the same decla-
ration like this;

int a, b=7,*c, h;

Note that ¢ is a pointer to an integer, since it has an asterisk at its left side. This notation is
somehow confusing, and forgetting an asterisk is quite common. Use this multiple declara-
tions when al declared identifiers are of the same type and put pointers in separate lines.

The syntax of C declarations has been criticized for being quite obscure. Thisis true; there is

no point in negating an evident weakness. In his book “Deep C secrets’34 Peter van der Lin-
den writes a simple algorithm to read them. He proposes (chapter 3) the following:

The Precedence Rule for Understanding C Declarations.
Rule 1: Declarations are read by starting with the name and then reading in precedence order.
Rule 2: The precedence, from high to low, is:
2.A : Parentheses grouping together parts of a declaration
2.B: The postfix operators:
2.B.1: Parentheses () indicating a function prototype, and
2.B.2: Square brackets [] indicating an array.
2.B.3: The prefix operator: the asterisk denoting "pointer to".

Rule 3: If a const and/or volatile keyword is next to a type specifier e.g. int, long, etc.) it
appliesto the type specifier. Otherwise the const and/or volatile keyword applies to the pointer
asterisk on itsimmediate | eft.

Using those rules, we can even understand a thing like:
char * const *(*next)(int a, int b);

We start with the variable name, in this case “next”. This is the name of the thing being
declared. We see it isin a parenthesized expression with an asterisk, so we conclude that “ next
isapointer to...” well, something. We go outside the parentheses and we see an asterisk at the
left, and a function prototype at the right. Using rule 2.B.1 we continue with the prototype.
“next is a pointer to a function with two arguments’. We then process the asterisk: “next isa
pointer to a function with two arguments returning a pointer to...” Finally we add thechar *

const , to get

“next” isapointer to afunction with two arguments returning a pointer to a constant pointer to
char.

Now let's see this:

char (*j)[20];
Again, we start with “j is a pointer to”. At the right is an expression in brackets, so we apply
2.B.2to get “j isapointer to an array of 20”. Yeswhat? We continue at the left and see " char”.

Done. “j” isapointer to an array of 20 chars. Note that we use the declaration in the same form
without the identifier when making a cast:

33. Machine addresses are just integers, of course. For instance, if you have a machine with 128MB of
memory, you have 134 217 728 memory locations. They could be numbered from zero up, but Windows uses
amore sophisticated numbering schema called “Virtual memory”.

34. Deep C secrets. Peter van der Linden ISBN 0-13-177429-8

18 C programming with lcc-win32

j = (char (*)[20]) nmalloc(sizeof (*j));

We see in bold and enclosed in parentheses (a cast) the same as in the declaration but without
the identifier j.

1.5.2 Function declaration

A declaration of afunction specifies:
» Thereturn type of the function, i.e. the the kind of result value it produces, if any.
* |tsname.

* Thetypes of each argument, if any.
The general formis:

<type> <Name>(<type of arg 1>, ... <type of arg N>) ;
doubl e sqrt(double) ;

Note that an identifier can be added to the declaration but its presence is optional. We can
write:

doubl e sqgrt (double x);
if we want to, but the “x” is not required and will be ignored by the compiler.

Functions can have a variable number of arguments. The function “printf” is an example of a
function that takes severa arguments. We declare those functions like this:

int printf(char *, ...);
The ellipsis means “ some more arguments”.3°
Why are function declarations important?

When | started programming in C, prototypes for functions didn’t exist. So you could define a
function like this:

int fn(int a)

{

}
and in another module write:
fn(7,9);
without any problems.

return a+8;

Well, without any problems at compile time of course. The program crashed or returned non-
sense results. When you had a big system of many modules written by several people, the
probability that an error like this existed in the program was amost 100%. It is impossible to
avoid mistakes like this. You can avoid them most of the time, but it is impossible to avoid
them always.

Function prototypes introduced compile time checking of all function calls. There wasn't any-
more this dreaded problem that took us so many debugging hours with the primitive debugger
of that time. In the C++ language, the compiler will abort compilation if a function is used
without prototypes. | have thought many times to introduce that into lcc-win32, because ignor-
ing the function prototype is always an error. But, for compatibility reasons | haven't done it

yet.30

35. The interface for using functions with a variable number of arguments is described in the standard
header file “stdarg.h”. See * Functions with variable number of arguments.” on page 42.

Errors and warnings 19

1.5.3 Function definitions

Function definitions look very similar to function declarations, with the difference that instead
of just asemi colon, we have a block of statements enclosed in curly braces, as we saw in the
function “main” above. Another difference is that here we have to specify the name of each
argument given, these identifiers aren’t optional any more: they are needed to be able to refer
to them within the body of the function. Hereis arather trivial example:

i nt addOne(int input)
{

}

return input+1;

1.5.4 Variable definition
A variableis defined when the compiler allocates space for it. For instance, at the global level,
space will be allocated by the compiler when it seesaline like this:
int a;
or
int a = 67;

In the first case the compiler allocates sizeof(int) bytes in the non-initialized variables section
of the program. In the second casg, it allocates the same amount of space but writes 67 into it,
and adds it to the initialized variables section.

1.5.5 Statement syntax

In C, the enclosing expressions of control statements like if, or while, must be enclosed in
parentheses. In many languages that is not necessary and people write:
if a<brun(); // Not inC. ..
in C, theif statement requires a parentheses
if (a<b) run();
The assignment in C isan expression, i.e. it can appear within a more complicated expression:
if ((x =z) >13) z = 0;

This means that the compiler generates code for assigning the value of z to x, then it compares
this value with 13, and if the relationship holds, the program will set z to zero.

1.6 Errors and warnings

It is very rare that we type in a program and that it works at the first try. What happens, for
instance, if we forget to close the main function with the corresponding curly brace? We erase
the curly brace above and we try:

h:\1 cc\exanpl es>l cc args.c

Error args.c: 15 syntax error; found “end of input' expecting "}’
1 errors, 0 warnings

36. Thereisastrong commitment, from the part of the compiler writers, to maintain the code that was
written in the language, and to avoid destroying programs that are working. When the standards committee
proposed the prototypes, all C code wasn't using them yet, so atransition period was set up. Compilers would
accept the old declarations without prototypes and just emit a warning. Some people say that this period
should be over by now (it is more than 10 years that we have prototypes aready), but till, new compilerslike
Icc-win32 are supporting old style declarations.

20 C programming with lcc-win32

Well, thisis at least a clear error message. More difficult is the case of forgetting to put the
semi-colon after the declaration of count, in the line 3 in the program above:
D:\ I cc\exanpl es>l cc args.c
Error args.c: 6 syntax error; found “for' expecting ;'
Error args.c: 6 skipping for'
Error args.c: 6 syntax error; found “;' expecting ")’
Warning args.c: 6 Statenent has no effect
Error args.c: 6 syntax error; found “)' expecting *;'
Error args.c: 6 illegal statement term nation
Error args.c: 6 skipping)’
6 errors, 1 warnings

D:\ I cc\ exanpl es>

We see here a chain of errors, provoked by the first. The compiler tries to arrange things by
skipping text, but this produces more errors since the whole “for” construct is not understood.
Error recovering is quite a difficult undertaking, and lcc-win32 isn’t very good at it. So the
best thing isto look at the first error, and in many cases, the rest of the error messages are just

consequences of it.3’

Another type of errors can appear when we forget to include the corresponding header file. If
weerasethe#i ncl ude <st di 0. h> lineinthe args program, the display looks like this:
D:\ I cc\exanpl es>l cc args.c

Warning args.c: 7 nissing prototype for printf
0 errors, 1 warnings

Thisisawarning. The printf function will be assumed to return an integer, what, in this case,
is a good assumption. We can link the program and the program works. It is surely NOT a
good practice to do this, however, since all argument checking is not done for unknown func-
tions; an error in argument passing will pass undetected and will provoke a much harder type
of error: arun time error.

In general, it is better to get the error as soon as possible. The later it is discovered, the more
difficult it isto find it, and to track its consequences. Do as much as you can to put the C com-
piler in your side, by using always the corresponding header files, to allow it to check every
function call for correctness.

The compiler givestwo types of errors, classified according to their severity: awarning, when
the error isn't so serious that doesn’t allow the compiler to finish its task, and the hard errors,
where the compiler doesn’'t generate an executable file and returns an error code to the calling
environment.

We should keep in mind however that warnings are errors too, and try to get rid from them.

The compiler uses atwo level “warning level” variable. In the default state, many warnings
aren’'t displayed to avoid cluttering the output. They will be displayed however, if you ask
explicitly to raise the warning level, with the option —A. This compiler option will make the
compiler emit al the warningsit would normally suppress. You call the compiler with| cc -
A <fil enane>, or set the corresponding button in the IDE, in the compiler configuration
tab.

Errors can appear in later stages of course. The linker can discover that you have used a proce-
dure without giving any definition for it in the program, and will stop with an error. Or it can

37. You will probably see another display in your computer if you are using a recent version of lcc-
win32. | improved error handling when | was writing thistutorial...

Reading from a file 21

discover that you have given two different definitions, maybe contradictory to the same identi-
fier. Thiswill provoke alink time error too.

But the most dreaded form of errors are the errors that happen at execution time, i.e. when the
program is running. Most of these errors are difficult to detect (they pass through the compila-
tion and link phases without any warnings...) and provoke the total failure of the software.

The C language is not very “forgiving” what programmer errors concerns. Most of them will
provoke the immediate stop of the program with an exception, or return completely nonsense
results. In this case you need a specia tool, a debugger, to find them. Lcc-win32 offers you
such atool, and you can debug your program by just pressing F5 in the IDE.

Summary:
» Syntax errors (missing semi-colons, or similar) are the easiest of al errorsto correct.
» The compiler emits two kinds of diagnostic messages: warnings and errors.
* You can rise the compiler error reporting with the —A option.

» Thelinker can report errors when an identifier is defined twice or when an identifier is
missing a definition.

e The most difficult errors to catch are run time errors, in the form of traps or incorrect
results.

1.7 Reading from afile

For a beginner, it is very important that the basic libraries for reading and writing to a stream,
and the mathematical functions are well known. Hereis an example of afunction that will read
atext file, counting the number of characters that appear in thefile.

A program is defined by its specifications. In this case, we have a general goa that can be
expressed quickly in one sentence: “ Count the number of charactersin afile’. Many times, the
specifications aren’t in awritten form, and can be even completely ambiguous. What isimpor-
tant isthat before you embark in a software construction project, at least for you, the specifica-
tions are clear.

#i ncl ude <stdio. h> (1)
int main(int argc,char *argv[]) (2)
{

int count=0;// chars read (3)

FILE *infile; (4)
int c; (5)
infile = fopen(argv[1],"r");(6)
c = fgetc(infile); (7)
while (c !'= EOF) { (8)
count ++; (9)
c = fgetc(infile); (10)
}
printf("%l\n", count); (11)
return O;

}
1) We include the standard header “stdio.h” again. Here is the definition of a FILE structure.

2) The same convention as for the “args’ program is used here.

22 C programming with lcc-win32

3) We set at the start, the count of the characters read to zero. Note that we do this in the
declaration of the variable. C allows you to define an expression that will be used to

initialize avariable.38

4) We use the variable “infile’ to hold a FILE pointer. Note the declaration for a pointer:
<type> * identifier; thetypeinthiscase, isacomplex structure (composite type)
called FI LE and defined in stdio.h. We do not use any fields of this structure, we just
assign to it, using the functions of the standard library, and so we are not concerned about
the specific layout of it. Note that a pointer is just the machine address of the start of that
structure, not the structure itself. We will discuss pointers extensively later.

5) We use an integer to hold the currently read character.

6) We start the process of reading characters from a file first by opening it. This operation
establishes a link between the data area of your hard disk, and the FILE variable. We pass
to the function fopen an argument list, separated by commas, containing two things: the
name of the file we wish to open, and the mode that we want to open this file, in our
example in read mode. Note that the mode is passed as a character string, i.e. enclosed in
double quotes.

7) Once opened, we can use the fgetc function to get a character from a file. This function
receives as argument the file we want to read from, in this case the variable “infile”, and
returns an integer containing the character read.

8) We use the while statement to loop reading characters from a file. This statement has the
general form: while (condition) { ... statements... }. Theloop body will be executed for so
long as the condition holds. We test at each iteration of the loop if our character is not the
special constant EOF (End Of File), defined in stdio.h.

9) We increment the counter of the characters. If we arrive here, it means that the character
wasn't the last one, so we increase the counter.

10) After counting the character we are done with it, and we read into the same variable a new
character again, using the fgetc function.

11) If we arrive here, it means that we have hit EOF, the end of the file. We print our count in
the screen and exit the program returning zero, i.e. al is OK. By convention, a program
returns zero when no errors happened, and an error code, when something happened that
needs to be reported to the calling environment.

Now we are ready to start our program. We compileit, link it, and we call it with:

h:\l cc\ exanpl es> countchars countchars.c
288

We have achieved the first step in the development of a program. We have a version of it that
in some circumstances can fulfill the specifications that we received.

But what happensif we just write

h:\1 cc\ exanpl es> count chars

38. There is another construct in this line, a comment. Commentaries are textual remarks left by the
programmer for the benefit of other human readers, and are ignored by the compiler. We will come back to
commentaries in amore formal manner later.

Reading from a file 23

We get the following box that many of you have already seen several times:3?

' countchars_exe - Application Error

The instruction at "0x776415ce" referenced memary at "'0x68735db4". The memory
could not be “read"”.

Click on OF to terminate the application
Click on CAMCEL to debug the application

i| Cancel

Why?

WEell, let’s look at the logic of our program. We assumed (without any test) that argv[1] will
contain the name of the file that we should count the characters of. But if the user doesn’t sup-
ply this parameter, our program will pass a honsense argument to fopen, with the obvious
result that the program will fail miserably, making atrap, or exception that the system reports.

We return to the editor, and correct the faulty logic. Added codeisin bold.

#i ncl ude <stdio. h>
#i nclude <stdlib. h> (1)
int main(int argc,char *argv[])
{
int count=0;// chars read
FILE *infile;

int c;

if (argc < 2) { (2)
printf("Usage: countchars <file nane>\n");
exit(1l); (3)

infile = fopen(argv[1],"r");
c = fgetc(infile);
while (c !'= EOF) {

count ++;

c = fgetc(infile);

printf("%l\n", count);
return O;

}

1) We need to include <stdlib.h> to get the prototype declaration of the exit() function that
ends the program immediately.

2) We use the conditional statement “if” to test for agiven condition. The general formof it is:
if (condition) { ... statements... } else{ ... statements... }.

3) We use the exit function to stop the program immediately. This function receives an integer
argument that will be the result of the program. In our case we return the error code 1. The
result of our program will be then, the integer 1.

Now, when we call countchars without passing it an argument, we obtain a nice message:

h:\1 cc\ exanpl es> count chars
Usage: countchars <file nanme>

39. Thisisthe display under Windows NT. In other systems like Linux for instance, you will get a“Bus
error” message.

24 C programming with lcc-win32

ThisisMUCH clearer than the incomprehensible message box from the systemisn’t it?
Now let’s try the following:
h: \'l cc\ exanpl es> countchars zzzssqqqqq
And we obtain the dreaded message box again.
Why?

WEell, it is very unlikely that afile called “zzzssqqqaq” existsin the current directory. We have
used the function fopen, but we didn’t bother to test if the result of fopen didn’t tell us that the
operation failed, because, for instance, the file doesn’t exist at all!

A quick look at the documentation of fopen (that you can obtain by pressing F1 with the cur-
sor over the “fopen” word in Wedit) will tell us that when fopen returns a NULL pointer (a
zero), it means the open operation failed. We modify again our program, to take into account
this possibility:

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
int main(int argc,char *argv[])

{

int count=0;// chars read

FILE *infile;

int c;

if (argc < 2) {
printf("Usage: countchars <file nane>\n");
exit(l);

}

infile = fopen(argv[1],"r");

if (infile == NULL) {
printf("File % doesn't exist\n",argv[1]);
exit(l);

}

c = fgetc(infile);

while (c !'= EOF) {
count ++;
c = fgetc(infile);

}

printf("%l\n", count);

return 0O;

}
We try again:

H:\ I cc\ exanpl es> | cc countchars.c

H:\ I cc\ exanpl es> | ccl nk count char s. obj
H:\ I cc\ exanpl es> countchars sfsfsfsfs
File sfsfsfsfs doesn't exist

H:\ I cc\ exanpl es>

WEell this error checking works. But let’s ook again at the logic of this program.
Suppose we have an empty file. Will our program work?

If we have an empty file, the first fgetc will return EOF. This means the whole whi | e loop will
never be executed and control will passto our printf statement. Since we took care of initializ-
ing our counter to zero at the start of the program, the program will report correctly the num-
ber of charactersin an empty file: zero.

Reading from a file 25

Stll it would be interesting to verify that we are getting the right count for a given file. Well
that’s easy. We count the characters with our program, and then we use the DIR directive of
windows to verify that we get the right count.

H:\ I cc\ exanpl es>count chars countchars.c

466
H:\ I cc\ exanpl es>dir countchars.c

07/01/00 11:31p 492 countchars.c
1 File(s) 492 bytes
Wow, we are missing 492-466 = 26 chars!

Why?

We read again the specifications of the fopen function. It says that we should use it in read
mode with “r” or in binary mode with “rb”. This means that when we open afilein read mode,
it will translate the sequences of characters \r (return) and \n (new line) into ONE character.
When we open afile to count all charactersin it, we should count the return characters too.

This has historical reasons. The C language originated in a system called UNIX, actualy, the
whole language was developed to be able to write the UNIX system in a convenient way. In
that system, lines are separated by only ONE character, the new line character.

When the MSDOS system was developed, dozens of years later than UNIX, people decided to
separate the text lines with two characters, the carriage return, and the new line character. This
provoked many problems with software that expected only ONE char as line separator. To
avoid this problem the MSDOS peopl e decided to provide a compatibility option for that case:
f open would by default open text files in text mode, i.e. would translate sequences of \r\n into
\n, skipping the\r.

Conclusion:

Instead of opening the file with f open(argv[1], “r*); we use fopen(argv[1],
“rb*); ,1.e weforce NO trandation. We recompile, relink and we obtain:

H:\ I cc\ exanpl es> countchars countchars.c
493
H:\ | cc\ exanpl es> dir countchars.c
07/01/00 11:50p 493 countchars.c
1 File(s) 493 bytes
Yes, 493 bytes instead of 492 before, since we have added a“b” to the arguments of fopen!

Still, we read the docs about file handling, and we try to seeif there are no hidden bugs in our
program. After awhile, an obvious fact appears. we have opened afile, but we never closed it,
I.e. we never break the connection between the program, and the file it is reading. We correct
this, and at the same time add some commentaries to make the purpose of the program clear.

Modul e: H: \ LCCQ\ EXAMPLES\ count chars. c

Aut hor : Jacob

Proj ect: Tutorial exanples

St at e: Fi ni shed

Creation Date: July 2000

Descri ption: Thi s program opens the given file, and

prints the nunber of characters in it.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
int main(int argc,char *argv[])

26 C programming with lcc-win32

{
i nt count =0;
FILE *infile;
int c;

if (argc < 2) {
printf("Usage: countchars <file nane>\n");
exit(1l);

}

infile = fopen(argv[1],"rb");

if (infile == NULL) {
printf("File % doesn't exist\n",argv[1]);
exit(1l);

}

c = fgetc(infile);

while (¢ !'= EOF) {
count ++;
c = fgetc(infile);

}

fclose(infile);

printf("%l\n", count);

return O;

}
The skeleton of the commentary above is generated automatically by the IDE. Just right-click

somewhere in your file, and choose “ edit description”.
Summary:

* A program is defined by its specifications. In this example, counting the number of
charactersin afile.

* A first working version of the specification is developed. Essential parts like error
checking are missing, but the program “works’ for its essential function.

» Error checking is added, and test cases are built.

* The program is examined for correctness, and the possibility of memory leaks, unclosed
files, etc., is reviewed. Comments are added to make the purpose of the program clear,
and to allow other people know what it does without being forced to read the program
text.

1.8 Commentaries

The writing of commentaries, apparently simple, is, when you want to do it right, quite a diffi-
cult task. Let's start with the basics.

Commentaries are introduced in two forms:

Two dlashes / / introduce a commentary that will last until the end of the line. No space
should be present between the first slash and the second one.

A slash and an asterisk / * introduce a commentary that can span severa linesand is only ter-
minated by an asterisk and a slash, */ . The same rule as above is valid here too: no space
should appear between the slash and the asterisk, and between the asterisk and the slash to be
valid comment delimiters.

Examples:
/l Thisis aone-line commentary. Here /* areignored anyway.
/* Thisisacommentary that can span several lines. Note that here the

Commentaries 27

two slashes// are ignored too */

This is very simple, but the difficulty is not in the syntax of commentaries, of course, but in
their content. There are several rules to keep in mind:

Always keep the commentaries current with the code that they are supposed to comment.
There is nothing more frustrating than to discover that the commentary was actually mislead-
ing you, because it wasn’t updated when the code below changed, and actually instead of help-
ing you to understand the code it contributes further to make it more obscure.

Do not comment what are you doing but why. For instance:

record++; // increnent record by one
This comment doesn’t tell anything the C code doesn't tell us
anyway.
record++; //Pass to next record.
/1 The boundary tests are done at
/1l the beginning of the | oop above
This comment brings useful infornmation to the reader

At the beginning of each procedure, try to add a standard comment describing the purpose of
the procedure, inputs/outputs, error handling etc.*

At the beginning of each module try to put a general comment describing what this module
does, the main functions etc.

Note that you yourself will be the first guy to debug the code you write. Commentaries will
help you understand again that hairy stuff you did several months ago, when in a hurry.

1.8.1 Standard comments

The editor of |cc-win32 provides a «Standard comments» feature. There are two types of com-
ments supported: comments that describe a function, and comments that apply to awholefile.
This comments are maintained by the editor that displays a simple interface for editing them.

1.8.1.1 Describing a function

You place the mouse anywhere within the body of a function and you click the right mouse
button. A context menu appears that offers you to edit the description of the current function.
The interface that appears by choosing this option looks like this:

40. The IDE of lcc-win32 helps you by automatic the construction of those comments. Just press, “ edit
description” in the right mouse button menu.

28 C programming with lcc-win32

There are severa fields that you should fill:

Procedure description | x |

Marne: |multiple ld: |1

Compiles a multiple regular expression J
Purpose:

Fead=s input from =tandard input J
[nputs:

Generates a regeEp =tructure J
Cutpuk;

Several errors are displaved using the "complain' J
Exan function
handling:

woid multiple(soid]
d: oot exampleshregexphtm. o lines [115 Cancel

1) Purpose. This should explain what this function does, and how it does it.

2) Inputs. Here you should explain how the interface of this function is designed: the
arguments of the function and global variables used if any.

3) Outputs. Here you should explain the return value of the function, and any globals that are
left modified.

4) Error handling. Here you should explain the error return, and the behavior of the functionin
case of an error occurring within its body.

For the description provided in the screen shot above, the editor produces the following out-
put:

[o e o e amao oo
Pr ocedur e: multiple ID: 1
Pur pose: Conpiles a multiple regular expression
| nput ; Reads i nput from standard i nput
Cut put : Cenerates a regexp structure
Errors: Several errors are displayed using the "conplain"

function

void multiple(void)

{
This comment will be inserted in the interface the next time you ask for the description of the
function.

An overview of the whole language 29

1.8.1.2 Describing afile

In the same context menu that appears with aright click, you have another menu item that says
«description of file.c», where «file.c» is the name of the current file.

This alows you to describe what the file does. The editor will add automatically the name of
the currently logged on user, most of the time the famous «administrator». The output of the
interface looks like this:

Module description | |
M ame

||:|:"-.Iu:u:'xe:-:amples'xrege:-:p'xtr_I,I.u:

Cancel |

| dentification

Authar |.&DMINISTFE:’-‘«TDH Froject |

Creation

date: | State |

Descrption

This module tests the regular exXpressions =]

package. It i1s self-contained and has a main()
funetion that will open a file given in the
command line that i1s supposed to conttain
several regular expressions to test. If anvy
gerror are discovered, the results are printed

to stdoutJ e

| ® o eeaeaas

Modul e: d:\lcc\exanpl es\regexp\try.c

Aut hor : ADM NI STRATOR

Proj ect:

St at e:

Creation Date:

Descri ption: This nmodul e tests the regul ar expressions
package. It is self-contained and has a main()
function that will open a file given in the

command line that is supposed to conttain
several regul ar expressions to test. |If any
error are discovered, the results are printed
to stdout.

Aswith the other standard comment, the editor will re-read this comment into the interface.

This features are just an aid to easy the writing of comments, and making them uniform and
structured. As any other feature, you could use another format in another environment. You
could make a simple text file that would be inserted where necessary and the fields would be
tailored to the application you are developing. Such a solution would work in most systems
too, since most editors allow you to insert afile at the insertion point.

1.9 An overview of the whole language

Let’s formalize a bit what we are discussing. Here are some tables that you can use as refer-
ence tables. We have first the words of the language, the statements. Then we have a dictio-

30 C programming with lcc-win32

nary of some sentences you can write with those statements, the different declarations and
control-flow constructs. And in the end is the summary of the pre-processor instructions. |
have tried to put everything hoping that | didn’t forget something.

You will find in the left column a more or less formal description of the construct, a short
explanation in the second column, and an example in the third. In the first column, this words
have a special meaning: “id”, meaning an identifier, “type” meaning some arbitrary type and
“expr’ meaning some arbitrary C expression.

| have forced a page break here so that you can print these pages separately, when you are
using the system.

31

i nteger constants

An overview of the whole language
1.9.1 Statements
Expression Meaning and value of result Example

: . The value associated with that identifier. (see®A .
identifier o id

closer view” on page 40.)

The value defined with this constant (see

“Constants.” on page 40.).

Integer constant. 45 451 45LL

. 45.9 45. 9f

const ant Floating constant 45 oL

character constant ‘AL A

N "Hel | o"

String literal L" Hel | o
{ constants } Define tables or structure data {1, 67}

Integer constants. 45

long integer constants 451

long long (64 bits) integer constant 451 L

octal constant (base 8) introduced with aleading
zero

055 (Thisis45in
base 8)

Hexadecimal constant introduced with 0x

0x2d (thisis45in
hexa)

Binary constant introduced with Ob. Thisis an Icc-
win32 extension.

0b101101 (thisis45
in decimal)

- 45.9 or
double precision constant 4 5962
floatin 45, 9f or
9 Float (single precision) constant 4. 59e2f
constants
45. 9L or
long double constant 4 59e9L
charact er char enclosed in ssmple quotes 'a' or '8
const ant
string literals enclosed in double quotes "a string"
Access the position “index” of the given array.
Array [index] Indexes start at zero (see “Within the string, the Tabl e[45]

following abbreviations are recognized:” on
page 41.)

Array[i1][i2]

Access the n dimensional array using theindexesil,
i2, ... in.See“Arrays.” on page 42.

Tabl e[34] [23]
Thi s access t he
350 |ine, 24th
position of

Tabl e

Call the function “fn” and pass it the comma

fn (args) separated argument list «args». see“Functioncall | printf (" %", 5)
syntax” on page 42.
See “ Functions with variable number of arguments.”

fn (arg, ...)

on page 42.

32 C programming with lcc-win32

(*fn)(args)

Call the function whose machine addressisin the
pointer fn.

struct.field

Access the member of the structure

Cust oner. Nane

struct->field

Access the member of the structure through a
pointer

Cust oner - >Nane

Assign to the variable! the value of the right hand

otherwise

var = val ue side of the equals sign. See “Assignment.” on a = 45
page 43.
Equivalent to expression = expression + 1.
expressi on++ Increment expression after using its value. See a = i++
“Postfix” on page 43..
Equivalent to expression = expression — 1.
expr essi on- - Decrement expression after using its value. see a =i--
“Postfix” on page 43.
: Equivalent to expression = expression+1. Increment _
++expr essi on : o a = ++l
expression before using its value.
. Equivalent to Expression = expression — 1. _
- - expression : o a = --i
Decrement expression before using it.
& obj ect Return thg mach_lne addresg of object. The type of &
the result is a pointer to object.
* poi nt er Access the contents at the machine address storedin | , Dat a
P the pointer. .See “ Indirection” on page 52. P
- expression Subtract expression from zero, i.e. changethesign. | -a
~ exDr essi on Bitwise complement expression. Change all 1 bitsto —a
P Oandall 0 bitsto 1.
Negate expression: if expressionis zero, !expression
I expression becomes one, if expression is different than zero,it | ! a
becomes zero.
si zeof (expr) Return the size in bytes of expr. .see “sizeof.” on si zeof (a)
page 45.
Change the type of expression to the given type.
(type) expr This is caled a “cast”. The expression can be a (int *)a
yp P literal expression enclosed in braces, asin astructure
initialization.
expr * expr Multiply a*b
expr [/ expr Divide alb
expr % expr Divide first by second and return the remainder a%
expr + expr Add a+b
Subtract expr2 from exprl. .see “ Subtraction.” on
exprl - expr2 a-b
page 43.
exprl << expr2 Shift left exprl expr2 bits. a<<b
exprl >> expr2 Shift right exprl expr2 bits. a>>hb
exprl < expr2 1if exprlissmaller than expr2, zero otherwise a<hb
exprl <= expr2 1if exprllssmaller or equal than expr2, zero a <= b
otherwise
exprl >= expr2 1if exprlisgreater or equal than expr2, zero a>= b

An overview of the whole language

exprl > expr2 1if expr2 is greater than expr2, zero otherwise a>bhb
exprl == expr2 1if exprlisequal to expr2, zero otherwise a ==
exprl !'= expr2 1if exprlis different from expr2, zero otherwise al=hb
expri & expr2 B|tW|seA,ND exprl with expr2. See “Bitwise 288
operators’ on page 50.
Bitwise XOR exprl with expr2. See “Bitwise
N N
expril expr2 operators’ on page 50. anb
Bitwise OR exprl with expr2. See “Bitwise
exprl | expr2 operators’ on page 50. al 16
Evaluate exprl. If_|tsre$ult|szero, stop evaluating a<5 & a >0
the whole expression and set the result of the whole L s
. . : Thiswill be1lif “a’ is
expression to zero. If not, continue eval uating expr2. _
exprl && expr2 o : between 1to 4. If a>=
The result of the expression isthe logical AND of .
. g 5 the second test is not
the results of evaluating each expression. See erformed
“Logical operators” on page 49. P '
Evaluate exprl. If the result is one, stop evaluating
the whole expression and set the result of the L L
expression to 1. If not, continue eval uating expr2 a==>5]||a ==
exprl || expr2 The result of the expression isthe logical OR of the Z?ésg)vgrllsbellf either
results of each expression. See“Logical operators’
on page 49.
If expr evaluates to non-zero (true), return vall, a=b?2: 3
expr ? val 1:val 2 | otherwisereturnval2. awill be2if bistrue, 3
see “ Conditional operator.” on page 44. otherwise
expr *= exprl Multiply expr by exprl and store the result in expr a*=17
expr /= exprl Divide expr by exprl and store the result in expr al/=178
i 0,
expr % expr 1 Calculate_the remainder of expr % exprl and store a % 6
the result in expr
expr += exprl Add exprl with expr and store the result in expr a += 6
expr -= exprl Subtract exprl from expr and store theresultinexpr | a -= 76
_ Shift left expr by exprl bits and store the result in _
expr <<= exprl a <<= 6
expr
expr >>= expr1 Shift right expr by exprl bits and store the result in q >>= 7
expr
expr & expr 1 Bitwise and expr with exprl and store the result in a &= 32
expr
expr A= exprl Bitwise xor expr with exprl and store the result in a A= 64
expr
expr | = expri Bitwise or expr with exprl and store the result in a |= 128
expr.
Evaluate expr, then exprl and return the result of a=7, b=8
expr , exprl evaluating the last expression, in this case exprl. The result of
.See page 51 this is 8

Null statement

1. Variable can be any value that can be assigned to: an array element or other constructs like *ptr =
5. In technical language thisis called an “lvalue’.

34 C programming with lcc-win32

1.9.2

Declarations

41

Declaration

Meaning

Example

type id;

Identifier will have the specified type within this
scope. Inalocal scopeitsvaueis
undertemined. In aglobal scope, itsinitial value
is zero, at program start.

int a;

type * id;

Identifier will be apointer to objects of the given
type. You add an asterisk for each level of
indirection. A pointer to a pointer needs two
asterisks, etc.

int *pa;
pawill be apointer to
integers

type id[expr]

Identifier will be an array of expr elements of
the given type. The expression must evaluate to
a compile time constant or to a constant
expression that will be evaluated at run time. In
the later case thisis avariable length array.

int *ptrArray[56];
Array of 56 int
poi nters.

typedef old new

Define a new type-name for the old type. see
“typedef.” on page 44.

t ypedef unsi gned
int uint;

Try to store the identifier in a machine register.
The type of identifier will be equivalent to

register id; signed integer if not explicitly specified. see register int f;
“register.” on page 44.
. The definition of the identifier isin another extern int
extern type id; .)
module. No space is reserved. frequency;

static type id

Make the definition of identifier not accessible
from other modules.

static int f;

struct coord {

struct id { Define acompound type composed by the Cnt x-
declarations enumeration of fields enclosed within curly i nt '
} braces. . Y
Within a structure field declaration, declare“id” | unsi gned n: 4
type id:n as a sequence of n hits of type “type’. See “bit n is an unsi gned
fields” on page 46. int of 4 bits
union id { Reserve storage for the biggest of the declared unton dd_ {
) ; doubl e d;
declarations types and store all of them in the same place. int id[2];
I see “union.” on page 44. - '
enum identifier { Define an enumeration of comma-separated enum col or {
enum list identifiers assigning them some integer value. red, green, bl ue
) see“enum.” on page 45. }s
Declare that the given identifier can’t be
const type identifier; changed (assigned to) within this scope. see const int a;

“const.” on page 46.

unsigned int-type

When applied to integer types do not use the
sign bit. see “unsigned.” on page 46.

unsi gned char a =
178;

volatile type identifier

Declare that the given object changesin ways
unknown to the implementation.The compiler
will not store thisvariable in aregister, even if
optimizations are turned on.

vol atile int
har dwar e_cl ock;

An overview of the whole language 35

Declare the prototype for the given function. doubl e sqrt (doubl e
type id (args); The arguments are a comma separated list. see X) q
“Prototypes.” on page 45. '
. Declare afunction pointer called “id” with the : .
X . *
type (*id)(args); given return type and arguments list void (*fn)(int)
id : Declare alabel. | abl:
type fn(args) {
Definition of afunction with return type<type> | i nt addl1(int x)
statements and arguments <args> . { return x+1;}
by
Thisisaqualifier that applies to functions. If doubl e inline
present, it can be understood by the compiler as | over Pi (doubl e a)
inline a specification to generate the fastest function {
call possible, generally by means of replicating | return a/ 3. 14159;
the function body at each call site. }

41. Lcc-win32 doesn't yet implement the keyword restrict.

36 C programming with lcc-win32

1.9.3

Pre-processor

// commentary

Double slashes introduce comments up
to the end of the line.see “Comments’
on page 48.

/[comment

[/ *commentary */

Slash star introduces acommentary until
the sequence star dash */ is seen. see
“Comments’ on page 48.

/* comment */

#define id text

Replace all appearances of the given
identifier by the corresponding
expression. See “ Preprocessor
commands’ on page 134.

#define TAX 6

Define a macro with n arguments. When

#define nmax(a,b)

#define macro(a,b) | used, the arguments are lexically ((a)<(b)?
replaced within the macro. See page 135 (b):(a))?
#undef id Erase from the pre-processor tables the #undef TAX

given identifier.

#include <header.h>

Insert the contents of the given file from
the standard include directory into the
program text at this position.

#i ncl ude <stdi o. h>

#include "header.h"

Insert the contents of the given file from
the current directory.

#i ncl ude “foo. h"

If the given identifier is defined (using

#ifdef id #define) include the following lines. #i fdef TAX
Else skip them. See page 136.

#ifndef id The contrary of the above #i fnef TAX
Evaluate expression and if the result is

. TRUE, include the following lines. Else . s

#if (expr) skip all lines until finding an #dseor | 711 (TAX==6)
#endif

#else the else branch of an #if or #ifdef #el se

#elif Abbreviation of #else #if #el i f

#endif End an #if or #ifdef preprocessor sendi f

directive statement

defined (id)

If the given identifier is #defined, return
1, elsereturn O.

#1 f defi ned(max)

Token concatenation at#t#tb ab

#token M_ak_eastrlng with at_oken. Only valid # 00 --> "f 00"
within macro declarations

#line nn Set the line number to nn #l i ne 56

#file "foo.c" Set the file name #file “ff.c”

#error errmsg

Show the indicated error to the user

#error "undefined cpu"

#pragma instructions

Specia compiler di rectives’

#pragma optim ze(on)

_Pragma(string)

Specia compiler directives. Thisisa
C99 feature.

_Pragma("optinize (on)");

An overview of the whole language 37

If a\ appears at the end of aline just

before the newline character, the line I\
\ and the following linewill bejoinedby | * this is a coment

the preprocessor and the\ character will | */

be eliminated.

Replace thistoken by the current line printf("error line %\ n",
__LINE__ .

number __LINE_);

Replace thistoken by the current file printf("error file %\n",
__FILE__ .

name __FILE));

f Replace this token by the name of the printf("fn %\n", _func__

__ func__ :) ;]

current function being compiled.);
__STDC__ Defined as 1 #if _ STDC _

Defined as 1 Thisallows you to
_LCC__ conditionally include or not codefor Icc- | #i f _ LCC

win32.

1. The parentheses ensure the correct evaluation of the macro.

2. Thedifferent pragmadirectives of Icc-win32 are explained in the user’s manual.

1.9.4 Windows specific defined symbols

WIN32 #defined as 1 #if WN32

_WIN32 #defined as 1 #if _WN32

WINVER Evaluate_stotheversion of windowsyou #f WNVER ==
are running
Evaluates to the version of the internet

_WIN32_IE explorer software installed in your #if WN32_ |IE > 0x500
system

1.9.5 Structured exception handling

__try { protected block }

Introduces a protected block of code.

__except (integer expression)
{ exception handler block }

If the integer expression evaluatesto 1 the associated code block
will be executed in case of an exception.

__leave;

Provokes an exit to the end of the current __try block

__retry;

Provokes ajump to the start of the try/except block

38 C programming with lcc-win32

1.9.6

Control-flow

if (expression) { block}

If the given expression evaluates to something different than zero execute the

else { statements of the following block. Else, execute the statements of the block
block following the else keyword. The el se statement is optional. Note that asingle
} statement can replace blocks.
while (expression) { If the given expression evaluates to something different than zero, execute the
... statements ... statements in the block, and return to evaluate the controlling expression again.
} Else continue after the block. See “while” on page 14.

do { ... statements ...
} while (condition);

Execute the statements in the block, and afterwards test if condition istrue. If
that is the case, execute the statements again.See “do” on page 14.

for(init;test;incr) {
... statements ...

b

Execute unconditionally the expressions in the init statement. Then evaluate the
test expression, and if evaluates to true, execute the statements in the block
following the for. At the end of each iteration execute the incr statements and
evaluate the test code again. See “for” on page 13.

switch (expression) {
case int-expr:

Evaluate the given expression. Use the resulting value to test if it matches any of
the integer expressions defined in each of the ‘case’ constructs. If the

statements ... comparison succeeds, execute the statements in sequence beginning with that
break; case statement.
default: If the evaluation of expression produces a value that doesn’'t match any of the
statements cases and a “ default” case was specified, execute the default case statementsin
} sequence. See “ Switch statement.” on page 48.
goto label Transfer control unconditionally to the given label.
Within the scope of afor/do/while loop statement, continue with the next
continue iteration of the loop, skipping all statements until the end of the loop.See “break
and continue statements”’ on page 47.
break Stop the execution of the current do/for/while loop statement.

return expression

End the current function and return control to the calling one. The return value of
the function (if any) can be specified in the expression following the return
keyword.

1.9.7 Windows specific syntax
Usethe stdcall calling convention for
this function or function pointer: the | . .
_stdcal l called function cleans Up the stack. int stdcall fn(void);
See “stdcall.” on page 47.
__decl spec Export thisidentifierinaDLL to int _ decl spec (dllexport)
(dl'l export) make it visible from outside. fn(int);
Do not add the standard prologue or
__decl spec epilogue to the function. The return int _ decl spec(naked)
(naked) instruction and any other code should | f n(int);
be added as_asm() statements.
#defined aslong long for
__int64 compatibility reasons with __int64 big;

Microsoft's compiler.

Extensions of Icc-win32 39

1.10 Extensions of Icc-win32

T operator +(T a,
T b) {
statenents

operator opname (args) | Redefine one of the operatorslike +, * or
{ others so that instead of doing the normal

} operation, this function is called instead. } o

Identifier will be areference to asingle
object of the given type. References must
beinitialized immediately after their
declaration.

int &a = a;
pawill be areferenceto an
integer.

type & id = expr;

Default function arguments. If the argument
int fn(int a,int b=0) isnot givenin acall, the compiler will fill it
with the specified compile time constant

Generic functions. This functions have
severa forms of invocation, but the same
name.

int overloaded fn(int);
int overloaded fn(double);

40 C programming with lcc-win32

1.11 A closer view

Let's explain a bit the terms above. The table gives a compressed view of C. Now let’'s see
some of the details.

1.11.1 Identifiers.

An identifier is a sequence of non digit characters (including the underscore _, the lowercase
and uppercase Latin letters, and other characters) and digits. Lowercase and uppercase letters
are distinct. An identifier never starts with adigit. There is no specific limit on the maximum
length of an identifier but Icc-win32 will give up at 255 chars.

Identifiers are the vocabulary of your software. When you create them, give a mnemonic that
speaks about the data stored at that location.

Anonymous identifiers (or counters) are usually the one letters’i’, or “c” for char, etc. | think
the habit of using i, j, k is quite ancient, maybe inherited from fortran and physics.

1.11.2 Constants.

1.11.2.1 Evaluation of constants

The expressions that can appear in the definition of a constant will be evaluated in the same
way as the expressions during the execution of the program. For instance, this will put 1 into
the integer constant d:

static int d = 1;
Thiswill also put onein the variable d:
static int d =60 || 1 +1/0;

1.11.2.2 Integer constants

An integer constant begins with a digit, but has no period or exponent part. It may have a pre-
fix that specifies its base and a suffix that specifiesitstype. A decimal constant begins with a
nonzero digit and consists of a sequence of decimal digits. An octal constant consists of the
prefix O optionally followed by a sequence of the digits O through 7 only. A hexadecimal con-
stant consists of the prefix Ox or 0X followed by a sequence of the decimal digits and the let-
ters a (or A) through f (or F) with values 10 through 15 respectively. Here are various
examples of integer constants:

12345 (i nteger constant, decinal)
0777 (octal for 511 decimal)
OxF98A (hexa for 63882 decinmal)
12345L (long integer constant)
26344551 L (long long integer constant)
5488UL (unsi gned | ong constant)
548ULL (unsigned | ong | ong constant)

1.11.2.3 Floating constants

For floating constants, the convention is either to use a decimal point (1230.0) or scientific
notation (in the form of 1.23e3). They can have the suffix ‘F (or ‘f’) to mean that they are
float constants, and not double constants as it isimplicitly assumed when they have no suffix.

A suffix of “I” or “L” means long double constant. A suffix of “q” or “Q" means a gfloat.*?

42. Qfloats are an extension of Icc-win32.

A closer view 41

1.11.2.4 Character string constants

For character string constants, they are enclosed in double quotes. If immediately before the
double quote thereisan "L" it means that they are double byte strings. Example:

L" abc"

This means that the compiler will convert this character string into a wide character string and
store the values as double byte character string instead of just ASCII characters.

To include a double quote within a string it must be preceded with a backslash. Example:
"The string \"the string\" is enclosed in quotes"

Note that strings and numbers are completely different data types. Even if a string contains
only digits, it will never be recognized as a number by the compiler: "162" is a string, and to
convert it to anumber you must explicitly write code to do the transformation.

Within the string, the following abbreviations are recognized:

Abbreviation Meaning Value
\n New line 10
\r carriage return 12
\b backspace 8
\v vertical tab 1
\t tab 9
\f form feed 12
\e escape 27
\a bell 7
Insert at the current position the Any, since any digit can be
\x<hex digits> character with the integer value of entered. Example: "ABC\XA" is
the hexadecimal digits. equivalent to "ABC\n"
The same as the \x case above, but
with values entered as 3 octal digits, | Any. Example: The string
\<octal number> i.e. numbersin base 8. Notethat no | "ABC\012" is equivalent to
special character is needed after the | "ABC\n"
backslash. The octal digits start
immediately after it.

Character string constants that are too long to write in asingle line can be entered in two ways:

char *a = "This is a long string that at the end has a backsl ash \
that allows it to go on in the next line";

Another way, introduced with C99 is:

char *a = "This is a long string witten"
"in two lines";
Note too that character string constants should not be modified by the program. Lcc-win32
stores all character string constants once, even if they appear several timesin the program text.
For instance if you write:
“abc”;
“abc”;

char *a
char *b

Both aand b will point to the SAME string, and if either is modified the other will not retain
the original value.

42 C programming with lcc-win32

1.11.3 Arrays.

Here are various examples for using arrays.

int a[45]; /1 Array of 45 elements
a[0] = 23; [// Sets first element to 23;
a[a[0]] = 56; // Sets the 24'" elenent to 56

a[23] += 56; // Adds 56 to the 24'N el ement
Multidimensional arrays are indexed like this:
int tab[2][3];

tab[1][2] = 7:
A table of 2 rows and three columnsis declared. Then we assign 7 to the second row, third col-
umn. (Remember: arrays indexes start with zero).

Note that when you index atwo dimensional array with only one index you obtain a pointer to
the start of the indicated row.

int *p = tab[1];
Now p contains the address of the start of the second column.

1.11.4 Function call syntax

sqrt(hypo(6.0,9.0)); // Calls the function hypo with
/1 two argunents and then calls
/1 the function sqrt with the
/1 result of hypo

An argument may be an expression of any object type. In preparing for the call to a function,

the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.

A function may change the values of its parameters, but these changes cannot affect the values
of the arguments. On the other hand, it is possible to pass a pointer to an object, and the func-
tion may change the value of the object pointed to.

A parameter declared to have array or function type is converted to a parameter with a pointer
type.
The order of evaluation of the actual arguments, and sub expressions within the actual argu-
ments is unspecified. For instance:

fnC g(), h(), m));
Here the order of the callsto the functions g(), h() and m() is unspecified.

1.11.5 Functions with variable number of arguments.

To access the unnamed, extra arguments you should include <stdarg.h>. To access the addi-
tional arguments, you should execute theva_st ar t , then, for each argument, you execute a
va_ar g. Note that if you have executed the macro va_st ar t , you should aways execute
the va_end macro before the function exits. Here is an example that will add any number of
integers passed to it. The first integer passed is the number of integers that follow.

#i ncl ude <stdarg. h>

int va_add(int nunmberOfArgs, ...)
{

va_list ap;
int n = nunber O Args;

A closer view 43

int sum = O;

va_start (ap, nunber Of Args) ;
while (n--) {

sum += va_arg(ap,int);
}

va_end(ap);
return sum

}
We would call this function with
va_add(3, 987, 876, 567) ;
or
va_add(2, 456, 789);

1.11.6 Assignment.

An assignment has the left hand side of the equal’s sign that must be a value that can be
assigned to, and the right hand side that can be any expression other than void.

int a=789; // “a” is assigned 789

array[345] = array{123]+897; //An elenent of an array is assigned

Struct.field = sqrt(b+9.0); // Afield of a structure is assigned

p->field = sqrt(b+9.0);

/* Afield of a structure is assigned through a pointer. */

Within an assignment there is the concept of “L-value’, i.e. any assignable object. You can't,
for instance, write:

5 =8;
The constant 5 can’'t be assigned to. It is not an “L-value’, the “L” comes from the left hand

side of the equals sign of course. In the same vein we speak of LHS and RHS as abbreviations
for left hand side and right hand side of the equals sign in an assignment.

1.11.7 Postfix
This expressions increment or decrement the expression at their left side returning the old
value. For instance:

array[234] = 678;
a = array[234] ++;

In this code fragment, the variable awill get assigned 678 and the array element 234 will have
avalue of 679 after the expression is executed. In the code fragment:

array[234] = 678;
a = ++array[234];

The integer aand the array element at the 235t position will both have the value 679.

When applied to pointers, these operators increment or decrement the pointer to point to the
next or previous element. Note that if the size of the object those pointers point to is different
than one, the pointer will be incremented or decremented by a constant different than one too.

1.11.8 Subtraction.

When two pointers are subtracted they have to have the same type, and the result is the differ-
ence of the subscripts of the two array elements or, in other words, the number of elements

44 C programming with lcc-win32

between both pointers. The size of the result is implementation-defined, and its type (a signed
integer type) is ptrdiff_t defined in the <stddef.h> header.*

When an integer expression is subtracted (or added) to a pointer, it means to increase the
pointer by that number of elements. For instance if the pointer is pointing to the 3'd element of

an array of structures, adding it 2 will provoke to advance the pointer to point to the 51 ele-
ment.

1.11.9 Conditional operator.

The first operand of the conditional expression is evaluated first. The second operand is evalu-
ated only if the first compares unequal to 0; the third operand is evaluated only if the first com-
pares equal to O; the result of the whole expression is the value of the second or third operand
(whichever is evaluated), converted to the type described below.

If both the second and the third operand have an arithmetic type, the result of the expression
has that type. If both are structures, the result is a structure. If both are void, the result is void.
This expressions can be nested.

int a=(c ==66) ? 534 : 698;
the integer awill be assigned 534 if c isequal to 66, 698 otherwise.
struct b *bb = (bstruct == NULL) ? NULL : b->next;

If bstruct is different than NULL, the pointer bb will receive the “next” field of the structure,
otherwise bb will be set to NULL.

1.11.10 struct.

A structure or a union can’'t contain another structure that hasn’t been fully specified, but they
can contain a pointer to such a structure since the size of any pointer is always fixed. To build
recursive structures like list you should specify a pointer to the structure, see “Lists’ on
page 128.. For a detailed description of this keyword see “ Structures’ on page 82.

1.11.11 union.

You can store several valuesin asingle memory location or a group of memory locations with
the proviso that they can’'t be accessed at the same time of course. This alows you to reduce
the memory requirements of a structure, or to interpret a sequence of bits in a different fash-
ion. For adetailed discussion see “Unions’ on page 87.

1.11.12 typedef.

The typedef keyword defines a name that can be used as a synonym for atype or derived type.
In contrast to the struct, union, and enum declarations, typedef declarations doesn’t introduce
new types — it introduces new names for existing types.

1.11.13 register.

This keyword is a recommendation to the compiler to use a machine register for storing the
values of thistype. The compiler isfreeto follow or not this directive. The type must be either
an integer type or a pointer. If you use this declaration, note that you aren’t allowed to use the
address-of operator since registers do not have addresses. Lcc-win32 tries to honor your rec-

43. typedef int ptrdiff_t;

A closer view 45

ommendations, but it is better not to use this declaration and leave the register usage to the
compiler.

Registers are the highest part of your machine memory hierarchy. They are the fastest storage
available to the program by the circuit, and in a PC x86 architecture there are just a few of
them available at atime.

After registersthereisthelevel 1 cache, level 2 cache, main memory, then the disk, in order of
decreasing access speed.

1.11.14 sizeof.

The result of sizeof is normally a constant integer known when the compiler is running. For
instance si zeof (i nt) will yield under Icc-win32 the constant 4. In the case of a variable
length array however, the compiler can't know its size on advance, and it will be forced to gen-
erate code that will evaluate the size of the array when the program is running.

1.11.15 enum.

An enumeration is a sequence of symbols that are assigned integer values by the compiler. The
symbols so defined are equivalent to integers, and can be used for instance in switch state-
ments. The compiler starts assigning values at zero, but you can change the values using the
equals sign. An enumeration likeenum { a, b, c}; will provoke that awill be zero, b will
be 1, and c will be 2. You can change thiswithenum {a=10, b=25, c=76};

1.11.16 Prototypes.

A prototype is a description of the return value and the types of the arguments of a function.
The genera form specifies the return value, then the name of the function. Then, enclosed by
parentheses, come a comma-separated list of arguments with their respective types. If the
function doesn’'t have any arguments, you should write ‘void’, instead of the argument list. If
the function doesn’'t return any value you should specify void as the return type. At each call,
the compiler will check that the type of the actual arguments to the function is a correct one.

The compiler cannot guarantee, however, that the prototypes are consistent across different
compilation units. For instance if in filel.c you declare:
int fn(void);

then, the call

fn();
will be accepted. If you then in file2.c you declare another prototype

void fn(int);
and then you use:
fn(6);

the compiler cannot see this, and the program will be in error, crashing mysteriously at run
time. This kind of errors can be avoided if you always declare the prototypes in a header file
that will be included by all files that use that function. Do not declare prototypes in a source
fileif thefunction is an external one.

1.11.17 variable length array.

This arrays are based on the evaluation of an expression that is computed when the program is
running, and not when the program is being compiled. Here is an example of this construct:

i nt Function(int n)

{

46 C programming with lcc-win32

int table[n];

}

The array of integers called “table” has n elements. This “n” is passed to the function as an
argument, so its value can't be known in advance. The compiler generates code to alocate
space for this array in the stack when this function is entered. The storage used by the array
will be freed automatically when the function exits.

1.11.18 const.

Constant values can’'t be modified. The following pair of declarations demonstrates the differ-
ence between a *variable pointer to a constant value”” and a ‘“ constant pointer to a variable
value’.

const int *ptr_to_constant;

int *const constant _ptr;
The contents of any object pointedto by ptr _t o_const ant shall not be modified through
that pointer, but pt r _t o_const ant itself may be changed to point to another object. Simi-
larly, the contents of the int pointed to by constant _ptr may be modified, but
const ant _ptr itself shal aways point to the same location.

1.11.19 unsigned.

Integer types (long long, long, int, short and char) have the most significant bit reserved for the
sign bit. This declaration tells the compiler to ignore the sign bit and use the values from zero

the 2" for the values of that type. For instance, a signed short goes from —32767 to 32767, an

unsigned short goes from zero to 65535 (216). See the standard include file <stdint.h> for the
ranges of signed and unsigned integer types.

1.11.20 bit fields

A "bit field" is an unsigned or signed integer composed of some number of bits. Lcc-win32
will accept some other type than int for abit field, but the real type of abit field will be always
either "int" or "unsigned int".
For example, in the following structure, we have 3 hit fields, with 1, 5, and 7 bits:
struct S {
int a:il;
int b:5;
int c:7;
s
With lcc-win32 the size of this structure will be 4 with no specia options. With maximum
packing (-Zpl option) the size will be two.

When you need to leave some space between adjacent bit fields you can use the notation:
unsi gned : n;
For example

struct S {
int a:l;
int b:5;
unsi gned: 10;
int c:7;

A closer view 47

Between the bit fields a and b we leave 10 unused bits so that ¢ starts at a 16 bit word bound-
ary.

1.11.21 stdcall.

Normally, the compiler generates assembly code that pushes each argument to the stack, exe-
cutes the “call” instruction, and then adds to the stack the size of the pushed arguments to
return the stack pointer to its previous position. The stdcall functions however, return the stack
pointer to its previous position before executing their final return, so this stack adjustment is
not necessary.

Thereason for thisisasmaller code size, since the many instructions that adjust the stack after
the function call are not needed and replaced by a single instruction at the end of the called
function.

Functions with this type of calling convention will be internally “decorated” by the compiler
by adding the stack size to their name after an “ @” sign. For instance afunction called fn with
an integer argument will get called fn@4. The purpose of this*decorations’ isto force the pre-
vious declaration of a stdcall function so that always we are sure that the correct declarations
was seen, if not, the program doesn’t link.

1.11.22 break and continue statements

The break and continue statements are used to break out of aloop or switch, or to continue a
loop at the test site. They can be explained in terms of the goto statement:

while (condition !'= 0) {
doSonet hi ng() ;
if (condition == 0)
br eak;
doSonet hi ngEl se();

}
IS equivalent to:

while (condition !'= 0) {
doSonet hi ng() ;
if (condition == 0)
goto | abil;
doSonet hi ngEl se();

}
| abl:

The continue statement can be represented in asimilar way:

while (condition !'= 0) {
doSonet hi ng() ;
if (condition == 25)
conti nue;
doSonet hi ngEl se();

}
IS equivalent to:

restart:
while (condition !'= 0) {
doSonet hi ng() ;
if (condition == 25)
goto restart;
doSonet hi ngEl se();

48 C programming with lcc-win32

The advantage of avoiding the goto statement is the absence of alabel. Note that in the case of
the “for” statement, execution continues with the increment part.

Remember that the continue statement within a switch statement doesn’t mean that execution
will continue the switch but continue the next enclosing for, while, or do statement.

1.11.23 Null statements

A null statement isjust a semicolon. Thisis used in two contexts:

1) An empty body of an iterative statement (while, do, or for). For instance you can do:
while (*p++)
/* search the end of the string */

2) A label should appear just before a closing brace. Since labels must be attached to a
statement, the empty statement does that just fine.

1.11.24 Comments

Multi-line comments are introduced with the characters “/” and “*” and finished with the
opposite sequence: “*” followed by “/”. This commentaries can’'t be nested. Single line com-
ments are introduced by the sequence “//” and go up to the end of the line. Here are some
examples:

“allb” Four character string literal

11 */ Single |ine comment, not syntax error

f = g/**//h;Equivalent to f = g/h;

[\

fn();Part of a comment since the last line ended with a “\”

1.11.25 Switch statement.

The purpose of this statement is to dispatch to several code portions according to the value in
an integer expression. A ssmple exampleis:

enum ani nmal { CAT, DOG, MOUSE} ;

enum ani nal pet = Get Ani mal FromJser () ;
switch (pet) {
case CAT:
printf("This is a cat");
br eak;
case DOG
printf("This is a dog");
br eak;
case MOUSE:
printf("This is a nouse");
br eak;
def aul t:
printf("Unknown aninal");
br eak;

}

We define an enumeration of symbols, and call another function that asks for an animal type to
the user and returns its code. We dispatch then upon the value of the In this case the integer
expression that controls the switch isjust an integer, but it could be any expression. Note that
the parentheses around the switch expression are mandatory. The compiler generates code that
evaluates the expression, and a series of jumps (gotos) to go to the corresponding portions of
the switch. Each of those portions is introduced with a“case” keyword that is followed by an

A closer view 49

integer constant. Note that no expressions are alowed in cases, only constants that can be
evaluated by the compiler during compilation.

Cases end normally with the keyword “break” that indicates that this portion of the switch is
finished. Execution continues after the switch. A very important point hereisthat if you do not
explicitly write the break keyword, execution will continue into the next case. Sometimes this
iswhat you want, but most often it is not. Beware.

Thereisareserved word “default” that contains the case for all other values that do not appear
explicitly in the switch. It is a good practice to always add this keyword to all switch state-
ments and figure out what to do when the input doesn’t match any of the expected values.

If the input value doesn’t match any of the enumerated cases and there is no default statement,
no code will be executed and execution continues after the switch.

Conceptually, the switch statement above is equivaent to:
if (pet == CAT) {
printf("This is a cat");
}

else if (pet == DOG {
printf("This is a dog");
}

else if (pet == MOUSE) {
printf("This is a nouse");
} else printf("Unknown aninmal");

Both forms are exactly equivalent, but there are subtle differences:
Switch expressions must be of integer type. The “if” form doesn’t have this limitation.

In the case of a sizeable number of cases, the compiler will optimize the search in a switch
statement to avoid comparisons. This can be quite difficult to do manually with “if”s.

Cases of type other than int, or ranges of values can’t be specified with the switch statement,
contrary to other languages like Pascal that allows a range here. Switch statements can be
nested to any level (i.e. you can write a whole switch within a case statement), but this makes
the code unreadable and is not recommended.

1.11.26 inline

Thisinstructs the compiler to replicate the body of afunction at each call site. For instance:
int inline f(int a) { return a+l;}

Then:
int a =f(b)+f(c);

will be equivalent to writing:
int a = (b+1)+(c+l);

Note that this expansion is realized in the lcc-win32 compiler only when optimizations are
ON. In anormal (debug) setting, the “inline” keyword isignored. You can control this behav-
ior aso, by using the command line option “- f no-1 nl i ne”.

1.11.27 Logical operators

A logical expression consists of two boolean expressions (i.e. expressions that are either true
or false) separated by one of the logical operators && (AND) or | | (or).

50 C programming with lcc-win32

The AND operator evaluates from left to right. If any of the expressionsis zero, the evaluation
stopswith a FAL SE result and the rest of the expressionsis not evaluated. The result of several
AND expressionsistrueif and only if all the expressions evaluate to TRUE.
Example:

18 1880 && 1 && 1
Here evaluation stops after the third expression yields false (zero). The fourth and fifth expres-
sions are not evaluated. The result of al the AND expressions s zero.

The OR operator evaluates from left to right. If any of the expressions yields TRUE, evaua
tion stops with a TRUE result and the rest of the expressions is not evaluated. The result of
severa OR expressionsistrueif and only if one of the expressions evaluates to TRUE.

If we have the expression:
result = exprl && expr2;
thisis equivalent to the following C code:

if (exprl == 0)
result = 0;
el se {
if (expr2 == 0)
result = 0;
else result = 1;

}

In asimilar way, we can say that the expression
result = exprl || expr2;

IS equivalent to:

if (exprl !'=0)
result = 1;
el se {
if (expr2 !=
result

)
= 1;
el se result = 0;

}

1.11.28 Bitwise operators

The operators & (bitwise AND), ~ (bitwise exclusive or), and | (bitwise or) perform boolean
operations between the bits of their arguments that must be integers: long long, long, int, short,
or char.

The operation of each of them isasfollows:
1) The & (AND) operator yieldsa 1 bit if both arguments are 1. Otherwise it yields a 0.

2) The” (exclusive or) operator yields 1 if one argument is 1 and the other is zero, i.e. it yields
1if their arguments are different. Otherwise it yields zero

3) The| (or) operator yields 1 if either of itsargumentsisa 1. Otherwise it yields a zero.
We can use for those operators the following truth table:

Q
(e

a&b a"b al b
0 0 0
0 1 0 1 1

o
o

A closer view 51

1 0 0 1 1
1 1 1 0 1

Note that this operators are normal operators, i.e. they evaluate always their operands, unlike
& & or || that use short-circuit evaluation. If we write:

a =0 & fn(67);
the function call will never be executed. If we write
a = 0&f n(67);
the function call will be executed even if the result is fixed from the start.

1.11.29 Address-of operator

The unary operator & yields the machine address of its argument that must be obviously an
addressable object. For instance if you declare avariable asa“register” variable, you can’'t use
this operator to get its address because registers do not live in main memory. In asimilar way,
you can’'t take the address of a constant like & 45 because the number 45 has no address.

The result of the operator & is a pointer with the same type as the type of its argument. If you
take the address of a short variable, the result is of type “pointer to short”. If you take the
address of adouble, the result is a pointer to double, etc.

If you take the address of alocal variable, the pointer you obtain is valid only until the func-
tion where you did this exits. Afterward, the pointer points to an invalid address and will pro-
duce a machine fault when used, if you are lucky. If you are unlucky the pointer will point to
some random data and you will get strange results, what is much more difficult to find.

In general, the pointer you obtain with this operator is valid only if the storage of the object is
pointing to is not released. If you obtain the address of an object that was allocated using the
standard memory allocator malloc, this pointer will be valid until there is a “free’ call that
releases that storage. Obvioudly if you take the address of a static or global variable the pointer
will be always valid since the storage for those objectsis never released.

Note that if you are using the memory manager (gc), making a reference to an object will pro-
voke that the object is not garbage collected until at least the reference goes out of scope.

1.11.30 Sequential expressions

A comma expression consists of two expressions separated by a comma. The left operand is
fully evaluated first, and if it produces any value, that value will be discarded. Then, the right
operand is evaluated, and itsresult is the result of the expression.

For instance:
p =(fn(2,3),6);

The“p” variable will always receive the value 6, and the result of the function call will be dis-
carded.

Do not confuse this usage of the comma with other usages, for example within a function call.
The expression:

fn(c, d=6,78);
Is always treated as a function call with three arguments, and not as a function call with a
comma expression. Note too that in the case of a function call the order of evaluation of the

different expressions separated by the comma is undefined, but with the comma operator it is
well defined: always from left to right.

52 C programming with lcc-win32

1.11.31 Casts

A cast expression is the transformation of an object from one type to another. For instance, a
common need is to transform double precision numbers into integers. This is specified like
this:

doubl e d;

(int)d
In this case, the cast needs to invoke run time code to make the actual transformation. In other
cases there is no code emitted at all. For instancein:

void *p;

.(;:.har *)p;
Transforming one type of pointer into another needs no code at all at run-time.

You can use a cast expression in another context, to indicate the type of a composite constant
literal. For instance:
typedef struct tagPerson {
char Nanme[75] ;
i nt age;
} Person;

voi d process(Person *);

process(& Person){“Mary Smth” , 38});

Thisis one of the new features of C99. The literal should be enclosed in braces, and it should
match the expected structure. Thisisjust “syntactic sugar” for the following:

Person _ 998815544ss = { “Mary Smith”, 38};
process(& 998815544ss);

The advantage is that now you are spared that task of figuring out a name for the structure
since the compiler does that for you. Internally however, that code represents exactly what
happens inside Icc-win32.

Casts, as any other of the constructs above, can be misused. In genera, they make almost
impossible to follow the type hierarchy automatically. C is weakly typed, and most of the
“weakness’ comes from casts expressions.

1.11.32 Indirection

The* operator isthe contrary of the address-of operator above. It expects a pointer and returns
the object the pointer is pointing to. For instance if you have a pointer pint that points to an
integer, the operation * pint will yield the integer value the pointer pint is pointing to.

The result of this operator is invalid if the pointer it is de referencing is not valid. In some
cases, de referencing an invalid pointer will provoke the dreaded window “This program has
performed an invalid operation and will terminate” that windows shows up when a machine
fault is detected. In other cases, you will be unlucky and the de referencing will yield a non-
sense result.

For instance, this program will crash:

int mai n(voi d)

{

char *p;

A closer view 53

return 1,
}
We have never assigned to p an object where it should point to. We are using a dangling
pointer. When we follow this program we obtain:

i =1o] x|
i =|®] x|
int mainf{wvoid)
1
char *p;
@ *p = 0;
return 1;
b x|
Exception Access Yiolation {(0xc0000005)
in Maodule crash,obj
Ik,
p = Oxfffataba ""
& auto locals stack event: zearch Running rnair 5:1

The debugger tells us that a machine exception has occurred, with the code 0xcO000005. This
means that the CPU has detected an invalid memory reference and has called the exception
mechanism of windows, that notified the debugger of the problem. Note the value of the
pointer in the output window: Oxf f f a5aba.

Lcc-win32 follows the philosophy that the sooner you see an error, the better. When it allo-
cates the stack frame of the function, it will write this value to all memory that has not been
explicitly initialized by the program. When you see this value in the debugger you can be
highly confident that thisis an unitialized pointer or variable. Thiswill not be done if you turn
on optimizations. In that case the pointer will contain whatever was in there when the compiler
allocated the stack frame.

Note that many other compilers do not do this, and some programs run without crashing out of
sheer luck. Since lcc-win32 catches this error, it looks to the users as if the compiler was
buggy. | have received alot of complaints because of this.

Thiskind of problem isone of the most common bugsin C. Forgetting to initialize a pointer is
something that you can never afford to do.

Another error isinitializing a pointer within a conditional expression:

char *BuggyFunction(int a)
{

char *result;

if (a>34) {
result = malloc(a+34);

}

return result;

54 C programming with lcc-win32

}

If the argument of this function is less than 35, the pointer returned will be a dangling pointer

since it was never initialized.

1.11.33 Precedence of the different operators.

In their book «C, areference manual», Harbison and Steele propose the following table.

Tokens Operator Class Precedence | Associates
nanes, literals simple tokens primary | 16 n/a
a[k] subscripting postfix | 16 left-to-right
f(...) function call postfix | 16 left-to-right
(poi nt) direct selection postfix | 16 left-to-right
-> indirect selection postfix | 16 left-to-right
++ - - increment, decrement postfix | 16 left-to-right
(type name){init} compound literal postfix | 16 left-to-right
++ -- increment, decrement prefix 15 right-to-left
si zeof size unary 15 right-to-left
~ bitwise not unary 15 right-to-left
! logical not unary 15 right-to-left
-+ arithmetic negation, plus | unary 15 right-to-left
& address of unary 15 right-to-left
* indirection unary 15 right-to-left
(type nane) casts unary 14 right-to-left
* | % multiplicative binary 13 left-to-right
+ - additive binary 12 left-to-right
<< >> left/right shift binary 11 left-to-right
< > <= >= relational binary 10 left-to-right
== I = equal/not equal binary 9 left-to-right
& bitwise and binary 8 left-to-right
n bitwise xor binary 7 left-to-right
| bitwise or binary 6 left-to-right
&& logical and binary 5 left-to-right
| logical or binary 4 left-to-right
? conditional binary 2 right-to-left
= +4+= -= *= [= & <<= >>= | assignment binary 2 right-to-left
&= M= | =
, sequential evaluation binary 1 left-to-right

The printf family 55

1.12 The printf family

The functions fprintf, printf, sprintf and snprintf are a group of functions to output formatted
text into afile (fprintf, printf) or a character string (sprintf). The snprintf is like sprintf func-
tion, but accepts a count of how many characters should be put as a maximum in the output
string.

Function | Prototype

fprintf int fprintf(FILE * streamconst char *fnt, ...);

printf int printf(const char *fnt,...);

sprintf char *outputstring, const char *fnt,...);

snprintf |int snprintf(char *out,size t maxchars,const char *fnt, ...);

The printf function is the same as fprintf, with an implicit argument “stdout”, i.e. the standard
output of the program, that in most cases is the console window.

fprintf(stdout,"hello\n"); <---> printf("hello\n");
The value returned by all this functions is EOF (End Of File, usually -1) if an error occurred
during the output operation. Otherwise, all went OK and they return the number of characters

written. For sprintf, the returned count does not include the terminating zero appended to the
output string.

The “fmt” argument is a character string or “control string”. It contains two types of charac-
ters: normal charactersthat are copied to the output without any change, and conversion spec-
ifications, that instruct the function how to format the next argument. In the example above,
we have just the string “hello\n”, without any conversion specification so that character string
issimply copied to the destination.

There should be always at least as many arguments to this functions as there are conversion
specifications. If you fail to do this with lcc-win32, you will get a warning from the compiler.
Other compilers can be less user friendly, so do not rely on that.

1.12.1 Conversions

A conversion specification begins with a percent sign (%) and is made of the following ele-
ments

1) Zero or more flag characters (-, +, O, #, *, or space), which modify the meaning of the
operation.**

2) An optional minimum field with.Note well this. The printf function will not truncate a
field. The specified width isjust that: a minimum.

3) An optional precision field made of a period followed by a number.
4) An optional size flag, expressed as one of thelettersi | ,1 ,L, h,hh,j,q,t, or z.

5) Thetype specification, asingle character fromtheset a, A, c,d, e E, f,g,Gi,n,0,p, S U, X,
X, and %.

44.the* (quote) char is specific to lcc-win32.

56 C programming with lcc-win32

$+25.7LE
;Z::?;QJ J _r I Ll—zsiiﬁcatinn

width precision

Canversion flag size flag

1.12.2 The conversion flags

- (minus) | Valuewill be left justified. The pad character is space.

0 Use zero as pad character instead of the default space. Thisisrelevant only if
aminimum field width is specified, otherwise there is no padding. If the data
requires it, the minimum width is not honored. Note that the padding charac-
ter will be always space when padding is introduced right of the data.

+ Always add a sign, either + or -. Obviously, aminusflag is always written,
even if thisflag is not specified.

' (single | Separatethedigits of the formatted numbersin groups of three. For instance

quote) 123456 becomes 123,456. Thisis an lcc-win32 extension.
Space Use either space or minus, i.e. the + is replaced by a space.
use a variant of the main version algorithm

1.12.2.1 The minimum field width

This specifies that if the data doesn’t fit the given width, the pad character is inserted to
increase the field. If the data exceeds the field width the field will be bigger than the width set-
ting. Numbers are written in decimal without any leading zeroes, that could be misunderstood
with the O flag.

1.12.2.2 The precision

In floating point numbers (formats g G f e E) this indicates the number of digits to be printed
after the decimal point. Used with the s format (strings) it indicates the maximum number of
characters that should be used from the input string. If the precision is zero, the floating point
number will not be followed by a period and rounded to the nearest integer.

The printf family 57

1.12.3 The size specification
This table shows the different size specifications, together with the formats they can be used

| d,i,o,u,x, X |Theleterl withthisformatsmeans| ong or unsi gned
| ong.
| n Theletter | with the n format means| ong *.
| C Used with the ¢ (character) format, it means the character string
isin wide character format.
| al others No effect, isignored
| d,i,o,u,x, X |Theletersl| mean | ong | ongorunsi gned | ong
| | ong.
| n With thisformat, | | meansl ong | ong *.
I
h |d,i,o,u,x, X | Withthisformats, h indicatesshort orunsi gned short.
h |n Meansshort *.
h [(d,i,o,u,x, X | Meanschar orunsi gned char.
h
h n Meanschar * orunsi gned char *.
h
L |A a, E e, Meansthat theargumentisal ong doubl e. Notice that thel
F, f, G g, modifier has no effect with those formats. It is uppercase L.
j d, i, o, u, Means the argument is of typei nt max_t , i.e. the biggest inte-
X, X ger type that an implementation offers. In the case of lcc-win32
thisis | ong | ong.
qg (f.g.e Means the argument is of type gf | oat (350 bits precision).
Thisis an extension of |cc-win32.
t d, i, o, u, Meansthe argument ispt rdi ff _t, under Icc-win32i nt .
X, X
Z d i, o, u, Meansthe argument issi ze_t, inlcc-win32 unsi gned
X, X i nt.
with.

WEell now we can passto the final part.

58 C programming with lcc-win32

1.12.4 The conversions

Signed integer conversion is used and the argument is by default of typei nt . If
theh modifier is present, the argument should beashort , if thel | modifier
is present, theargumentisal ong | ong.

Unsigned decimal conversion. Argument should be of typeunsi gned i nt
(default), unsi gned short (h modifier) or unsi gned | ong | ong (I
modifier).

Unsigned octal conversion is done. Same argument as the u format.

Unsigned hexadecimal conversion. If x isused, the letterswill bein lower case,
if Xisused, they will bein uppercase. If the # modifier is present, the number
will be prefixed with 0x.

The argument is printed as a character or awide character if the | modifier is
present.

The argument is printed as a string, and should be a pointer to byte sized charac-
ters (default) or wide charactersif the | modifier is present.If no precisionis
given al characters are used until the zero byte is found. Otherwise, the maxi-
mum number of characters used is the given precision.

The argument is a pointer and is printed in pointer format. Under |cc-win32 this
is the same as the unsigned format (#u).

The argument isapointer to int (default), pointer to short (h modifier) or pointer
tolonglong (I I modifier). Contrary to all other conversions, this conversion
writes the number of characters written so far in the address pointed by its argu-
ment.

Signed decimal floating point conversion..Argument is of type doubl e
(default), or 1 ong doubl e (withthe L modifier) or qf | oat (withtheq
modifier). Theresult will be displayed in scientific notation with afloating point
part, the letter ‘€ (for the e format) or the letter E (for the E format), then the
exponent. If the precision is zero, no digits appear after the decimal point, and
no point is shown. If the # flag is given, the point will be printed.

Signed decimal floating point conversion. Argument is of type double (default),
or long double (with the L modifier). If the argument isthe special valueinfinite,
i nf will be printed. If the argument is the special value NAN the lettersnan
are written.

Thisisthe same as the above but with a more compact representation. Argu-
ments should be floating point. Trailing zeroes after the decimal point are
removed, and if the number is an integer the point disappears. If the# flag is
present, this stripping of zeroesis not performed. The scientific notation (asin
format e) isused if the exponent falls below -4 or is greater than the precision,
that defaultsto 6.

%

How do you insert a % sign in your output? Well, by using this conversion: %84

setjimp and longjmp 59

1.13 setjmp and longjmp

Thistwo functions implement ajump across function calls to adefined place in your program.
You define a place where it would be wise to come back to, if an error appears in any of the
procedures below this one.

For instance you will engage in the preparation of a buffer to send to the database., or some
other lengthy operation that can fail. Memory can be exhausted, the disk can be full (yes, that
can still arrive, specially when you get a program stuck in an infinite write loop...), or the user
can become fed up with the waiting and closes the window, etc. etc.

For all those cases, you devise an exit with longjmp, into a previously saved context. The clas-
sical exampleis given by Harbison and Steele:

#i ncl ude <setjnp. h>

j mp_buf ErrorEnv;

i nt guard(void)
/* Return O if successful; else lonjnmp code */

{
int status = setjnmp(ErrorEnv);
if (status !'= 0)
return status; /* error */
process();
return O;
}
i nt process(void)
{
int error_code;
if (error_happened) |ongjnp(ErrorEnv, error_code);
}

With all respect | have for Harbison and Steele and their excellent book, this example shows
how NOT to use setjmp/longjmp.

The ErrorEnv global variable is left in an undefined state after the function exits with zero.
When you use this facility utmost care must be exercised to avoid executing a longjmp to a
function that has already exited. Thiswill always |lead to catastrophic consequences. After this
function exists with zero, the contents of the global ErrorEnv variable are a bomb that will
explode your program if used. Now, the process() function is entirely tied to that variable and
its validity. You can't call process() from any other place. A better way could be:

#i ncl ude <setjnp. h>
j mp_buf ErrorEnv;

i nt guard(void)
/* Return O if successful; else |ongjnp code */

{
j mp_buf pushed_env;
mencpy(push_env, Error Env, si zeof (j np_buf));
int status = setjnp(ErrorEnv);
if (status == 0)
process();
mencpy(Error Env, pushed_env, sizeof (jnp_buf));
return status;
}

i nt process(void)

60 C programming with lcc-win32

{

int error_code=0;

if (error_code) |ongjnp(ErrorEnv, error_code);

}

This way, the contents ErrorEnv are |eft as they were before, and if you setup in the first lines
of the main() function:

int mai n(void)
{
if (setjnmp(ErrorEnv)) /1 Do not pass any ot her code.

return ERROR FAILURE; // Just a general failure code

}

This way the ErrorEnv can be always used without fearing a crash. Note that | used memcpy
and not just the assignment:

pushed_env = ErrorEnv; /* wong! */

since jmp_buf is declared as an array as the standard states. Arrays can only be copied with
memcpy or aloop assigning each member individually.

Note that this style of programming is sensitive to global variables. Globals will not be
restored to their former values, and, if any of the procedures in the process() function modified
global variables, their contents will be unchanged after the longjmp.

#i ncl ude <setjnp. h>
j mp_buf ErrorEnv;
doubl e gl obal ;

i nt guard(void)
/* Return O if successful; else |ongjnp code */
{
j mp_buf pushed_env;
mencpy(push_env, Error Env, si zeof (j np_buf));
int status = setjnmp(ErrorEnv);
gl obal = 78.9776;
if (status == 0)
process();
mencpy(Error Env, pushed_env, sizeof (jnmp_buf));
/I Here the contents of “global” will be either 78.9776
/l or 23.87 if the longjmp was taken.
return status;

}

i nt process(void)

{

int error_code=0;

gl obal = 23.87;
if (error_code) |ongjnp(ErrorEnv, error_code);

}

And if you erase a file longimp will not undelete it. Do not think that longjmp is a time
machine that will go to the past.

Yet another problem to watch isthe fact that if any of the global pointers pointed to an address
that was later released, after the longjmp their contents will be wrong.

setjmp and longjimp 61

Any pointers that were allocated with malloc will not be released, and setjmp/longjmp could
be the source of amemory leak. Within Icc-win32 there is an easy way out, Since you can use
the garbage collector instead of malloc/free. The garbage collector will detect any unused
memory and will released when doing the gc.

1.13.1 Register variables and longjmp()

When you compile with optimizations on, the use of setjmp and longjmp can produce quite a
few surprises. Consider this code:

#i ncl ude <setjnp. h>
#i ncl ude <stdio. h>
int mai n(void)
{
j mp_buf j unper;
int local Variable = 1; (1)

printf("1: %\ n",|ocal Vari abl e);

if (setjnp(junper) == 0) { /1 return fromlongjnp
| ocal Vari abl e++; (2)
printf("2: %\ n",|ocal Vari abl e) ;

| ongj mp(j unper, 1);

| ocal Vari abl e++; (3)
printf("3: %l\n",|ocal Vari abl e);
return O;

}

Our “localVariable” startswith the value 1. Then, before calling longjmp, it isincremented. Its
value should be two. At exit, “localVariable’ is incremented again at should be three. We
would expect the output:

11

2.2

33

And this isindeed the output we get if we compile without any optimizations. When we turn
optimizations on however, we get the output:

11

2.2

32

Why?

Because “localVariable” will be stored in a register. When longjmp returns, it will restore all
registers to the values they had when the setjmp was called, and if localVariable livesin areg-
ister it will return to the value 1, even if we incremented it before calling longjmp.

The only way to avoid this problem is to force the compiler to alocate local Variable in mem-
ory, using the “volatile” keyword. The declaration should look like this:

int volatile |ocal Vari abl e;

This instructs the compiler to avoid any optimizations with this variable, i.e. it forces allocat-
ing in the stack, and not in a register. This is required by the ANSI C standard. You can't
assume that local variables behave normally when using longjmp/setjmp.

62 C programming with lcc-win32

The setjmp/longjmp functions have been used to implement larger exception handling frame-
works. For an example of such a usage see for example “Exceptions and assertions’ in “C
Interfaces and implementations” of David Hanson, Chapter 4.

Simple programs 63

1.14 Simple programs

To give you amore concrete example of how C works, here are afew examples of very ssmple
programs. The ideaisto find a self-contained solution for a problem that is simple to state and
understand.

1.14.1 strchr

Find the first occurrence of agiven character in acharacter string. Return a pointer to the char-
acter if found, NULL otherwise.

This problem is solved in the standard library by the st r chr function. Let’'s write it. The
algorithm is very simple: We examine each character. If it is zero, thisis the end of the string,
we are done and we return NULL to indicate that the character is not there. If we find it, we
stop searching and return the pointer to the character position.

char *FindCharlnString(char *str, int ch)

{
while (*str !'= 0 && *str !'= ch) {
str++;

}

if (*str == ch)
return str;

return NULL;

}

We loop through the characters in the string. We use a while condition requiring that the char-
acter pointed to by our pointer “str” is different than zero and it is different than the character
given. In that case we continue with the next character by incrementing our pointer, i.e. mak-
ing it point to the next char. When the while loop ends, we have either found a character, or we
have arrived at the end of the string. We discriminate between these two cases after the loop.

How can this program fail?

We do not test for NULL. Any NULL pointer passed to this program will provoke a trap. A
way of making this more robust would be to return NULL if we receive aNULL pointer. This
would indicate to the calling function that the character wasn’'t found, what is always true if
our pointer doesn’t point anywhere.

A more serious problem happens when our string is missing the zero byte... In that case the
program will blindly loop through memory, until it either finds the byte is looking for, or a
zero byte somewhere. Thisisamuch more serious problem, sinceif the search ends by finding
arandom character somewhere, it will return an invalid pointer to the calling program!

Thisisrealy bad news, since the calling program may not use the result immediately. It could
be that the result is stored in a variable, for instance, and then used in another, completely
unrelated section of the program. The program would crash without any hints of what iswrong
and where was the failure.

Note that this implementation of strchr will correctly accept a zero as the character to be
searched. In this case it will return a pointer to the zero byte.

1.14.2 strlen

Return the length of a given string not including the terminating zero.

Thisis solved by the st r | en function. We just count the chars in the string, stopping when
we find a zero byte.

int strlen(char *str)

64 C programming with lcc-win32

{
char *p = str;
while (*p !'= 0) {
p++;
}
return p — str;
}
We copy our pointer into anew one that will loop through the string. We test for a zero byte in
the while condition. Note the expression *p ! = 0. This means “Fetch the value this pointer

is pointing to (* p), and compare it to zero”. If the comparison is true, then we increment the
pointer to the next byte.*

We return the number of characters between our pointer p and the saved pointer to the start of
the string. This pointer arithmetic is quite handy.

How can this program fail? The same problems apply that we discussed in the previous
example, but in an attenuated form: only awrong answer is returned, not an outright wrong
pointer. The program will only stop at a zero byte.

1.14.3 ispowerOfTwo
Given a positive number, find out if it is a power of two.

Algorithm: A power of two has only one bit set, in binary representation. We count the bits. If
we find a bit count different than one we return O, if there is only one bit set we return 1.

Implementation: We test the rightmost bit, and we use the shift operator to shift the bits right,
shifting out the bit that we have tested. For instance, if we have the bit pattern 1 0 0 1, shifting
it right by one gives 0 1 0 O: the rightmost bit has disappeared, and at the left we have a new
bit shifted in, that is always zero.

i nt i spowerOf Two(unsi gned int n)

{
unsi gned int bitcount = 0;
while (n !'=0) {
if (n &1) {
bi t count ++;
}
n=n>>1,
}
if (bitcount == 1)
return 1;
return O;
}

Our condition here is that n must be different*® than zero, i.e. there must be still some bits to

count to go on. We test the rightmost bit with the binary and operation. The number one has
only one hit set, the rightmost one. By the way, one is a power of two™”.

45. Theexpression (*p ! = 0) could have been written intheformwhi | e (*p), using the implicit
test for a non-zero result in any logical expression. Any expression will be considered true if its value is
anything but zero. It is better, however, to make comparisons explicit.

46. Different than is written in C != instead of # . The symbol # wasn’t included in the primitive
typewriters in use when the C language was designed, and we have kept that approximation. It is consistent
with the usage of ! aslogical not, i.e. = would mean not equal.

Simple programs 65

Note that the return expression could have aso been written like this:
return bitcount == 1;

The intention of the program is clearer with the “if” expression.

How can this program fail? The while loop has only one condition: that n is different than
zero, i.e. that n has some bits set. Since we are shifting out the bits, and shifting in always
zero bits since bitcount is unsigned, in a 32 bit machine like a PC this program will stop
after at most 32 iterations. Running mentally some cases (a good exercise) we see that for
an input of zero, we will never enter the loop, bi t count will be zero, and we will return
0, the correct answer. For an input of 1 we will make only one iteration of the loop. Since 1
& 1lis1, bitcount will beincremented, and the test will make the routine return 1, the
correct answer. If nisthree, we make two passes, and bi t count will be two. Thiswill be
different than 1, and we return zero, the correct answer.

Anh Vu Tran anhvu.tran@ifrance.com made me discover an important bug. If you change
the declaration of “n” fromunsigned i nt toi nt , without qualification, the above function
will enter aninfinite loop if n is negative.

Why?
When shifting signed numbers sign is preserved, so the sign bit will be carried through, pro-

voking that n will become eventually a string of 1 bits, never equal to zero, hence an infinite
loop.

1.14.4 Write ispowerOfTwo without any loops

After working hard to debug the above program, it is disappointing to find out that it isn’t the
best way of doing the required calculation. Here is an idea | got from reading the discussions
in comp.lang.c.

isPow2 = x && ! ((x-1) & x);

How does this work?

Algorithm:
If)? isapower of two, it doesn't have any bitsin common with x-1, since it consists of asingle
bit on. Any positive power of two isasingle bit, using binary integer representation.
For instance 32 is a power of two. It is represented in binary as:
100000
32-1, 31, isrepresented as.
011111
32&31lis:
100000 & 011111 ==> 0

This meansthat wetest if x-1 and x doesn't share bits with the and operator. If they share some
bits, the AND of their bits will yield some non-zero bits. The only case where this will not
happen iswhen x is a power of two.

Of course, if x iszero (not apower of two) this doesn't hold, so we add an explicit test for zero
with the logical AND operator:

47. For amore detailed discussion, see the section News groups at the end of this tutorial.

mailto:anhvu.tran@ifrance.com

66 C programming with lcc-win32
XX && expression.

Negative powers of two (0.5, 0.25, 0.125, etc) could share this same property in a suitable
fraction representation. 0.5 would be 0.1, 0.250 would be 0.01, 0.125 would be 0.001 etc.
This snippet and several others are neatly explained in:

http://www.caam.rice.edu/~dougm/twiddle.

1.14.5 strlwr

Given a string containing upper case and lower case characters, transform it in a string with
only lower case characters. Return a pointer to the start of the given string.*®

Thisisthelibrary function st r | wr. In general is not agood ideato replace library functions,
even if they are not part of the standard library (as defined in the C standard) like this one.

We make the transformation in-place, i.e. we transform all the characters of the given string.
This supposes that the user of this program has copied the original string elsewhere if the orig-
inal is needed again.

#i ncl ude <ctype. h> /* needed for using isupper and tol ower */
#i nclude <stdio.h> /* needed for the NULL definition */
char *strTol ower (char *str)

{
[* iterates through str */
unsi gned char *p = (unsigned char *)str;
if (str == NULL)
return NULL,;
while (*p) {
*str = tol ower(*p);
p++;
}
return str;
}

We include the standard header ctype.h, which contains the definition of several character
classification functions (or macros) like “i supper” that determines if a given character is
upper case, and many otherslike“i sspace”, or “i sdi gi t ”. We need to include the stdio.h

header file too, since it contains the definition for NULL.4°

Thefirst thing we doisto test if the given pointer iSNULL. If itis, we return NULL. Then, we
start our loop that will span the entire string. The construction whi | e(* p) testsif the con-
tents of the character pointer p is different than zero. If thisis the case, we transform it into a
lower case one. We increment our pointer to point to the next character, and we restart the

48. This convention is used in the library function. Actually, it is a quite bad interface, since the return
value doesn’t give any new information to the user, besides the expected side effect of transforming the given
string. A better return value would be the number of changed characters, for instance, that would allow the
caler to know if a transformation was done at all, or the length of the string, or severa others. But let's
implement this function as it is specified in the standard library. Many times, you will see that even if it is
obvious that software must be changed, the consequences of a change are so vast that nobody wants to
assume it, and we get stuck with software “for compatibility reasons’. Hereis yet another example.

49. If remembering which headers contain which definitions bothers you (as it bothers me) just use the
<stdheaders.h> header file included with lcc-win32. That file is just an include of all standard header
files.

Simple programs 67

loop. When the loop finishes because we hit the zero byte that terminates the string, we stop
and return the saved position of the start of the string.

Note the cast that transforms str from a char * into an unsigned char *. The reason is that it
could exist a bad implementation of the toupper() function, that would index some table using
asigned char. Characters above 128 would be considered negative integers, what would result
in atable being indexed by a negative offset, with bad consequences, as you may imagine.

How can this program fail?
Since we test for NULL, aNULL pointer can't provoke atrap. Isthisagood idea?

WEell this depends. This function will not trap with NULL pointers, but then the error will be
detected later when other operations are done with that pointer anyway. Maybe making a trap
when a NULL pointer is passed to us is not that bad, since it will uncover the error sooner
rather than later. Thereisabig probability that if the user of our function is calling usto trans-
form the string to lower case, is because he/she wants to use it later in a display, or otherwise.
Avoiding atrap here only means that the trap will appear |ater, probably making error finding
more difficult.

Writing software means making this type of decisions over and over again.

Obviously this program will fail with any incorrect string, i.e. a string that is missing the final
zero byte. The failure behavior of our program is quite awful: in this case, this program will
start destroying all bytes that happen to be in the range of uppercase characters until it hits a
random zero byte. This means that if you pass a non-zero terminated string to this apparently
harmless routine, you activate a randomly firing machine gun that will start destroying your
program’s data in a random fashion. The absence of a zero byte in a string is fatal for any C
program. In atutorial this can’'t be too strongly emphasized!

1.14.6 paste

You have got two text files, and you want to merge them in asingle file, separated by tabula-
tions. For instance if you have afilel with this contents:

line 1
line2

and you got another file2 with this contents

line 10
line 11

you want to obtain afile

li nel line 10
line 2 line 11

Note that both file can be the same.
A solution for this could be the following program:

#i ncl ude <stdi o. h>

#i ncl ude <string. h>

#i ncl ude <stdlib. h>

/*

We decide arbitrarily that lines longer than 32767 chars will make this program fail.
*

/

#defi ne MAXLI NELEN 32767

int main(int argc,char *argv[])
{

/*

68 C programming with lcc-win32

We need two FILE pointers, and two line buffers to hold each line from each file. We receive
in argc the number of arguments passed + 1, and in the character array argv[] the names of
the two files
*

FILE *f1,*f2;

char buf 1] MAXLI NELEN] , buf 2] MAXLI NELEN] ;

/*
We test immediately if the correct number of arguments has been given. If not, we exit with a
clear error message.

*
if (argc < 3) {
fprintf(stderr,"Usage: paste filel file2\n");
exit(1);
}
/*
We open both files, taking care not to open the same file twice. We test with strcmp if they are
equal.
*
f1 = fopen(argv[1],"r");
if (strcmp(argv[1],argv[2]))
f2 = fopen(argv[2],"r");
el se
f2 = f1,;
/*
We read line after line of the first file until we reach the end of the first file.
*
whi | e(fgets(bufl, MAXLI NELEN, f1)) {
char *p = strchr(bufl,'\n");
/*

the fgets function leaves a \n in the input. We erase it if it is there. We use for this the strchr
function, that returns the first occurrence of a character in a string and returns a pointer to it.
If it doesn’t it returns NULL, so we test below before using that pointer

*

if (p)

* p = 0,

/*
We output the first file line, separated from the next with a single tabulation char.
*

printf("%s\t", bufl);
/*

If there are still lines to be read from file 2, we read them and we print them after doing the
same treatment as above.
*
if (f2 1= 1f1 && fgets(buf2, MAXLI NELEN, f2)) {
p = strchr(buf2,'\n");
if (p)
* p = 0:
printf("%\n", buf?2);
}
/*
If we are duplicating the same file just print the same line again.
*
el se printf("%\n", bufl);
}
/*
End of the while loop. When we arrive here the first file has been completely scanned. We
close and shut down.
*/
fclose(fl);

Simple programs 69

if (f1!1=12)
fclose(f2);
return O;

}
How can this program fail?.

WEell, there are obvious bugs in this program. Before reading the answer, try to see if you can
see them. What isimportant here is that you learn how to spot bugs and that is a matter of 1og-
ical thinking and a bit of effort.

Solution will be in the next page. But just try to find those bugs yourself.
Before that bug however we see thislinesin there:

if (f2 1= f1 && fgets(buf2, MAXLI NELEN, f2)) {
}
el se printf("%\n", bufl);
If f1isdifferent from f2 (we have two different files) and file two is shorter than file one, that
If statement will fail after n2 lines, and the else portion will be executed, provoking the dupli-
cation of the contents of the corresponding line of file one.

To test this, we create two test files, filel and file2. their contents are:

Filel:
File 1. line 1
File 1. line 2
File 1. line 3
File 1. line 4
File 1. line 5
File 1. line 6
File 1. line 7
File 1. line 8

File2:
File 2. line 1
File 2. line 2
File 2. line 3
File 2. line 4

We call our paste program with that data and we obtain:

SJochtestrpaste filel f1le2

File 1: Line 1 File 2: Line 1
File 1: Line 2 File 2: Line 2
File 1: Line 3 File 2: Line 3
File 1: Line 4 Fil 1nge 4
File 1: Line 5 FT 1:

File 1: Line & 1: [
File 1: Line 7 1 7
File 1: Line & 1 2

Seochtests

Thelinefive of file one was read and since file two is already finished, we repeat it.
Isthisabug or afeature?

We received vague specifications. Nothing was said about what the program should do with
files of different sizes. This can be declared afeature, but of course is better to be aware of it.

70 C programming with lcc-win32

We see that to test hypothesis about the behavior of a program, there is nothing better than test
data, i.e. datathat is designed to exercise one part of the program logic.

In many real cases, the logic is surely not so easy to follow as in this example. Building test
data can be done automatically. To build file one and two, this small program will do:

#i ncl ude <stdi o. h>
int mai n(void)

{
FILE *f = fopen("filel","wW");
for (int i =0; i<8;i++)
fprintf(f,"File 1. Line %\n",i);
fclose(f);
f = fopen("file2","wW');
for (int i =0; i < 5;i++)
fprintf(f,"File 2. Line %@\n",i);
fclose(f);
return O;
}

This a good example of throw away software, software you write to be executed once. No
error checking, small and simple, so that there isless chance for mistakes.

And now the answer to the other bug above.

Using arrays and sorting 71

One of the first things to notice is that the program tests with strcmp to seeif two files are the
same. This means that when the user passes the command line:

paste Filel filEl

our program will believe that they are different when in fact they are not. Windows is not case
sensitive for file names. The right thing to do there is to compare the file names with stricmp,
that ignores the differences between uppercase and lowercase.

But an even greater problem is that we do not test for NULL when opening the files. If any of
the files given in the command line doesn’t exist, the program will crash. Add the necessary
tests before you use it.

Another problem isthat we test if we have the right number of arguments (i.e. at least two file
names) but if we have more arguments we ssmply ignore them. What is the right behavior?

Obviously we could process (and paste) several files at once. Write the necessary changes in
the code above. Note that if you want to do the program really general, you should take into
account the fact that a file could be repeated several timesin theinput, i.e.

paste filel file2 filel file3

Besides, the separator char in our program is now hardwired to the tab character in the code of
the program. Making this an option would allow to replace the tab with a vertical bar, for
instance.

But the problem with such an option is that it supposes that the output will be padded with
blanks for making the vertical bars align. Explain why that option needs a complete rewrite of
our program. What is the hidden assumption above that makes such a change impossible?

Another feature that paste.exe could have, is that column headers are automatically under-
lined. Explain why adding such an option isfalling into the featurism that pervades all modern
software. Learn when to stop!

1.15 Using arrays and sorting

Suppose we want to display the frequencies of each letter in agiven file. We want to know the
number of ‘a’s, of ‘b’, and so on.

Oneway to do thisisto make an array of 256 integers (oneinteger for each of the 256 possible
character values) and increment the array using each character as an index into it. When we
seea‘b’, we get the value of the letter and use that value to increment the corresponding posi-
tion in the array. We can use the same skeleton of the program that we have just built for

counting characters, modifying it slightly.>°

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt Frequencies[256]; // Array of frequencies

int main(int argc,char *argv[])
{
// Local variables declarations
i nt count =0;
FILE *infile;
int c;

if (argc < 2) {

50. Yes, code reuseis not only possible in object-oriented programming.

72 C programming with lcc-win32

printf("Usage: countchars <file name>\n");
exit(l);
}
infile = fopen(argv[1],"rb");
if (infile == NULL) {
printf("File % doesn't exist\n",argv[1]);
exit(1l);
}
c = fgetc(infile);
while (c !'= EOF) {
count ++;
Frequenci es[c] ++;
c = fgetc(infile);
}
fclose(infile);
printf("%l chars in file\n", count);
for (count=0; count<256; count++) {
if (Frequencies[count] != 0) {
printf(“ ' 9%8c’ (%d) = %l\n”, count, count,
Frequenci es[count]);

}
}

return 0O;

}

We declare an array of 256 integers, numbered from zero to 255. Note that in C the index ori-
ginisaways zero.

This array is not enclosed in any scope. Its scope then, is global, i.e. this identifier will be
associated to the integer array for the current tranglation unit (the current file and its includes)
from the point of its declaration on.

Since we haven't specified otherwise, thisidentifier will be exported from the current module
and will be visible from other modules. In another compilation unit we can then declare:

extern int Frequencies[];

and we can access this array. This can be good (it allow us to share data between modules), or
it can be bad (it allows other modules to tamper with private data), it depends on the point of

view and the application. !
If we wanted to keep this array local to the current compilation unit we would have written:

static int Frequencies[256];

The “static” keyword indicates to the compiler that this identifier should not be made visible
in another module.

The first thing our program does, is to open the file with the name passed as a parameter. This
is done using the fopen library function. If the file exists, and we are able to read from it, the
library function will return a pointer to a FILE structure, defined in stdio.h. If the file can’t be
opened, it returns NULL. We test for this condition right after the fopen call.

We can read characters from afile using the fgetc function. That function updates the current
position, i.e. the position where the next character will be read.

51. Globa variables provoke an undocumented coupling between several, apparently unrelated
procedures or modules. Overuse of them is dangerous, and provokes errors that can be difficult to understand
and get rid of. | learned this by experience in long debugging sessions, and now | use global variables more

sparingly.

Using arrays and sorting 73

But let’s come back to our task. We update the array at each character, within the while loop.
We just use the value of the character (that must be an integer from zero to 256 anyway) to
index the array, incrementing the corresponding position. Note that the expression:

Frequenci es[count] ++
means
Frequenci es[count] = Frequenci es[count] +1;
i.e.; the integer at that array position isincremented, and not the count variable!

Then at the end of the while loop we display the results. We only display frequencies when
they are different than zero, i.e. at least one character was read at that position. We test this
with the statement:

if (Frequencies[count] !'=0) { ... statements ... }

The printf statement is quite complicated. It uses a new directive %c, meaning character, and
then a width argument, i.e. %3c, meaning a width of three output chars. We knew the %d
directive to print a number, but now it is augmented with a width directive too. Width direc-
tives are quite handy when building tables to get the items of the table aligned with each other
in the output.

Thefirst thing we do isto build atest file, to seeif our program isworking correctly. We build
atest file containing

ABCDEFGHIJK
And we call:

I cc frequencies.c
I ccl nk frequenci es. obj
frequenci es fexanple

and we obtain:
D:\ I cc\ exanpl es>f requenci es fexanpl e
13 chars in file

1
1

(10
(13)

65)
66)
67)
68)
69)
70)
71)
72)
73)
74)
75)

We see that the characters \r (13) and new line (10) disturb our output. We aren’t interested in
those frequencies anyway, so we could just eliminate them when we update our Frequencies
table. We add the test:
if (c>="")
Frequenci es[c] ++;
I.e. weignore all characters with value less than space: \r, \n or whatever. Note that we ignore
tabulations too, since their valueis 8.

T IOTMMmMmOO0OW>
AN NN NN NN N N N
RPFRPRRPPRPRPRERPEPRERPE

~
=

The output is now more readable:

H: \ I cc\ exanpl es>f requenci es fexanpl e

74 C programming with lcc-win32

13 chars in file
65) 1

66)
67)
68)
69)
70)
71)
72)
73)
74)
75)

We test now our program with itself. We call:

frequenci es frequencies.c
758 chars in file

| have organized the datain atable to easy the display.

CTIEGTMMOO®>
L VI VI T [VO TR [A

PR RPRRPRPRRRRER

A

(32) =57 I (33) =2 "~ (34) = 10
(35) =2 %(37) =5 (39) =3
((40) = 18)y (41) = 18 *(42) = 2
+(43) = 6 (44 =7 ~(46) = 2
I (47) = 2 0 (48) =4 1(49) =4
2 (50) =3 3(51) =1 4(52 =1
5(53) =2 6 (54) =2 - (58) =1
. (59) = 19 <(60) =5 = (61) = 11
>(62) =4 A(65 =1 E(69 =2
F(70) =7 I (73) =1 L(76) =3
N(78) =1 O(79 =1 U(85 =2
[(91) =7 \V (92) =4 1T (93) =7
a (97) = 12 b (98) =2 c (99) = 33
d (100) = 8 e (101) = 38 f (102) = 23
g (103) = 8 h (104) = 6 i (105) = 43
| (108) = 14 m(109) = 2 n (110) = 43
o (111) = 17 p (112) = 5 q (113) = 5
r (114) = 23 s (115) = 14 t (116) = 29
u (117) = 19 v (118) = 3 w(119) = 1
x (120) = 3 y (121) = 1 { (123) = 6
Y (125) = 6

What is missing obviously, isto print the table in a sorted way, so that the most frequent char-
acters would be printed first. This would make inspecting the table for the most frequent char-
acter easier. How can we do that in C?
We have in the standard library the function “qsort”, that sorts an array. We study its prototype
first, to see how we should use it:>?

void gsort(void *b,size t n,size_t s,int(*f)(const void *));
WEell, this is quite an impressing prototype really. But if we want to learn C, we will have to
read this, asit was normal prose. So let’s begin, from left to right.

The function gsort doesn’'t return an explicit result. It is a void function. Its argument list, is
the following:

52. The prototypeisin the header file stdlib.h

Using arrays and sorting 75

Argument 1: isavoi d *.Void*??? What isthat? Well, in C you have void, that means none,
and void *, that means this is a pointer that can point to anything, i.e. a pointer to an
untyped value. We still haven't really introduced pointers, but for the time being just be
happy with this explanation: gsort needs the start of the array that will sort. This array can
be composed of anything, integers, user defined structures, double precision numbers,
whatever. This"whatever" is precisely the “void *”.

Argument 2 isasi ze_t. Thisisn't a known type, so it must be a type defined before in
stdlib.h. By looking at the headers, and following the embedded include directives, we find:

“stdlib.h” includes “stddef.h”, that defines a “typedef” like this:>3
typedef unsigned int size t;

This means that we define here anew type called “size t”, that will be actually an unsigned
integer. Typedefs alow us to augment the basic type system with our own types. Mmmm
interesting. We will keep thisfor later use.

In this example, it means that the size t n, is the number of elements that will be in the
array.

Argument 3isalsoasi ze_t. Thisargument contains the size of each element of the array,
I.e. the number of bytesthat each element has. Thistells gsort the number of bytesto skip at
each increment or decrement of a position. If we pass to gsort an array of 56 double preci-
sion numbers, this argument will be 8, i.e. the size of a double precision number, and the
preceding argument will be 56, i.e. the number of elementsin the array.

Argument 4 isafunction: i nt (*f)(const void *)); Well thisis quite hard really.
We are in the first pages of this introduction and we already have to cope with gibberish
like this?

We have to use recursion now. We have again to start reading this from left to right, more or
less. We have a function pointer (f) that points to a function that returns an int, and that
takes as arguments avoid *, i.e. apointer to some unspecified object, that can’t be changed
within that function (const).

Thisis maybe quite difficult to write, but quite a powerful feature. Functions can be passed
as argumentsto other functionsin C. They arefirst class objects that can be used to specify
afunction to call.

Why does gsort need this?

WEell, since the gsort function is completely genera, it needs a helper function, that will tell it
when an element of the array is smaller than the other. Since gsort doesn’'t have any a priori
knowledge of the types of the elements of the passed array, it needs a helper function that
returns an integer smaller than zero if the first element is smaller than the next one, zero if the
elements are equal, or bigger than zero if the elements are bigger.

Let’s apply this to a smaller example, so that the usage of gsort is clear before we apply it to
our frequencies problem.
#i ncl ude <stdlib. h>

#i ncl ude <string. h> (1)
#i ncl ude <stdio. h>

53. Finding out where is something defined can be quite a difficult task. The easiest way is to use the
IDE of Icc-win32, right click in the identifier, and choose “ goto definition”. If that doesn’t work, you can use
“grep” to search in aset of files.

76 C programming with lcc-win32

i nt conpare(const void *argl, const void *arg2)(2)
{
[* Compare all of both strings: */ (3)
return stricnp(*(char**) argl, * (char**) arg2);

}
int main(int argc, char **argv)
{
[* Eliminate argv[0] from sort: */ (4)
ar gv++;
argc--;

[* Sort remaining args using gsort */(5)
gsort ((void*)argv, (size_t)argc, sizeof (char *), conpare);

/* Output sorted list: */
for(int i =0; i < argc; ++i)(6)
printf("% ", argv[i]);
printf("\n"); (7)
return O;

}
The structure of this exampleisasfollows:

We build a program that will sort its arguments and output the sorted result.

To use gsort we define a comparison function that returns an integer, which encodes the rela
tive lexical ordering of the two arguments passed to it. We use alibrary function for doing that,

the stricmp® function, that compares two character strings without caring about case differ-
ences.

But there is quite a lot of new material in this example, and it is worth going through it in
detail.

We include the standard header string.h, to get the definitions of string handling functions like
stricmp.

We define our comparison function with:
i nt conpare(const void *argl, const void *arg2) { ... }

This means that our compare function will return an int, and that takes two arguments, named
argl and arg2, that are pointersto any object (void *). The objects pointed to by argl, and arg2
will not be changed within this function, i.e. they are “const”.

We need to get rid of the void * within our compare function. We know we are going to pass to
this function actually pointers to characters, i.e. machine addresses to the start of character
strings, so we have to transform the arguments into atype we can work with. For doing thiswe
use acast. A cast isatransformation of one type to another type at compile time. Its syntax is
like this: (newt ype) (expressi on); . Inthis example we cast avoid * to a char **, a
pointer to a pointer of characters. The whole expression needs quite a lot of reflection to be
analyzed fully. Return here after reading the section about pointers.

Note that our array argv, can be used as a pointer and incremented to skip over the first ele-
ment. This is one of the great weaknesses of the array concept of the C language. Actualy,
arrays and pointers to the first member are equivalent. This means that in many situations,
arrays “decay” into pointers to the first element, and loose their “array” ness. That is why you
can do in C things with arrays that would never be allowed in another languages. At the end of

54. Most compilers do not have the C99 standard implemented. In those compilers you can’t do this and
you will have to declare the loop counter as anormal local variable. Another reason to stick to lcc-win32.

Using arrays and sorting 77

this tutorial we will se how we can overcome this problem, and have arrays that are always
normal arrays that can be passed to functions without losing their soul.

At last we are ready to call our famous gsort function. We use the following call expression:
gsort ((void*)argv, (size_t)argc, sizeof (char *), conpare);

The first argument of gsort isavoid *. Since our array argv is a char **, we transform it into
the required type by using a cast expression: (void *)argv.

The second argument is the number of elements in our array. Since we need a size t and we
have argc, that is an integer variable, we use again a cast expression to transform our int into a
size t. Note that typedefs are accepted as casts.

The third argument should be the size of each element of our array. We use the built-in pseudo
function sizeof, which returns the size in bytes of its argument. This is a pseudo function,
because there is no such a function actually. The compiler will replace this expression with an
integer that it calculates from itsinternal tables. We have here an array of char *, so we just tell
the compiler to write that number in there.

The fourth argument is our comparison function. We just write it like that. No casts are
needed, since we were careful to define our comparison function exactly as qsort expects.

To output the already sorted array we use again a“for” loop. Note that the index of the loop is
declared at the initialization of the “for” construct. Thisis one of the new specifications of the
C99 language standard, that Icc-win32 follows. You can declare variables at any statement,
and within “for” constructs too. Note that the scope of thisinteger will be only the scope of the

enclosing “for” block. It can’t be used outside this scope.>®

Note that we have written the “for” construct without curly braces. Thisis alowed, and means
that the “for” construct applies only to the next statement, nothing more. The ...
printf("\n");... isNOT part of the for construct.

Ok, now let’s compile this example and make afew tests to see if we got that right.

h:\1 cc\ exanpl es> sortargs aaa bbb hhh sss ccc nnn
aaa bbb ccc hhh nnn sss

OK, it seems to work. Now we have acquired some experience with gsort, we can apply our
knowledge to our frequencies example. We use cut and paste in the editor to define a new
compare function that will accept integers instead of char **. We build our new comparison
function like this:

int conpare(const void *argl, const void *arg2)

{

}

We just return the difference between both numbers. If argl is bigger than arg2, thiswill be a
positive number, if they are equal it will be zero, and if argl is smaller than arg2 it will be a
negative number, just as gsort expects.

return (* (int *) argl - * (int *) arg2);

Right before we display the results then, we add the famous call we have been working so hard
to get to:

gsort (Frequenci es, 256, si zeof (i nt), conpare);
We pass the Frequencies array, its size, the size of each element, and our comparison function.
Hereisthe new version of our program, for your convenience. New codeisin bold:

55. The compiler emits a record for the linker, telling it to put there the address of the global, if the
argument is a global variable, or will emit the right instructions to access the address of a local using the
frame pointer. This has been working for a while now.

78 C programming with lcc-win32

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt Frequencies[256]; // Array of frequencies

int conpare(const void *argl, const void *arg2)

{

[* Compare both integers */
return (* (int *) argl - * (int *) arg2);

}
int main(int argc, char *argv[])
{
i nt count =0;
FILE *infile;
int c;
if (argc < 2) {
}
infile = fopen(argv[1],"rb");
if (infile == NULL) {
}
c = fgetc(infile);
while (c !'= EOF) {
}
fclose(infile);
printf("%l chars in file\n", count);
gsort (Frequenci es, 256, si zeof (i nt), conpare);
for (count=0; count<256; count ++) {
i f (Frequencies[count] = 0) {
printf("9%8c (%d) = %d\n",
count,
count,
Frequenci es[count]);
}
}
return O;
}

We compile, link, and then we write

frequenci es frequencies.c
957 chars in file

Pointers and references 79

Well, sorting definitely works (you read this display line by line), but we note with dismay that

A(192 =1 A(193) =1 A(194) =1

A(195 =1 A(196) =1 A(197) =1

A(198) =1 C(199 =1 E(200) =1

E(201) =1 E(202) =1 E (203) =2

I (204) =2 i (205) =2 I (206) = 2

T (207) =2 B (208) = 2 N (209) = 3

O(210) = 3 O(211) =3 O0(212) =3

O (213) =3 O(214) =3 x (215) = 4

@ (216) = 4 U(217) = 4 U(218) = 4

O(219) =5 U(220) =5 Y (221) =5

b (222) =5 R(223) =6 a (224 =6

4 (225) = 6 a (226) =7 a (227) =7

a (228) =7 & (229 =7 & (230) = 7

¢ (231) =7 e (232) =38 é (233) =38

& (234) =10 & (235) = 10 i (236) = 10
i (237) =11 T (238) = 11 i (239) =13
8 (240) = 16 fi (241) = 20 0 (242) = 21
6 (243) = 21 6 (244) = 21 8 (245) = 24
6 (246) = 24 + (247) = 25 o (248) = 28
U (249) = 35 G (250) = 38 0 (251) = 39
U (252) = 46 y (253) = 52 b (254) = 52
y (255) = 93

All the character names are wrong!
Why?

Well we have never explicitly stored the name of a character in our integer array; it was
implicitly stored. The sequence of elementsin the array corresponded to a character value. But
once we sort the array, this ordering is gone, and we have lost the correspondence between
each array element and the character it was representing.

C offers us many solutions to this problem, but thisis taking us too far away from array han-
dling, the subject of this section. We will have to wait until we introduce structures and user
types before we can solve this problem.

1.15.1 Summary of Arrays and sorting

* Arrays are declared by indicating their size in square brackets, after the identifier
declaration: <t ype> i dentifier[Sl ZE] ;

* Arraysare equivalent to pointersto their first element.
» Arrays“decay”, i.e. are transformed into pointers, when passed to other functions.
* You can sort an array using the gsort function.

1.16 Pointers and references

Pointers are one of the “hard” subjects of the C language. They are somehow mysterious, quite
difficult for beginners to grasp, and their extensive use within C makes them unavoidable.

Pointers are machine addresses, i.e. they point to data. It isimportant to have clear this distinc-
tion: pointers are NOT the data they point to, they contain just a machine address where the
datawill be found. When you declare a pointer like this:

80 C programming with lcc-win32

FILE *infile;

you are declaring: reserve storage for a machine address and not a FILE structure. This
machine address will contain the location where that structure starts.

Thisalows us to pass a small machine address around, instead of a big FILE structure that has
dozens of fields. The big advantage of pointersisthat they are efficient. But, as anything, they
are error prone. There is no free lunch.

The contents of the pointer are undefined until you initialize it. Before you initialize a pointer,
its contents can be anything; it is not possible to know what is in there, until you make an
assignment. A pointer before is initialized is a dangling pointer, i.e. a pointer that points to
nowhere.

A pointer can beinitialized by:
1) Assign it aspecia pointer value called NULL, i.e. empty.

2) Assignment from a function or expression that returns a pointer of the same type. In the
frequencies example we initialize our infile pointer with the function fopen, that returns a
pointer to aFILE.

3) Assignment to a specific address. This happens in programs that need to access certain
machine addresses for instance to use them as input/output for special devices. In those
cases you can initialize a pointer to a specific address. Note that this is not possible under
windows, or Linux, or many operating systems where addresses are virtual addresses. More
of thislater.

4) You can assign a pointer to point to some object by taking the address of that object. For
instance:
int integer;
int *pinteger = & nteger;
Here we make the pointer “pinteger” point to the int “integer” by taking the address of that
integer, using the “&” operator. This operator yields the machine address of its argument.

5) You can access the data the pointer is pointing to by using the “*” operator. When we want
to access the integer “pinteger” is pointing to, we write:
*pi nteger = 7;

This assignsto the “integer” variable indirectly the value 7.

In lcc-win32 pointers can be of two types. We have normal pointers, as we have described
above, and “references’, i.e. compiler maintained pointers, that are very similar to the objects

themselves, %6

References are declared in asimilar way as pointers are declared:®’

int a = b5; /1 declares an integer a
int * pa = &;// declares a pointer to the integer a
int &a = a;// declares a reference to the integer a

Here we have an integer, that within this scope will be called “a”. Its machine address will be
stored in a pointer to this integer, called “pa’. This pointer will be able to access the data of

56. This has nothing to do with object oriented programming of course. The word object is used here
with its generic meaning.

57. References aren't part of the C language standard, and are in this sense an extension of Icc-win32.
They are wildly used in another related language (C++), and the implementation of lcc-win32 is compatible
with the implementation of references of that language.

Pointers and references 81

“a’, 1.e. the value stored at that machine address by using the “*” operator. When we want to
access that data we write:

*pa = 8944;

Thismeans: “store at the address contained in this pointer pa, the value 8944”.
We can also write:
int m= 698 + *pa

This means: “add to 698 the contents of the integer whose machine address is contained in the
pointer paand store the result of the addition in the integer m”

We have a “reference” to a, that in this scope will be called “ra’. Any access to this compiler
maintained pointer is done as we would access the object itself, no specia syntax is needed.
For instance we can write:

ra = (ra+78) / 79;

Note that with references the “*” operator is not needed. The compiler will do automatically
thisfor you.

It is obviousthat a question arises now: why do we need references? Why can’'t we just use the
objects themselves? Why is al this pointer stuff necessary?

WEell thisis avery good gquestion. Many languages seem to do quite well without ever using
pointers the way C does.

The main reason for these constructs is efficiency. Imagine you have a huge database table,
and you want to pass it to aroutine that will extract some information from it. The best way to
pass that datais just to pass the address where it starts, without having to move or make a copy
of the data itself. Passing an address is just passing a 32-bit number, a very small amount of
data. If we would pass the table itself, we would be forced to copy a huge amount of datainto
the called function, what would waste machine resources.

The best of all worlds are references. They must always point to some object, there is no such
athing as an uninitialized reference. Once initialized, they can’t point to anything else but to
the object they were initialized to, i.e. they can’t be made to point to another object, as normal
pointers can. For instance, in the above expressions, the pointer paisinitialized to point to the
integer “&’, but later in the program, you are alowed to make the “pa’ pointer point to
another, completely unrelated integer. This is not possible with the reference “ra’. It will
always point to the integer “a”.

When passing an argument to a function, if that function expects a reference and you passit a
reference, the compiler will arrange for you passing only the address of the data pointed to by
the reference.

82 C programming with lcc-win32

1.17 Structures and unions

1.17.1 Structures

Structures are a contiguous piece of storage that contains several smple types, grouped as a

single object.® For instance, if we want to handle the two integer positions defined for each
pixel in the screen we could define the following structure:
struct coordinates {
int x;
int vy;
s
Structures are introduced with the keyword “struct” followed by their name. Then we open a
scope with the curly braces, and enumerate the fields that form the structure. Fields are
declared as all other declarations are done. Note that a structure declaration is just that, a dec-
laration, and it reserves no actual storage anywhere.

After declaring a structure, we can use this new type to declare variables or other objects of
thistype:

struct coordinate Coords = { 23,78};

Here we have declared a variable called Coords, that is a structure of type coordinate, i.e. hav-
ing two fields of integer type called “x” and “y”. In the same statement we initialize the struc-
ture to a concrete point, the point (23,78). The compiler, when processing this declaration, will
assign to the first field the first number, i.e. to the field “x” will be assigned the value 23, and
tothefield “y” will be assigned the number 78.

Note that the data that will initialize the structure is enclosed in curly braces.

Structures can be recursive, i.e. they can contain pointers to themselves. This comes handy to
define structures like lists for instance:
struct list {
struct |ist *Next;
i nt Dat a;
1
Here we have defined a structure that in its first field contains a pointer to the same structure,
and in its second field contains an integer. Please note that we are defining apointer to an iden-
tical structure, not the structure itself, what isimpossible. A structure can’t contain itself.

Double linked list can be defined as follows:

struct dl _list {
struct dl _list *Next;
struct dl _|ist *Previous;
i nt Dat a;
s
Thislist features two pointers. one forward, to the following element in the list, and one back-
ward, to the previous element of the list.

A special declaration that can only be used in structures is the bit-field declaration. You can
specify in astructure afield with a certain number of bits. That number is given asfollows:

struct flags {
unsi gned HasBeenProcessed: 1;

58. The usage of the #pragma pack construct is explained in lcc-win32 user’s manual. Those
explanations will not be repeated here.

Structures and unions 83

unsi gned HasBeenPri nted: 1;
unsi gned Pages: 5;
s
This structure has three fields. Thefirst, isabit-field of length 1, i.e. a Boolean value, the sec-
ond is also a hit-field of type Boolean, and the third is an integer of 5 bits. In that integer you

can only store integers from zero to 31, i.e. from zeroto 2 to the 5th power, minus one. In this
case, the programmer decides that the number of pages will never exceed 31, so it can be
safely stored in this small amount of memory.

We access the data stored in a structure with the following notation:
<structure-nane> ‘.’ field-nane

or
<structure-nane ‘->" field-nane

We use the second notation when we have a pointer to a structure, not the structure itself.
When we have the structure itself, or areference variable, we use the point.

Here are some examples of this notation:
void fn(void)

{
coordi nate c;
coordi nate *pc;
coordinate & c = c;
c.Xx = 67; // Assigns the field x
c.y = 78;// Assigns the fieldy
pc = &; // W nake pc point to c
pc->x = 67; // W change the field x to 67
pc->y = 33;// We change the field y to 33
rc.x = 88;// References use the point notation
}

Structures can contain other structures or types. After we have defined the structure coordinate
above, we can use that structure within the definition of a new one.

struct DataPoint {
struct coordi nate coords;
int Data;

b
This structure contains a“ coordinate”’ structure. To access the “x” field of our coordinate in a
DataPoint structure we would write:

struct DataPoint dp;
dp. coords.x = 78

Structures can be contained in arrays. Here, we declare an array of 25 coordinates:

struct coordinate coordArray[25];

To access the x coordinate from the 4" member of the array we would write:
coordArray[3].x = 89;

Note (again) that in C array indexes start at zero. The fourth element is numbered 3.

Many other structures are possible their number isinfinite:

struct custoner {
int ID
char *Nane;
char *Address;
doubl e bal ance;

84 C programming with lcc-win32

tinme_t |astTransaction;
unsi gned hasACar: 1;
unsi gned nmai | edAl ready: 1;

s
Thisis aconsecutive amount of storage where:
* aninteger containsthe ID of the customer,
» amachine address pointing to the start of the character string with the customer name,
 another address pointing to the start of the name of the place where this customer lives,
» adouble precision number containing the current balance,
» atime_t (timetype) date of last transaction,

» and other bit fields for storing some flags.
struct nail Message {
Messagel D | D
tinme_t date;
char *Sender;
char *Subj ect;
char *Text;
char *Attachenents;

s
This one starts with another type containing the message 1D, again a time_t to store the date,
then the addresses of some character strings.

The set of functions that use a certain type are the methods that you use for that type, maybein
combination with other types. There is no implicit “this” in C. Each argument to a function is
explicit, and there is no predominance of anyone.

A cust oner cansendanai | Message to the company, and certain functions are possible,
that handle mai | Messages from customers. Other mai | Messages aren’t from custom-
ers, and are handled differently, depending on the concrete application.

Because that's the point here: an application is a coherent set of types that performs a certain
task with the computer, for instance, sending automated mailings, or invoices, or sensing the
temperature of the system and acting accordingly in a multi-processing robot, or whatever. It
Isup to you actually.

Note that in C there is no provision or compiler support for associating methods in the struc-
ture definitions. You can, of course, make structures like this;

struct custoner {
int ID
char *Name;
char *Address;
doubl e bal ance;
tinme_t |astTransaction;
unsi gned hasACar: 1;
unsi gned mai | edAl ready: 1;
bool (*UpdateBal ance) (struct custoner *Custoner,
doubl e newBal ance) ;

1
The new field, is afunction pointer that contains the address of a function that returns a Bool-
ean result, and takes a customer and a new balance, and should (eventually) update the balance
field, that isn’t directly accessed by the software, other than trough this procedure pointer.

When the program starts, you assign to each structure in the creation procedure for it, the func-
tion DefaultGetBalance() that takes the right arguments and does hopefully the right thing.

Structures and unions 85

This allows you the flexibility of assigning different functions to a customer for calculating
his/her balance according to datathat is known only at runtime. Customers with along history
of overdraws could be handled differently by the software after all. But thisisno longer C, is
the heart of the application.

True, there are other languages that let you specify with greater richness of rules what and how
can be sub classed and inherited. C, allows you to do anything, there are no other rules here,
other the ones you wish to enforce.

You can subclass a structure like this. You can store the current pointer to the procedure some-
where, and put your own procedure instead. When your procedureis called, it can either:

Do some processing before calling the original procedure
Do some processing after the original procedure returns
Do not call the original procedure at all and replace it entirely.

We will show a concrete example of this when we speak about windows sub classing later.
Sub classing allows you to implement dynamic inheritance. This is just an example of the
many ways you can program in C.

But isthat flexibility really needed?
Won't just

bool Updat eBal ance(struct custoner *pCustonmer, double newBal ance);
doit too?

WEell it depends. Actions of the general procedure could be easy if the algorithm is simple and

not too many special cases are in there. But if not, the former method, even if more compli-
cated at first sight, is essentially simpler because it allows you greater flexibility in small man-
ageable chunks, instead of a monolithic procedure of severa hundred lines full of special case
code...

Mixed strategies are possible. You leave for most customers the UpdateBalance field empty
(filled with a NULL pointer), and the global UpdateBalance procedure will use that field to
calculate its results only if there is a procedure there to call. True, this wastes 4 bytes per cus-
tomer in most cases, since the field is mostly empty, but thisis a small price to pay, the struc-
ture is probably much bigger anyway.

1.17.2 Structure size

In principle, the size of a structure is the sum of the size of its members. Thisis, however, just
avery genera rule, since it depends a lot on the compilation options valid at the moment of
the structure definition, or in the concrete settings of the structure packing as specified with

the #pragma pack() construct.>®

Normally, you should never make any assumptions about the specific size of a structure. Com-
pilers, and lcc-win32 is no exception, try to optimize structure access by aligning members of
the structure at predefined addresses. For instance, if you use the memory manager, pointers
must be aligned at addresses multiples of four, if not, the memory manager doesn’'t detect
them and that can have disastrous consequences.

59. Note that putting structure names in typedefs all uppercase is an old habit that somehow belongs to
theway | learned C, but isin no way required by the language. Personally | find those all-uppercase names
clearer as a way of indicating to the reader that a user defined type and not a variable is used, since | have
never used an all-uppercase name for a variable name. Separating these names by upper/lower case improves
the readability of the program, but this is a matter of personal taste.

86 C programming with lcc-win32

The best thing to do is to always use the sizeof operator when the structure size needs to be
used somewhere in the code. For instance, if you want to allocate a new piece of memory
managed by the memory manager, you call it with the size of the structure.

GC mal | oc(si zeof (struct DataPoint)*67);

Thiswill allocate space for 67 structures of type “DataPoint” (as defined above). Note that we
could have written

GC nal | oc(804);
since we have:

struct DataPoint {
struct coordi nate coords;
i nt Dat a;
s
We can add the sizes:

Two integers of 4 bytes for the coordinate member, makes 8 bytes, plus 4 bytes for the Data
member, makes 12, that multiplies 67 to make 804 bytes.

But thisis very risky because of two reasons.
Compiler alignment could change the size of the structure

If you add a new member to the structure, the sizeof() specification will continue to work,
since the compiler will correctly recalculate it each time. If you write the 804 however, when
you add a new member to the structure this number has to be recal culated again, making one
more thing that can go wrong in your program.

In generdl, it isaways better to use compiler-calculated constants like sizeof() instead of hard-
wired numbers.

1.17.3 Defining new types

Structures are then, away of augmenting the type system by defining new types using already
defined ones. The C language allows you to go one step further in this direction by allowing
you to specify a new type definition or typedef for short.

This syntax for doing thisislike this:
typedef <already defined type> <new name>;
For instance, you can specify a new type of integer caled “my integer” with:
typedef int nmy_integer;
Then, you can use this new type in any position where the “int” keyword would be expected.
For instance you can declare:
my_integer i;
instead of:
int i;
This can be used with structures too. For instance, if you want to avoid typing at each time you
useacoordinatest ruct coordi nate a; you candefine

typedef struct coordinate COORDINATE;
and now you can just write:

COORDI NATE a;

what is shorter, and much clearer.%°

Structures and unions 87

This new name can be used with the si zeof () operator too, and we can write:
GC _mal | oc(si zeof (COORDI NATE)) ;

instead of the old notation. But please keep in mind the following: once you have defined a
typedef, never use the “struct” keyword in front of the typedef keyword, if not, the compiler
will get really confused.

1.17.4 Unions

Unions are similar to structures in that they contain fields. Contrary to structures, unions will
store al their fields in the same place. They have the size of the biggest field in them. Here is
an example:
union intfloat {
int i;
doubl e d;
s
This union has two fields: an integer and a double precision number. The size of an integer is
four in Icc-win32, and the size of a double is eight. The size of this union will be eight bytes,
with the integer and the double precision number starting at the same memory location. The
union can contain either an integer or a double precision number but not the two. If you store
an integer in this union you should access only the integer part, if you store a double, you
should access the double part. Field access syntax is the same as for structures. we use always
the point.

Using the definition above we can write:

i nt mai n(voi d)

{

union intfloat ifl;

union intfloat *plntfl = & fl;
plntfl.i = 2;
pintfl.d = 2.87;

}

First we assign to the integer part of the union an integer, then we assign to the double preci-
sion part adouble.

Unions are useful for storing structures that can have severa different memory layouts. In
general we have an integer that tells us which kind of data follows, then a union of severa
types of data. Suppose the following data structures:

struct fileSource {
char *Fil eNane;
int Last Use;

s

struct networ kSource {
i nt socket;
char *Server Nane;
int Last Use;

s

struct wi ndowSource ({
W NDOW wi ndow;

60. Anidentifier can aso represent a macro or a macro argument, but here we will assume that the pre-
processor aready has done its work.

88 C programming with lcc-win32

int LastUse;
s
All of this data structures should represent a source of information. We add the following
defines:

#define | SFILE 1
#defi ne | SNETWORK 2
#defi ne | SW NDOW 3

and now we can define a single information source structure:

struct Source {
int type;
uni on {
struct fileSource file;
struct networ kSource network;
struct w ndowSource w ndow,
} info;
}
We have an integer at the start of our generic “ Source” structure that tells us, which of the fol-
lowing possible typesis the correct one. Then, we have a union that describes all of our possi-
ble data sources.

We fill the union by first assigning to it the type of the information that follows, an integer that
must be one of the defined constants above. Then we copy to the union the corresponding
structure. Note that we save a lot of wasted space, since al three structures will be stored
beginning at the same location. Since a data source must be one of the structure types we have
defined, we save wasting memory in fields that would never get used.

Another usage of unionsisto give a different interpretation of the same data. For instance, an
MMX register in an x86 compatible processor can be viewed as two integers of 32 bits, 4 inte-
gers of 16 bits, or 8 integers of 8 bits. Lcc-win32 describes this fact with a union:

typedef struct pW/{
char hi gh;
char | ow;
} _packedword; // 16 bit integer

typedef struct _pDW{
_packedwWord hi gh;
_packedWord | ow;
} _packedDword; // 32 bit integer of two 16 bit integers

typedef struct _pQW{
_packedDwor d hi gh;

_packedDwWord | ow;
} _packedQnord; // 64 bits of two 32 bit structures

typedef union _ Union {
_packedQWord packed;
i nt dwords|2];
short words[4];
char bytes[8];
} _mxdata; // This is the union of all those types

Union usage is not checked by the compiler, i.e. if you make a mistake and access the wrong
member of the union, this will provoke a trap or another failure at run time. One way of
debugging this kind of problem is to define all unions as structures during development, and
see where you access an invalid member. When the program is fully debugged, you can switch
back to the union usage.

Using structures 89

1.18 Using structures

Now that we know how we can define structures we can (at last) solve the problem we had
with our character frequencies program.

We define a structure containing the name of the character like this:

typedef struct tagChars {
i nt Charact er Val ue;
i nt Frequency;

} CHARS;

Note that here we define two things in a single statement: we define a structure called “tag-
Chars’ with two fields, and we define atypedef CHARS that will be the name of this type.

Within the program, we have to change the following things:

We have to initialize the name field of the array that now will be an array of structures and not
an array of integers.

When each character isread we have to update the frequency field of the corresponding struc-
ture.

When displaying the result, we use the name field instead of our count variable.
Hereisthe updated program:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

typedef struct tagChars {
i nt Charact er Val ue;
i nt Frequency;

} CHARS;

CHARS Frequenci es[256]; // Array of frequencies

int conpare(const void *argl, const void *arg2)

{

CHARS *Argl = (CHARS *)argil;

CHARS *Arg2 = (CHARS *)arg2

/* Conpare both integers */

return (Arg2->Frequency - Argl->Frequency);
}

int main(int argc,char *argv[])
{

i nt count =0;

FILE *infile;

int c;

if (argc < 2) {
printf("Usage: countchars <file nane>\n");
exit(l);

infile = fopen(argv[1],"rb");

if (infile == NULL) {
printf("File % doesn't exist\n",argv[1]);
exit(l);

}

for (int i =0; i<256; i++) {
Frequenci es[i]. CharacterValue = i;

}

90 C programming with lcc-win32

}

We transformed our integer array Frequencies into a CHARS array with very few changes:
just the declaration. Note that the array is still accessed asanormal array would. By the way, it

c = fgetc(infile);
while (c !'= EOF) {
count ++;
if (c>="")
Frequenci es[c] . Frequency++;
c = fgetc(infile);
}
fclose(infile);
printf("%l chars in file\n", count);
gsort (Frequenci es, 256, si zeof (CHARS) , conpare) ;
for (count=0; count<256; count++) {
i f (Frequencies[count].Frequency != 0) {
printf("9%8c (%d) = %\ n",

Fr equenci es[count]. Char act er Val ue,
Fr equenci es[count]. Char act er Val ue,

Frequenci es[count]. Frequency) ;

}
}

return 0O;

isanormal array.

We changed our “compare” function too, obviously, since we are now comparing twvo CHARS
structures, and not just two integers. We have to cast our arguments into pointers to CHARS,
and | decided that using two temporary variables would be clearer than a complicated expres-

sion that would eliminate those.

The initialization of the CharacterValue field is trivially done in a loop, just before we start
counting chars. We assign to each character an integer from O to 256 that’s all.

When we print our results, we use that field to get to the name of the character, since our array
that before gsort was neatly ordered by characters, is now ordered by frequency. As before, we
write the character as aletter with the %c directive, and as a number, with the %d directive.

When we call this program with:

frequencies frequencies.c
we obtain at last:
1311 charsinfile

(32) = 154 e (101) = 77 n (110) = 60
i (105) = 59 r (114) = 59 c (99) =52
t (116) = 46 u (117) = 35 a (97) = 34
. (59) = 29 o (111) = 29 f (102) = 27
s (115) = 26 ((_40) = 25 Yy (41) = 25
I (108) = 20 g (103) = 18 F(70) = 17
q (113) = 16 =(61) =15 C(67) =13
h (104) = 12 A(65) = 12 d (100) = 11
. (44) = 11 [(91) = 10 1T (93) = 10
* (42) = 10 " (34) = 10 { (123) = 9
2 (50) =09 p (112) = 9 Y (125) = 9
1(49) =38 ~ (46) = 8 y (121) = 8
+(43) =8 S(83 =7 R(82 =7
H(72) =7 >(62) =6 <(60) =6
%(37) =5 m(109) = 5 v (118) = 5

Using structures 91

0 (48) =5 I (47) = 4 5 (53) =4
\V (92) =4 V(86) =4 6 (54) = 4

(45) = 3 x (120) = 3 b (98 =3

(39) =3 L(76) =3 I (33) =2
—(58) = 2 # (35) =2 U(85 =2
E(69) =2 4 (52) =1 I (73) =1
w(119) = 1 O(79 =1 z (122) =1
3(51) =1 N(78) =1

We see immediately that the most frequent character is the space with a count of 154, followed
by the letter ‘€ with acount of 77, then ‘n’ with 60, etc.

Strange, where does “z” appear? Ah yes, in sizeof. And that 1? Ah in FILE, ok, seems to be
working.

1.18.1 Fine points of structure use

1) When you have a pointer to a structure and you want to access a member of it you should
use the syntax:
pointer->field

2) When you have a structure OBJECT, not a pointer, you should use the syntax:
object.field
Beginners easily confuse this.

3) When you have an array of structures, you index it using the normal array notation syntax,
then use the object or the pointer in the array. If you have an array of pointers to structures
you use:

array[index]->field

4) If you have an array of structures you use:
array[index].field

5) If you areinterested in the offset of the field, i.e. the distance in bytes from the beginning of

the structure to the field in question you use the of f set of macro defined in stddef.h:
of fsetof (structure or typedef nane, nenber nane)

For instance to know the offset of the Frequency field in the structure CHARS above we
would write:

of f set of (CHARS, Fr equency)
Thiswould return an integer with the offset in bytes.

Summary: Files are a sequence of bytes. They are central to most programs. Here is a short
overview of the functions that use files:

Name Purpose
fopen Opensafile
fclose Closes afile
fprintf Formatted output to afile
fputc Puts a character in afile
putchar Puts a character to stdout
fputs Putsastring in afile.

92 C programming with lcc-win32

fread Reads from afile a specified amount of datainto a buffer.

freopen Reassigns afile pointer

fscanf Reads a formatted string from afile

fsetpos Assigns the file pointer (the current position)

fseek Movesthe curren_t positi onrelative to the start of thefile, to the end of thefile, or relative
to the current position

ftell returns the current position

fwrite Writes a buffer into afile

tmpnam Returns atemporary file name

unlink Erases afile

remove Erases afile

rename Renames afile.

rewind Repositions the file pointer to the beginning of afile.

setbuf Contrals file buffering.

ungetc Pushes a character back into afile.

1.19 Identifier scope and linkage

Until now we have used identifiers and scopes without really caring to define precisely the
details. Thisisunavoidable at the beginning, some things must be left unexplained at first, but
it is better to fill the gaps now.

Anidentifier in C can denote:5*
e anobject.
» afunction
e atag or amember of a structure, union or enum
* atypedef
» alabel

For each different entity that an identifier designates, the identifier can be used (is visible)
only within aregion of a program called its scope. There are four kinds of scopesin C.

Thefile scopeis built from all identifiers declared outside any block or parameter declaration,
it is the outermost scope, where global variables and functions are declared.

A function scopeis given only to label identifiers.

The block scope is built from all identifiers that are defined within the block. A block scope
can nest other blocks.

The function prototype scope is the list of parameters of a function. Identifiers declared
within this scope are visible only within it.

Let’s see a concrete example of this:

static int Counter = 780;// file scope
extern void fn(int Counter); // function prototype scope
void function(int newal ue, int Counter) // Block scope

61. You seetheinfinite loop here? Tell me: why is thisloop never ending? Look at the code again.

Top-down analysis 93

{
doubl e d = newval ue;
| abel :
for (int i = 0; i< 10;i++) {
if (i < newvalue) {
char nsg[45];

int Counter = 78;
sprintf(msg,"i=%l\n",i*Counter); <

}
it (i == a)
goto | abel ; 92

}
}

At the point indicated by the arrow, the poor “Counter” identifier has had a busy life:
* It wasbound to an integer object with file scope
» Then it had another incarnation within the function prototype scope
* Then, it was bound to the variables of the function ‘ setCounter’ as a parameter

» That definition was again “shadowed” by a new definition in an inner block, as a local
variable.

The value of “Counter” at the arrow is 78. When that scope is finished its value will be the
value of the parameter called Counter, within the function “function”.

When the function definition finishes, the file scope is again the current scope, and “ Counter”
revertsto its value of 780.

The“linkage” of an identifier refersto the visibility to other modules. Basically, al identifiers
that appear at a global scope (file scope) and refer to some object are visible from other mod-
ules, unless you explicitly declare otherwise by using the “static” keyword.

Problems can appear if you first declare an identifier as static, and later on, you define it as
external. For instance:

static void foo(void);
and severa hundred lines below you declare:

voi d foo(void) {

}
Which one should the compiler use? static or not static? That is the question...

Lcc-win32 chooses always non-static, to the contrary of Microsoft’s compiler that chooses
always static. Note that the behavior of the compiler is explicitly left undefined in the stan-
dard, so both behaviors are correct.

1.20 Top-down analysis

The goal of this introduction is not to show you alot of code, but to tell you how that code is
constructed. A central point in software construction is learning how you decompose atask in

62. Yes, but then all initializations are done out of their respective contexts. Some people say thisisthe
wrong way to go, and that each data type should initialize in a separate init procedure. In this concrete
example and in many situations, making a global init procedure is a correct way of building software. Other
contexts may be different of course.

94 C programming with lcc-win32

sub-tasks, so that the whole is more modular, and easier to manage and change. Let’s go back
to our frequencies example. We see that the “main” function accomplishes several tasks: it
checks its arguments, opens afile, checks the result, initializes the Frequency array, etc.

This is an example of a monoalithic, highly complex function. We could decompose it into
smaller pieces easly, for example by assigning each task to a single procedure.

One of the first things we could do is to put the checking of the input arguments in a single
procedure:

FI LE *checkargs(int argc,char *argv[])

{
FILE *infile = NULL;
if (argc < 2) {
printf("Usage: countchars <file nane>\n");
}
el se {
infile = fopen(argv[1],"rb");
if (infile == NULL) {
printf("File % doesn't exist\n",argv[1]);
}
}
return infile;
}

We pass the arguments of main to our check procedure, that writes the corresponding error
message if appropriate, and returns either an open FILE *, or NULL, if an error was detected.
The calling function just tests this value, and exitsif something failed.

int main(int argc,char *argv[])

{
i nt count =0;
FILE *infile = checkargs(argc, argv);
int c;
if (infile == NULL)
return 1;
for (int i = 0; i<256; i++) {
Frequenci es[i]. CharacterVal ue = i;
}
the rest of "nmain"
}

The details of how the checking of the arguments is done is now away from the main line of
the «main» function. The whole function is now easier to read, and the title of the piece of
code that we hid away tells the reader immediately what is going on behind that function call.

The next step, isthe initializing of the Frequencies array. Thisis common pattern that we find
very often when building software: most programs initialize tables, and do some setup before
actually beginning the computation they want to perform. The best is to collect al those ini-
tializations into a single procedure, so that any new initializations aren’t scattered all around

but concentrated in asingle function.%®

63. Wefind very often the expression:
while ((c=fgetc(infile)) '=EOF) { ... }

instead of the expression above. Both expressions are strictly equivalent, since we first execute the fgetc
function, assigning the result to c, then we compare that result with EOF. In the second, dightly more
complicated, we need a set of parentheses to force execution to execute the fgetc and the assignment first.
There isthe danger that ¢ would get assigned the result of the comparison of the fgetc result with EOF instead
of the character itself.

Top-down analysis 95

void Initialize(void)
{
for (int i = 0; i<256; i++) {
Frequenci es[i]. CharacterValue = i;
}

}

Following our analysis of “main”, we see that the next steps are the processing of the opened
file. We read a character, and we update the Frequencies array. Well, thisis a single task that
can be delegated to afunction, a function that would need the opened file handle to read from,
and a Frequencies array pointer to be updated.

We develop a ProcessFile function as follows:
int ProcessFile(FILE *infile, CHARS *Frequenci es)

{
int count = O;
int ¢ = fgetc(infile);%
while (c !'= EOF) {
count ++;
if (c>="")
Frequenci es[c] . Frequency++;
c = fgetc(infile);
}
return count;
}

The interface with the rest of the software for this function looks like this;
count = ProcessFile(infile, Frequencies);

We could have avoided passing the Frequencies array to ProcessFile, since it is a global vari-
able. Its scope is valid when we are defining ProcessFile, and we could use that array directly.
But there are good reasons to avoid that. Our global array can become a bottleneck, if we
decide | ater to process more than one file, and store the results of several files, maybe combin-
ing them and adding up their frequencies.

Another reason to explicitly passthe Fr equenci es array as a parameter is of course clarity.
The Fr equenci es array isaparameter of thisfunction, since this function modifiesit. Pass-
ing it explicitly to aroutine that modifies it makes the software clearer, and this is worth the
few cycles the machine needs to push that address in the stack.

When we write software in today’s powerful micro-processors, it isimportant to get rid of the
frame of mind of twenty years ago, when saving every cycle of machine time was of utmost
importance. Pushing an extra argument, in this case the address of the Fr equenci es array,
takes 1 cycle. At a speed of 1400-2500 MHz, thiscycleisn't ahigh price to pay.

Continuing our analysis of our “main” function, we notice that the next task, is displaying the
output of the frequencies array. This is quite a well-defined task, since it takes the array as
input, and should produce the desired display. We define then, anew function Di spl ayQut -
put () that will do that. Its single parameter isthe same Fr equenci es array.

voi d Di spl ayQut put (CHARS *Fr equenci es)

{

for (int count=0; count<256;count++) {
i f (Frequencies[count].Frequency != 0) {
printf("9%8c (%id) = %\ n",

64. The standard files defined by the standard are: stdin, or standard input, to read from the current input
device, the stdout or standard output, and the stderr stream, to show errors. Initially, stdin is bound to the
keyboard, stdout and stderr to the screen.

96 C programming with lcc-win32

Fr equenci es[count]. Char act er Val ue,
Fr equenci es[count]. Char act er Val ue,
Frequenci es[count]. Frequency);

}
}

Let’slook at our “main() function again:

int main(int argc,char *argv[])

{
int count;
FILE *infile = checkargs(argc, argv);
if (infile == NULL)
return 1,
Initialize();
count = ProcessFile(infile, Frequencies);
fclose(infile);
printf("%l chars in file\n", count);
gsort (Frequenci es, 256, si zeof (CHARS) , conpare) ;
Di spl ayCQut put (Frequenci es) ;
}

Note how much clearer our “main” function is now. Instead of alot of code without any struc-
ture we find a much smaller procedure that is constructed from smaller and easily understand-
able parts.

Now, suppose that we want to handle several files. With this organization, it is straightforward
to arrangefor thisin aloop. ProcessFile() receives an open FILE and a Frequencies array, both
can be easily changed now. A modular program is easier to modify than a monolithic one!

We see too that the function that process the files |eaves them open. We could streamline more
«mainx» if we got rid of that in the ProcessFile() function, but | find it personally better that the
same function that opens afile closes it too, so that the reader can seeif the fopen/fclose calls
match.

1.21 Extending a program

Let’s suppose then, that we want to investigate all frequencies of characters in a directory,
choosing all files that end in a specific extension, for instance *.c. In principle thisis easy, we
pass to ProcesskFile a different open file each time, and the same Frequencies array.

We develop a GetNextFile function, that using our “*.c” character string, will find the first file
that meets this name specifications (“foo.c” for example), and then will find all the other files
in the same directory that end with a..c extension.

How do we do this?

WEell, looking at the documentation, we find that we have two functions that could help us:
findfirst, and findnext. The documentation tells us that findfirst has a prototype like this:

long findfirst(char *spec, struct finddata t *fileinfo);

This means that it receives a pointer to a character string, and will fill the fileinfo structure
with information about the fileit finds, if it findsit.

We can know if findfirst really found something by looking at the return result. It will be -1 if
there was an error, or a“unique value” otherwise. The documentation tell ustoo that errno, the
global error variable will be set to ENOENT if there wasn't any file, or to EINVAL if the file
specification itself contained an error and findfirst couldn’'t useit.

Extending a program 97

Then, there is findnext that looks like this:
int findnext(long handle,struct finddata t *fileinfo);

It usesthe “unique value’ returned by findfirst, and fills the fileinfo structure if it finds another
file that matches the original specification. If it doesn’'t find afile it will return -1, as findfirst.
If it does find another file, it will return zero.

We see now that a FILE that was uniquely bound to a name is now a possible ambiguous file
specification, that can contain a_finddata_t (whatever that is) that can be used to read several
FILEs.

We could formalize this within our program like this:

typedef struct tagStream {
char *Nane;
struct finddata t Fi ndDat a;
| ong handl e;
FILE *file;
} STREAM
Our function checkargs() returns a FILE pointer now. It could return a pointer to this
STREAM structure we have just defined, or NULL, if there was an error. Our program then,
would loop asking for the next file, adding to our Frequencies array the new character frequen-
ciesfound.

The first function to be modified is checkargs. We keep the interface with the calling function
(return NULL on error), but we change the inner workings of it, so that instead of calling
fopen, it callsfindfirst.

STREAM *checkargs(i nt argc, char *argv[])

{
STREAM *infile = NULL;
long findfirstResult;
struct finddata_ t fd;
if (argc < 2) {
printf("Usage: countchars <file nane>\n");
}
el se {
findfirstResult = findfirst(argv[1], & d);
if (findfirstResult < 0) {
printf("File % doesn't exist\n",argv[1]);
return NULL;
}
}
infile = mall oc(sizeof (STREAM);
infile->Nane = argv[1];
mencpy(& nfil e->Fi ndData, &fd,
sizeof (struct _finddata_t));
infile->File = fopen(fd.nane, "rb");
infile->handle = findfirstResult;
return infile;
}

We store in the local variable findfirstResult the long returned by findfirst. We test then, if
smaller than zero, i.e. if something went wrong. If findfirst failed, this is equivalent to our
former program when it opened afile and tested for NULL.

But now comes an interesting part. If all went well, we ask the system using the built-in mem-
ory alocator “malloc” for a piece of fresh RAM at least of size STREAM. If this cal fails,
there is no more memory left. For the time being (see later) we ignore this possibility.

98 C programming with lcc-win32

We want to store in there al the parameters we need to use the findfirst/findnext function pair
with easy, and we want to copy the finddata _t into our own structure, and even put the name of
the stream and a FILE pointer into it. To do that, we need memory, and we ask it to the “mal-
loc” allocator.

Once that done, we fill the new STREAM with the data:
» we set its name using the same pointer as argv[1],
» we copy the fd variable into our newly allocated structure, and

» we set the file pointer of our new structure with fopen, so that we can use the stream to
read characters fromit.

Another aternative to using the built-in memory allocator would have been to declare aglobal
variable, call it CurrentStream that would contain all our data. We could have declared some-
where in the global scope something like:

STREAM Curr ent St ream
and use always that variable.

This has several drawbacks however, the bigger of it being that global variables make follow-
ing the program quite difficult. They aren't documented in function calls, they are always
“passed” implicitly, they can't be used in amulti-threaded context, etc.

Better isto allocate anew STREAM each time we need one. Thisimplies some memory man-
agement, something we will discuss in-depth later on.

Now, we should modify our ProcessFile function, since we are passing to it a STREAM and
not aFILE. Thisis easily done like this:

int ProcessFil e(STREAM *infil e, CHARS *Frequenci es)
{

int count = O;
int ¢ = fgetc(infile->file);
while (c !'= EOF) {
count ++;
if (c>="")
Frequenci es[c] . Frequency++;
c = fgetc(infile->file);
}

return count;

}

Instead of reading directly from the infile argument, we use the “file” member of it. That's all.
Note that infile is a pointer, so we use the notation with the arrow, instead of a point to access
the “file” member of the structure.

But there is something wrong with the name of the function. It wrongly implies that we are
processing a FILE instead of a stream. Let’s change it to ProcessStream, and change the name
of the stream argument to instream, to make things clearer:

i nt ProcessStream STREAM *i nst ream CHARS *Fr equenci es)
{
int count = O;
int ¢ = fgetc(instream>file);
while (c !'= EOF) {
count ++;
if (c>="")
Frequenci es[c] . Frequency++;
c = fgetc(instream>file);
}

return count;

}

Extending a program 99

Thislooks cleaner.
Now we have to change our “main” function, to make it read all the files that match the given

name.

Our new main procedure looks like this:

int main(int argc,char *argv[])

{

}

i nt count =0;
STREAM *i nfi |l e=checkar gs(argc, argv);

if (infile == NULL) {
return(l);
}
Initialize();
do {
count += ProcessStream(infile, Frequenci es);
fclose(infile->file);
infile = GetNext(infile);
} while (infile = 0);
printf("%l chars in file\n", count);
gsort (Frequenci es, 256, si zeof (CHARS) , conpare) ;
Di spl ayCut put (Frequenci es) ;
return O;

We didn’t have to change alot, thanks to the fact that the complexities of reading and handling
a stream are now hidden in a function, with well-defined parameters. We build a GetNext
function that returns either avalid new stream or NULL, if it fails. It looks like this:

STREAM * Get Next (STREAM * st r eam)

{

}

STREAM *resul t;
struct finddata t fd;
I ong findnextResult = _findnext(stream >handl e, & d);

if (findnextResult < 0)
return NULL;

result = mall oc(sizeof (STREAM) ;
mencpy(resul t->Fi ndDat a,

&f d,

sizeof (struct _finddata_t));
result->handl e = stream >handl e;
result->file = fopen(fd.nanme,"rb");
return result;

In the same manner that we allocate RAM for our first STREAM we allocate now a new one,
and copy into it our “finddata” handle, and we open thefile.

We compile, and we get a compiler warning:

D:\lcc\exanples>lcc -g2 freql.c

Warning freql.c: 44 missing prototype for nencpy

Warning freql.c: 94 missing prototype for nencpy

0 errors, 2 warnings
Yes, but where is memcpy defined? We look at the documentation using F1 in Wedit, and we
find out that it needs the <string.h> header file. We recompile and we get:

H:\ I cc\exanpl es>l cc freql.c

100 C programming with lcc-win32

Error freql.c: 95 type error in argunent 1 to “~nencpy'; found
“struct _finddata t' expected “pointer to void'
1 errors, 0 warnings

Wow, an error. We look into the offending line, and we see:

mencpy(resul t->Fi ndDat a, & d, si zeof (struct _finddata t));
WEell, we are passing it a structure, and the poor function is expecting a pointer !
Thisisaserious error. We correct it like this:

mencpy(& esul t - >Fi ndDat a, & d, si zeof (struct _finddata t));

We take the address of the destination structure using the address-of operator “&”. We see that
we would have never known of this error until run-time when our program would have
crashed with no apparent reason; a difficult error to find. Note: always use the right header file
to avoid thiskind of errors!

Our program now lookslike this:

#i nclude <stdio.h>// W need it for using the FILE structure
#i nclude <stdlib.h>/ W need it for using malloc
#include <io.h>// W need it for using findfirst/findnext
#i nclude <string.h>/ W need it for nencpy
typedef struct tagChars {
int CharacterValue;// The ASCI| value of the character
int Frequency;// How many seen so far
} CHARS;
typedef struct tagStream {
char Nanme;// Input nane with possible “*” or “?” chars in it
struct finddata t FindData;
| ong handl e;
FILE *file;// An open file
} STREAM
CHARS Frequenci es[256]; // Array of frequencies
int conpare(){} // Skipped, it is the same as above
STREAM *checkargs(i nt argc, char *argv[])

{
STREAM *infile = NULL;
long findfirstResult;
struct finddata t fd;
if (argc < 2) { // Test if enough argunments were passed
printf("Usage: countchars <file nane>\n");
}
else {// Call the findfirst function with the nane and info
buf f er
findfirstResult = findfirst(argv[1l], &d);
/1l Test result of findfirst, and return i mediately NULL if
wr ong

if (findfirstResult < 0) {
printf("File % doesn't exist\n",argv[1]);
return NULL;
}
/1 Ask nore nenory to the allocator
infile = mal |l oc(si zeof (STREAM) ;
/1 Set the nane of the new stream
infile->Nane = argv[1];
/I Note the first argument of this call: it's the address within the infile structure of the FindData
/I member. We take the address with the “&” operator. Since we are using a pointer, we have
/Il to dereference a pointer, i.e. with “->" and not with the “.”. Note that the “&” operator is used
/I with the “fd” local variable to obtain a pointer from a structure member.
mencpy(& nfil e->Fi ndDat a, & d,

Extending a program

sizeof (struct _finddata_t));
infile->file = fopen(fd.nane,"rb");
infile->handle = findfirstResult;

}

return infile;
}
void Initialize(void) { thisisthe same as the function before}
i nt ProcessStrean(STREAM *i nst ream CHARS *Fr equenci es)
{
int count = O;
int ¢ = fgetc(instream>file);
while (c !'= EOF) {
count ++;
if (c>="")
Frequenci es[c] . Frequency++;
c = fgetc(instream>file);
}

return count;

}

101

voi d Di spl ayQut put (CHARS *Fr equenci es) { this is the same function as before }

STREAM * Get Next (STREAM *st r eam)
{
STREAM *resul t;
struct finddata t fd;
I ong findnextResult = _findnext(stream >handl e, & d);

if (findnextResult < 0)
return NULL,

result = mall oc(sizeof (STREAM) ;
mencpy(& esul t - >Fi ndDat a, &f d,

sizeof (struct _finddata_t));
resul t->handl e = stream >handl ¢;
result->file fopen(fd. nane, "rb");
resul t - >Nane st r eam >Nane;
return result;

}
int main(int argc,char *argv[])
{
i nt count =0;
STREAM *i nfi | e=checkar gs(argc, argv);

if (infile == NULL) {
return(l);
}
Initialize();
do {
count += ProcessStreant(infile, Frequenci es);
fclose(infile->file);
infile = GetNext(infile);
} while (infile !'=0);
printf("%l chars in file\n", count);
gsort (Frequenci es, 256, si zeof (CHARS) , conpare) ;
Di spl ayCQut put (Frequenci es) ;
return O;

102 C programming with lcc-win32

1.22 Improving the design

There are several remarks that can be done about our program. The first one is that the mem-
ory alocator could very well fail, when there is no more memory available. When the aloca-
tor fails, it returns NULL. Since we never test for this possibility, our program would crash in
low memory conditions. What a shame!

We arrange for this immediately. Instead of using the allocator, we will write a function that
will call the allocator, test the result, and call the exit() routine if there is no more memory |eft.
Continuing processing without more memory isimpossible anyway.

void *xmal | oc(unsi gned int size)

{

void *result = malloc(size);

if (result == NULL) {
fprintf(sdterr,
No nore nenory |eft!\nProcessing stops\n);
exit(l);
}

return result;

}

Note that we keep the same signature, i.e. the same type of result and the same type of argu-
ments as the original function we want to replace. Thisis function sub classing.

Note too, that we use fprintf instead of printf. Fprintf takes an extra argument, afile where the
output should go. We use the predefined file of standard error, instead of the normal output file
stdout, that printf implicitly takes.

Why?

Because it is possible that the user redirects the output to a file instead of |etting the output go
directly to the screen. In that case we would write our error messages to that file, and the user
would not see the error message.%°

We change all occurrences of malloc by xmalloc, and this error is gone.

We change too, all other error-reporting functions, to take into account stderr.

But there are other issues. Take for instance our finddata t structure that we carry around in
each STREAM structure. What's its use? We do not use it anywhere; just copy it into our
STREAM.

But why we introduced that in the first place?
Well, we didn’t really know much about findfirst, etc, and we thought it could be useful.
So we are stuck with it?

No, not really. Actualy, it is very easy to get rid of it. We just change the structure STREAM
likethis:

typedef struct tagStream {
char *Nane;
| ong handl e;
FILE *file;

} STREAM

65. Some people would say that thisis not “ Standard C”, since the standard doesn’t explicitly allow for
this. But | would like to point out that the standard explicitly states (page 96 of my edition) that: “An
implementation may accept other forms of constant expressions.”. The implementation Icc-win32 then, isfree
to accept the above declaration as a constant expression.

Path handling 103

and we take care to erase any references to that member. We eliminate the memcpy calls, and
that's all. Our program is smaller, uses less memory, and, what is essential, does the same
thing quicker than the older version, since we spare the copying.

It is very important to learn from the beginning that software gains not only with the lines of
code that you write, but also with the lines of code that you eliminate!

1.23 Path handling

But let’s continue with our program. It looks solid, and running it with a few files in the cur-
rent directory works.

Let'stry then:

H:\ Il cc\exanpl es>freql "..\src77*.c" | nore
CRASH!
What's happening?

Following the program in the debugger, we see that we do not test for NULL, when opening a
file. We correct this both in checkargs and GetNext. We write a function Fopen, using the
same model as xmalloc: if it can’t open afile, it will show an error message in stderr, and exit
the program.

FI LE *Fopen(char *nane, char *node)

{

FILE *result = fopen(nane, node);
if (result == NULL) {
fprintf(stderr,
"I nmpossible to open '%'\n", nane);
exit(1);
}

return result;

}
Ok, we changeall f open() into Fopen() , recompile, and we test again:

H:\ I cc\exanpl es>freql "..\src77*.c" | nore
| mpossible to open ‘Al oc.c’

WEell, thislooks better, but why doesn’t open Alloc.c?

WEell, it seems that the path is not being passed to fopen, so that it tries to open the file in the
current directory, instead of opening it in the directory we specify in the command line.

One way to solve this, would be to change our current directory to the directory specified in
the command line, and then try to open the file. We could do thisin checkargs, sinceit is there
where we open afilefor the first time. All other fileswill work, if we change the current direc-
tory there.

How we could do this?

If the argument contains backslashes, it means there is a path component in it. We could copy
the string up to the last backslash, and then change our current directory to that. For instance,
if we find an argument like “.\src77*.c”, the path component would be “..\src77\".

Hereis an updated version of checkargs:

STREAM *checkargs(i nt argc, char *argv[])
{

STREAM *infile = NULL;

long findfirstResult;

struct finddata t fd;

104 C programming with lcc-win32

char *p;

if (argc <2) { ... error handling elided ...
}

el se {
findfirstResult = findfirst(argv[1l], & d);
if (findfirstResult < 0) {
fprintf(stderr,
"File % doesn't exist\n",argv[1]);
return NULL;

}
infile = mall oc(sizeof (STREAM) ;
infile->Nane = argv[1];
p = strrchr(argv[1],"'\\");
if (p) {
*p = 0,
chdir(argv[1]);
*p o= "\,

infile->file = fopen(fd.nane,"rb");
infile->handle = findfirstResult;

}

return infile;

}

We use the library function strrchr. That function will return a pointer to the last position
where the given character appears in the input string, or NULL, if the given character doesn’'t
appear a all. Using that pointer, we replace the backslash with aNULL character. Since a zero
terminates all stringsin C, thiswill effectively cut the string at that position.

Using that path, we call another library function, chdir that does what is name indicates:
changes the current directory to the given one. Its prototype isin <direct.h>.

After changing the current directory, we restore the argument argv[1] to its previous value,
using the same pointer “p”. Note too, that when we enter a backslash in a character constant
(enclosed in single quotes), we have to double it. This is because the backslash is used, as
within strings, for indicating characters like ‘\n’, or others.

But thisisn't a good solution. We change the current directory, instead of actually using the
path information. Changing the current directory could have serious consequences in the
working of other functions. If our program would be a part of a bigger software, this solution
would surely provoke more headaches than it solves. So, let’s use our “name” field, that up to
now isn't being used at all. Instead of passing a name to Fopen, we will pass it a STREAM
structure, and it will be Fopen that will take care of opening the right file. We change it like
this:

FI LE *Fopen(STREAM *st ream char *name, char *node)
{

FILE *result;

char full name[1024], *p;

p = strrchr(stream >Nane, "\\"');
if (p == NULL) {
full nane[0] = O;
}
el se {
*p = 0,
strcpy(full name, stream >Name) ;
strcat (ful I name, "\\");
*p o= "\

Path handling 105

strcat (ful | nane, nanme) ;
result = fopen(fullnane, node);
if (result == NULL) {
fprintf(stderr,
"I npossible to open '%'\n", full name);
exit(1);
}

return result;

}

We declare aarray of characters, with enough charactersinside to hold a maximum path, and a
few more. Then, and in the same declaration, we declare a character pointer, p. This pointer
will be set with strrchr. If there isn't any backslash in the path, we just set the start of our
fullname]] to zero. If there is a path, we cut the path component as we did before, and copy
the path component into the fullname variable. The library function strcpy will copy the sec-
ond argument to the first one, including the null character for terminating correctly the string.

We add then a backdash using the strcat function that appendsto its first argument the second
string. It does this by copying starting at the terminator for the string, and copying all of its
second argument, including the terminator.

We restore the string, and append to our full path the given name. In our example, we copy
into fullpath the character string “..\src77”, then we add the backslash, and then we add the
rest of the name to build anamelike . \src7\alloc.c”.

This done, we look again into our program. Yes, there are things that could be improved. For
instance, we use the 256 to write the number of elements of the array Frequencies. We could
improve the readability of we devised amacro NELEMNTS, that would make the right calcula-
tionsfor us.

That macro could be written as follows:
#defi ne NELEMENTS(array) (sizeof(array)/sizeof(array[0]))

This means just that the number of elements in any array, is the size of that array, divided by
the size of each element. Since all elements have the same size, we can take any element to
make the division. Taking array[Q] is the best one, since that element is always present.

Now, we can substitute the 256 by NELEMENTS(Fr equenci es) , and even if we change
our program to use Unicode, with 65535 different characters, and each character over two
bytes, our size will remain correct. This construct, like many others, points to one direction:
making the program more flexible and more robust to change.

We dtill have our 256 in the definition of the array though. We can define the size of the array
using the preprocessor like this:

#define FrequencyArraySi ze 256

This alows us later by changing this single line, to modify all places where the size of the
array is needed.

Lcc-win32 alows you an aternative way of defining this:

static const int FrequencyArraySize = 256;

Thiswill work just like the pre-processor definition.6®

66. Memory alocation problems plague also other languages like C++ that use a similar schemathan C.

106 C programming with lcc-win32

1.23.1 Security considerations

Let’s come back to the code snippet above:
el se {
*p = 0’
strcpy(full name, stream >Name) ;
strcat (ful I name, "\\");
*p o= "\
}
strcat (ful | nanme, name) ;
If the length of st r eam >Nane is bigger than the size of the buffer, a security hole appears: the
program will write over the local variables of the function, and later over the return address,
stored in the stack. when our function is active.

We have a stack layout like this:
local variables of the calling function
arguments to the current function
return address
saved frame pointer
local variables: p isat the lowest address, thenf ul | name, thenr esul t .
saved registers
stack pointer is here

An overflow when copying the Name field would destroy the saved frame pointer, and maybe
destroy the return address. The copy starts at the lowest address, the start of the fullname
buffer, then goes on to higher addresses.

After the overflow occurs, the function would continue normally until it executes the return
statement. Depending on the type of overflow, the return address would contain characters
from the Name field, that in most cases would lead to a wrong return address and a program
crash.

But that is not always the case. It could be that a user of our program would notice this style of
programming, and give us a file name that, when overflowing in the copy to the temporary
buffer would form a correct return address, that would pass then control to some other routine
that the malicious user prepared for us.

Thiskinds of exploits can be avoided if we use other functions of the standard library:

el se {
*p = 0,
strncpy(full nane, stream >Nane, si zeof (ful | nane)) ;
strncat (ful | nane, "\\", si zeof (ful | nane));
*p o= "\,
}

strncat (ful | nane, nane, si zeof (ful | nane)) ;

Those functions test for overflow conditions and are safer in case of unforeseen input
patterns.

There is a problem with strncpy though. 1t does NOT terminate the resulting string with a
zero. If we get aName field with exactly sizeof(fullname) chars, the string will be missing
the trailing zero since strncpy doesn’t add it. One way to cover this possibility isto do:
el se {
*p = 0,
full nane[si zeof (ful | nane)-1] = 0;

Path handling 107

strncpy(full nanme, stream >Nane, si zeof (ful | nane) - 1) ;
strncat (ful | nanme, "\\", si zeof (ful | nane)-1) ;
*p o= "\,

}

strncat (ful | nane, nane, si zeof (ful | nane) -1) ;

We finish fullname with a zero, and we copy only up to si zeof (ful | nane) - 1 chars, leaving
our terminating zero intact.

But you should have noted that there is something wrong here. We do initialize the terminating
zero within an else statement. What happens if the execution of the function takes the other
path?

We see the following:

FI LE *Fopen(STREAM *st ream char *nane, char *node)
{

FILE *result;

char full nane[1024],

p = strrchr(stream >Nane, '\\"');
if (p == NULL) {
full nane[0] = O;

}

el se {
*p:o;
ful | nane[si zeof (ful | nane)-1] = 0;
strncpy(ful |l nanme, stream >Nane, si zeof (ful | nane) - 1) ;
strncat (ful I nanme, "\\", si zeof (ful | nane)-1);
*p o= "\,

}

strncat (ful | nane, nane, si zeof (ful | nane) -1) ;
result = fopen(fullnane, node);
if (result == NULL) {
fprintf(stderr,
"I npossible to open '%'\n", full nanme);
exit(1);
}

return result;

}

If pisNULL, wewill initialize the first char of fullname to zero. Then, execution continues at
the strncat call after the else statement, and we will copy at most si zeof (f ul | nane) - 1 chars
into it, overwriting the zero and maybe leaving the fullname character array without the termi-
nating zero if the length of the passed buffer is bigger than the size of f ul | nane. That could
lead to a crash in fopen that surely expects awell formed string.

The solution is to finish the fullname buffer in ALL cases.

FI LE *Fopen(STREAM *st ream char *name, char *node)
{

FILE *result;

char full nanme[1024],

p = strrchr(stream >Nane, "\\"');

full nane[si zeof (ful | nane)-1] = 0;

if (p == NULL) {

full nane[0] = O;
}

el se {
*p:O;
strncpy(full nane, stream >Nane, si zeof (ful | nane) - 1) ;
strncat (ful | name, "\\", si zeof (ful | nane) -1);

108 C programming with lcc-win32

"po= A
}

strncat (ful | nane, nane, si zeof (ful | nane) -1) ;
result = fopen(fullnane, node);
if (result == NULL) {
fprintf(stderr,
"I npossible to open '%'\n", full nanme);
exit(1);
}

return result;
}
Never forget to initialize a variable in BOTH cases of an if statement. Bugs such as this are
very difficult to catch later on.

What will happen if the name of the file is bigger than our buffer? This function will fail. The
fopen call will return NULL since the file name has been truncated, and we will show an error
telling that a truncated file name doesn’t exist. Isthis agood behavior?

It depends. For atechnical user, along and truncated file name could be an indicator that the
file name isjust too long. Better error reporting would be appropriate if required, for instance
at the start of the function atest could produce a clear message like "Name too long".

Summary: We examined some of the functions that the C library provides for strings and
directories. Strings are ubiquitous in any serious program. We will examine this with more
depth in the next section.

Working with directories is mandatory if you make any program, even the simplest one.
Here is an overview of the path handling functions as defined in the standard include file
<direct.h>

Function Purpose

get cwd Returns the current directory

chdir Changes the current directory

chdrive Changes the current drive

nkdi r Makes a new directory

rdir Erase adirectory if its empty.

di skfree | Returnsthe amount of space availablein adisk.

1.24 Traditional string representation in C

In C character strings are represented by a sequence of bytes finished by atrailing zero byte.
For example, if you got:

char *Nanme = “l cc-wi n32";

You will have in memory something like this:

| (s c - w i n 3 2 0
108 99 99 45 119 105 110 51 50 0

We will have at each of the position of the string array a byte containing a number: the ASCI|
equivalent of aletter. The array will be followed by a zero byte. Zero is not an ASCII charac-
ter, and can’t appear in character strings, so it means that the string finishes there.

Traditional string representation in C 109

Thisdesign is quite ancient, and dates to the beginning of the C language. It has several flaws,
asyou can immediately see:

» Thereisno way to know the length of a string besides parsing the whole character array
until azero byte isfound.

* Any eror where you forget to assign the last terminated byte, or this byte gets
overwritten will have catastrophic consegquences.

» Thereisno way to enforce indexing checks.
The most frequently used function of thislibrary are:

"st rl en" that returns an integer containing the length of the string. Example:
int len = strlen(" Some character string");

Note that the length of the string is the number of characters without counting the trailing
zero. The physical length of the string includes this zero byte however, and this has been
(and will be) the source of an infinite number of bugs!

"strcnp" that compares two strings. If the strings are equal it returns zero. If the first is
greater (in the lexicographical sense) than the second it returns a value greater than zero. If
thefirst string is less than the second it returns some value less than zero. The order for the
stringsis based in the ASCII character set.

a== strcmp(a,b) ==
a<b stremp(ab) <0
a>=b stremp(a,b) >=0

"strcpy" copies one string into another. st rcpy(dst, src) copiesthe src string into
thedst string. This means it will start copying characters from the beginning of the sr ¢
location to the dst location until it finds a zero bytein the sr ¢ string. No checks are ever
done, and it is assumed that thedst string contains sufficient space to hold the sr ¢ string.
If not, the whole program will be destroyed. One of the most common errorsin C program-
ming is forgetting these facts.

"strcat " appends a character string to another. st r cat (src, app) will add al the char-
acters of "app" at the end of the "sr ¢" string. For instance, if we have the string pointer
that has the characters "I ccwi n32" as above, and we cal the library function str -
cat(str," conpiler™") wewill obtain the following sequence:

I c |c |w |i n |3 |2 cl|lo |m |p |I I e r 0
108 |99 (99 [119 [105 [110 |51 |50 [32 [99 [111 | 109 | 112 | 105 [108 | 101 | 114 |O

The common operations for strings are defined in the header file <string.h>.

Function Purpose Function Purpose

Get a system error message
strcat Appends strings. strerror (strerror) or prints a user-supplied
error message (_strerror).

Find the first occurrence of a ' .
strchr character in astring strlen Find the length of astring

Find the last occurrence of a

strrchr character in astring

strncat Append characters of astring.

110 C programming with lcc-win32

strcmp Compares two strings strncpy Copy sirings up to amaximum
length
strncm Compare strings up to a maximum strobrk Scan strings for charactersin
P length P specified character sets.

strnicmp Comp‘?re str_| Ngs Up to & maximum strspn Find the first substring

length ignoring case
strcol Com.p.a“? slrings using locale- strstr Find a substring

specific information.
strcpy Copy astring into another stristr Find a string ignoring case.
strcspn Find asubstring in a string strtok Find the next token in a string
strupr Convert string to upper case strdup Duplicate a string. Uses malloc.
striwr Convert string to lower case strrev Reverse charactersin astring

You will find the details in the online documentation.

Besides these functions in the standard C library, the operating system itself provides quite a
few other functions that relate to strings. Besides some relicts of the 16 bit past like Istrcat and
others, we find really useful functions, especially for UNICODE handling.

Char Lower Char Lower Buf f Char Next Char Next ExA

Char Prev Char Pr evExXA Char ToCem Char ToCenBuf f

Char Upper Char Upper Buf f ConpareString Fol dStri ng

Get StringTypeA | Get StringTypeEx Get StringTypeW | sChar Al pha

| sChar Al phaNu- | sChar Lower | sChar Upper LoadString

neric

| strcat [strcnp [strcnpi | strcpy

| strcpyn [strlen Mul ti Byt eToW de- QeniroChar
Char

CenifoChar Buf f W deChar ToMul ti Byte | wsprintf wvsprintf

Memory management and memory layout 111

1.25 Memory management and memory layout

We have until now ignored the problem of memory management. We ask for more memory
from the system, but we never release it, we are permanently leaking memory. Thisisn’t abig
problem in these small example applications, but we would surely run into trouble in bigger
undertakings.

Memory isorganized in aprogram in different areas:

1) The initial data area of the program. Here are stored compile time constants like the
character strings we use, the tables we input as immediate program data, the space we
alocate in fixed size arrays, and other items. This area is further divided into initialized
data, and uninitialized data, that the program loader sets to zero before the program starts.

When you write adeclarationlike i nt data = 78; thedat a variablewill be stored in
the initialized data area. When you just write at the global level i nt dat a; the variable
will be stored in the uninitialized data area, and its value will be zero at program start.

2) The stack. Hereis stored the procedure frame, i.e. the arguments and local variables of each
function. This storage is dynamic: it grows and shrinks when procedures are called and
they return. At any moment we have a stack pointer, stored in a machine register, that
contains the machine address of the topmost position of the stack.

3) The heap. Here is the space that we obtain with malloc or equivalent routines. Thisaso a
dynamic data area, it grows when we allocate memory using mal | oc, and shrinks when
we release the allocated memory with thef r ee() library function.

There is no action needed from your side to manage the initial data area or the stack. The com-
piler takes care of all that.

The program however, manages the heap, i.e. it expects that you keep book exactly and with-
out any errorsfrom each piece of memory you allocate using malloc. Thisisavery exhausting
undertaking that takes a lot of time and effort to get right. Things can be easy if you always
free the allocated memory before leaving the function where they were allocated, but thisis
impossible in general, since there are functions that precisely return newly allocated memory
for other sections of the program to use.

There is no other solution than to keep book in your head of each piece of RAM. Severa
errors, all of them fatal, can appear here:

* You alocate memory and forget to freeit. Thisisamemory leak.

* You alocate memory, and you free it, but because of a complicated control flow (many
iIfs, whiles and other constructs) you free a piece of memory twice. This corrupts the
whole memory allocation system, and in a few milliseconds all the memory of your
program can be a horrible mess.

* You allocate memory, you free it once, but you forget that you had assigned the memory
pointer to another pointer, or left it in a structure, etc. This is the dangling pointer
problem. A pointer that points to an invalid memory location.

Memory leaks provoke that the RAM space used by the program is always growing, eventu-
aly provoking a crash, if the program runs for enough time for this to become significant. In
short-lived programs, this can have no consequences, and even be declared as a way of mem-
ory management. The Icc compiler for instance, always allocates memory without ever both-
ering to free it, relying upon the windows system to free the memory when the program exits.

Freeing a piece of RAM twice is much more serious than a smple memory leak. It can com-
pletely confuse the malloc() system, and provoke that the next allocated piece of RAM will be

112 C programming with lcc-win32

the same as another random piece of memory, a catastrophe in most cases. You write to avari-
able and without you knowing it, you are writing to another variable at the same time, destroy-
ing all data stored there.

More easy to find, since more or less it always provokes a trap, the dangling pointer problem
can at any moment become the dreaded show stopper bug that crashes the whole program and
makes the user of your program loose all the data he/she was working with.

| would be delighted to tell you how to avoid those bugs, but after more than 10 years working
with the C language, | must confess to you that memory management bugs still plague my pro-

grams, as they plague al other C programmers.®’

The basic problem is that the human mind doesn’t work like a machine, and here we are ask-
ing people (i.e. programmers) to be like machines and keep book exactly of al the many small
pieces of RAM a program uses during its lifetime without ever making a mistake.

But there is a solution that | have implemented in Icc-win32. Lcc-win32 comes with an auto-
matic memory manager (also caled garbage collector in the literature) written by Hans
Boehm. This automatic memory manager will do what you should do but do not want to do:
take care of all the pieces of RAM for you.

Using the automatic memory manager you just allocate memory with GC_malloc instead of
alocating it with malloc. The signature (i.e. the result type and type of arguments) is the same
as malloc, so by just replacing al malloc by GC_malloc in your program you can benefit of
the automatic memory manager without writing any new line of code.

The memory manager works by inspecting regularly your whole heap and stack address space,
and checking if there is anywhere a reference to the memory it manages. If it doesn’t find any
references to a piece of memory it will mark that memory as free and recycle it. It is a very
simple schema, taken to amost perfection by several years of work from the part of the
authors.

To use the memory manager you should add the gc.lib library to your link statement or indi-
cate that library in the IDE in the linker configuration tab.

1.25.1 Functions for memory allocation

malloc Returns a pointer to a newly allocated memory block

free Releases a memory block

calloc Returns a pointer to a newly allocated zero-filled memory block.
realloc Resizes amemory block preserving its contents.

Allocate amemory block in the stack that is automatically destroyed when the function

alloca where the allocation is requested exits.
_msize Returns the size of ablock
_expand Increases the size of a block without moving it.

GC_malloc | Allocates amemory block managed by the memory manager.

1.25.2 Memory layout under windows®8

A 32 bit address can be used to address up to 4GB of RAM. From this potential address space,
windows reserves for the system 2GB, leaving the other 2GB for each application. These

67. Thisdiscussion isbased upon the article of Randy Kath, published in MSDN.

Memory management and memory layout 113

addresses, of course, are virtual, since not al PCs have 2GB of real RAM installed. To the
windows memory manager, those numbers are just placeholders that are used to find the real
memory address.

Each 32-bit addressis divided in three groups, two containing 10 bits, and the third 12 bits.
i 22 21 12 1 0

IIII-I:ulit ::uﬁset 1E|I-L'I|it||:|1lfslet 12|— I:Iuitlnffslet

The trandation goes as follows:

The higher order bits (31-21) are used to index a page of memory called the page directory.
Each process contains its own page directory, filled with 1024 numbers of 32 bits each, called
page description entry or PDE for short.

The PDE is used to get the address of another special page, called page table. The second
group of bits (21-12) is used to get the offset in that page table. Once the page frame found, the
remaining 12 bits are used to address an individual byte within the page frame. Hereisafigure
that visualizes the structure:

Fage

Directory I 4K

u} W 023w

Fage FRFRFY Fage | _
Table Table 1024 = 40% =4 KB
1] 17 1023] lr 1023

o, Jeee Fﬁ?nil Fprgﬁ?el“* FF;EEH'Z|1U24K1D24MD%::19E:

We see that a considerable amount of memory is used to... manage memory. To realize the
whole 4GB address space, we would use 4MB of RAM. But thisis not as bad as it looks like,
since Windows is smart enough to fill these pages as needed. And anyway, 4MB is not even

0.1% of the total 4GB address space offered by the system.®?

Each process has its own page directory. This means that processes are protected from stray
pointers in other programs. A bad pointer can’t address anything outside the process address
space. This is good news, compared to the horrible situation under windows 3.1 or even
MSDOS, where a bad pointer would not only destroy the data of the application where it
belonged, but destroyed data of other applications, making the whole system unstable. But this
means too, that applications can't share data by sending just pointers around. A pointer is
meaningful only in the application where it was created. Special mechanisms are needed (and
provided by Windows) to allow sharing of data between applications.

68. Notethat thisisalogical view of thisaddresstrandation process. The actual implementation is much
more sophisticated, since Windows uses the memory manager of the CPU to speed up things. Please read the
original article to get a more in-depth view, including the mechanism of page protection, the working set, and
many other things.

69. Sincethisis stored in a 32 bit integer, the counter will overflow somewhere in year 2038. | hope |
will be around to celebrate that event...

114 C programming with lcc-win32

1.26 Memory management strategies

Each program needs some workspace to work in. How this space is managed (allocated, recy-
cled, verified) makes a memory allocation strategy. Here is a short description of some of the
most popular ones.

1.26.1 Static buffers

Thisis the ssimplest strategy. You reserve a fixed memory area (buffer) at compile time, and
you use that space and not a byte more during the run time of the program.

Advantages.

1 It isthe fastest possible memory management method since it as no run time overhead.
There is no memory allocation, nor recycling that incurs in run time costs.

2 In memory starved systems (embedded systems, micro controller applications, etc) it is
good to know that there is no possibility of memory fragmentation or other memory space
costs associated with dynamic allocation.

Drawbacks:

1 Sincethe amount of memory allocated to the program is fixed, it is not possible to adapt
memory consumption to the actual needs of the program. The static buffers could be either
over-dimensioned, wasting memory space, or not enough to hold the data needed. Since the
static buffers must be patterned after the biggest possible input, they will be over-
dimensioned for the average case.

2 Unless programming is adapted to this strategy, it is difficult to reuse memory being used
in different buffers to make space for atemporary surge in the space needs of the program.

1.26.2 Stack based allocation
The C standard allows for this when you write:

int fn(int a)

{
char wor kspace[10000] ;

}

In this case, the compiler generates code that allocates 10000 bytes of storage from the stack.
This is a refinement of the static buffers strategy. The stack is IMB in normal programs but
this can be increased with a specia linker option.

A variant of this strategy allows for dynamic allocation. Instead of allocating a memory block
of size*siz with malloc, we can write:

char wor kspace[si z];
and the compiler will generate code that allocates “siz” bytes from the program stack.
Advantages.

1 Very fast alocation and deallocation. To allocate a memory block only a few assembly
instructions are needed. Deallocation is done without any extra cost when the function
where the variables are located exits.

Drawbacks:

1 Thereis no way to know if the allocation fails. If the stack has reached its maximum
size, the application will catastrophically fail with a stack overflow exception.

Memory management strategies 115

2 Thereisno way to pass thismemory block to acalling function. Only functions called by
the current function can see the memory allocated with this method.

3 Evenif the C99 standard is already several years old, some compilers do not implement
this. Microsoft compilers, for instance, do not allow this type of alocation. A work-around
Isto use the _aloca function. Instead of the code above you would write:

char *workspace = _alloca(siz);

1.26.3 “Arena” based allocation

This strategy is adapted when alot of allocations are done in a particular sequence of the pro-
gram, allocations that can be released in a single block after the phase of the program where
they were done finishes. The program allocates a large amount of memory called “arena’, and
sub-allocates it to the consuming routines needing memory. When a certain phase of the pro-
gram is reached the whole chunk of memory is either marked as free or released to the operat-
ing system.

The windows operating system provides support for this strategy with the APIs CreateHeap,
HeapAlloc, and others.

Advantages.
1 Fewer callsto memory alocation/deallocation routines.
2 No global fragmentation of memory.

Drawbacks:

1 Sincethe size of the memory that will be needed is not known in advance, once an arena
isfull, the strategy fails or needs to be complemented with more sophisticated variations. A
common solution isto make the arenaalinked list of blocks, what needs a small processing
overhead.

2 Determining when the moment has come to release all memory is tricky unless the data
processed by the program has a logical structure that adapts itself to this strategy. Since
there is no way of preserving data beyond the frontier where it is released, datathat isto be
preserved must be copied into another location.

1.26.4 The malloc / free strategy

Thisisthe strategy that is most widely used in the C language. The standard provides the func-
tions malloc, a function that returns a pointer to an available memory block, and free, a func-
tion that returns the block to the memory pool or to the operating system. The program
allocates memory as needed, keeping track of each memory block, and freeing it when no
longer needed. The free function needs a pointer to the same exact location that was returned
by malloc. If the pointer was incremented or decremented, and it is passed to the free function
havoc ensues.

Advantages:

1 Itisvery flexible, since the program can allocate as needed, without being imposed any
other limit besides the normal limit of available memory.

2 It iseconomic since the program doesn’t grab any more memory than it actually needs.
3 Itisportable sinceit is based in functions required by the C language.

Drawbacks:
1 Itisvery error prone. Any error will provoke obscure and difficult to track bugs that

116 C programming with lcc-win32

need advanced programming skills to find. And the possibilities of errors are numerous:
freeing twice a memory block, passing a wrong pointer to free, forgetting to free a block,
etc.

2 The time used by memory allocation functions can grow to an important percentage of
the total run time of the application. The complexity of the application increases with all
the code needed to keep track and free the memory blocks.

3 This strategy suffers from the memory fragmentation problem. After many malloc/free
cycles, the memory space can be littered with many small blocks of memory, and when a
request for a big block of memory arrives, the malloc system fails even if there is enough
free memory to satisfy the request. Since it is impossible for the malloc system to move
memory blocks around, no memory consolidation can be done.

4 Another problem is aliasing, i.e. when several pointers point to the same object. It isthe
responsibility of the programmer to invalidate all pointers to an object that has been freed,
but this can be very difficult to do in practice. If any pointer to a freed object remainsin
some data structure, the next time it will be used the program can catastrophically fail or
return invalid results, depending on whether the block was reallocated or not.

5 It can be slow. Malloc/free was a big bottleneck for performance using the Microsoft C
runtime provided by the windows system for windows 95/98, for instance.

1.26.5 The malloc with no free strategy

This strategy uses only malloc, never freeing any memory. It is adapted to transient programs,
i.e. programs that do a well defined task and then exit. It relies on the operating system to
reclaim the memory used by the program.

Advantages.
1 Simplified programming, since all the code needed to keep track of memory blocks
disappears.
2 Itisfast since expensive callsto free are avoided.

Drawbacks:

1 The program could use more memory than strictly needed.

2 Itisvery difficult to incorporate software using this strategy into another program, i.e. to
reuse it. This strategy can be easily converted into an arena based strategy though, since
only a call to free the arena used by the program would be needed. It is even easier to
convert it to a garbage collector based memory management. Just replace malloc by
GC_malloc and you are done.

1.26.6 Automatic freeing (garbage collection).

This strategy relies upon a collector, i.e. a program that scans the stack and the global area of
the application looking for pointers to its buffers. All the memory blocks that have a pointer to
them, or to an inner portion of them, are marked as used, the others are considered free.

This strategy combines easy of use and reclaiming of memory in a winning combination for
most applications, and it is the recommended strategy for people that do not feel like messing
around in the debugger to track memory accounting bugs.

Advantages:

1 Program logic is simplified and freed from the chores of keeping track of memory
blocks.

Memory management strategies 117

2 The program uses no more memory than needed since blocks no longer in use are
recycled.

Drawbacks:

1 It requires strict alignment of pointers in addresses multiple of four. Normally, thisis
ensured by the compiler, but under certain packing conditions (compilation option -Zpl)
the following layout could be disastrous:
#pragma pack(1)
struct {
short a;
char *ptr;
}os;
The pointer “ptr” will NOT be aligned in amemory address multiple of four, and it will not
be seen by the collector because the alignment directive instructs the compiler to pack
structure members.

2 You are supposed to store the pointers in memory accessible to the collector. If you store
pointers to memory allocated by the collector infiles, for instance, or in the “windows extra
bytes’ structure maintained by the OS, the collector will not see them and it will consider
the memory they point to as free, releasing them again to the application when new
requests are done.

3 Whenever afull gcis done (afull scan of the stack and the heap), a noticeable stop in
program activity can be perceived by the user. In normal applications this can take a bit less
than a second in large memory pools. The collector tries to improve this by doing small
partial collections each time a call to its allocator function is done.

4 If you have only one reference to a block, the block will be retained. If you have stored
somewhere a pointer to a block no longer needed, it can be very difficult indeed to find it.

5 The garbage collector of lcc-win32 is a conservative one, i.e. if something in the stack
looks like a pointer, it will be assumed that this is a pointer (fail-safe) and the memory
block referenced will be retained. This means that if by chance you are working with
numeric data that contains numbers that can be interpreted as valid memory addresses more
memory will be retained than strictly necessary. The collector provides special APIs for
allocating tables that contain no pointers and whose contents will be ignored by the
collector. Use them to avoid this problems.

1.26.7 Mixed strategies

Obviously you can use any combination of this methods in your programs. But some methods
do not mix well. For instance combining malloc/free with automatic garbage collection
exposes you to more errors than using only one strategy. If you pass to free a pointer allocated
with GC_malloc chaos will reign in your memory areas. To the contrary, the stack allocation
strategy can be combined very well with all other strategies since it is specially adapted to the
alocation of small buffers that make for many of the calls to the allocator functions.

118 C programming with lcc-win32

1.27 Counting words

Thereis no introduction to the C language without an example like this:

“Exercise 24.C: Write a program that counts the words in a given file, and reports its result
sorted by word frequency.”

OK. Suppose you got one assignment like that. Suppose also, that we use the C language defi-
nition of aword, i.e. an identifier. A word is a sequence of letters that begins with an under-
score or aletter and continues with the same set of characters or digits.

In principle, the solution could look like this:
1) Open thefile and repeat for each character

2) If the character starts aword, scan the word and store it. Each word is stored once. If itisin
the table already, the count isincremented for that word, otherwise it is entered in the table.

3) Sort the table of words by frequency

4) Print the report.

We start with an outline of the “main” procedure. The emphasis when developing aprogram is
to avoid getting distracted by the details and keep the main line of the program in your head.
We ignore all error checking for the time being.

int main(int argc,char *argv[])

{
FILE *f;
int c;
f = fopen(argv[1],"r"); // open the input file
c = fgetc(f); /1 Read the first character
while (c !'= EOF) { /1 Until the end of file
if (iswrdStart(c)) { // Starts a word?
Scanword(c, f); /1 Yes. Scan it
}
c = fgetc(f); /1 Go on with the next character
}
fclose(f); /1l Done with the file
DoReports(argv[1]); // Print results
return O; /1l Return with OK
}

Thiswould do nicely. We have now just to fill the gaps. Let’s start with the easy ones. A word,
wesaid, isasequenceof [A-Z] [a-z] followedby [A-Z][a-z][0-9].Wewrite
afunction that returns 1 if a character isthe start of an identifier (word).

int isWwordStart(int c)

{
if (¢ =="'")
return 1;
if (c>"'"a && c <="'2")
return 1;
if (c >"A && c <="'2Z")
return 1;
return O;
}

This function will do its job, but is not realy optimal. We leave it like that for the time being.
Remember: optimizations are done later, not when designing the program.

Counting words 119

Now, we go to the more difficult task of scanning a word into the computer. The algorithm is
simple: we just keep reading characters until we find a non-word char, that stops our loop. We
use alocal array in the stack that will hold until MAXI DLENGTH chars.

#defi ne MAXI DLENGTH 512
int ScanWord(int firstchar, FILE *f)

{
int i =1, // index for the word buffer
c=0; // Character read
char idbuf[MAXI DLENGTH+1]; // Buffer for the word
i dbuf[0] = firstchar; // W have at |east one char
c = fgetc(f); /'l Read the next one
while (iswrdStart(c) || (¢ >='0" & ¢ <= '9")) {
idbuf[i++] = c; // Store it in the array
if (i >= MAXIDLENGTH) { // Check for overfl ow
fprintf(stderr,
"ldentifier too long\n");
return O; /1l Returning zero will break the | oop
/1 in the calling function
}
c = fgetc(f); /1 Scan the next char
}
idbuf[i] = O; /'l Always zero termnate
Ent er Wor d(i dbuf) ; /1 Enter into the table
return 1; // OKto go on.
}

We hold the index into our array in theidentifier “i”, for index. It starts at one since we receive
aready the first character of aword. Note that we test with thisindex if we are going to over-
flow our local table “idbuf”. We said before that error checking should be abstracted when
designing the program but as any rule, that one has exceptions.

If we were going to leave alot of obvious errors in many functions around, we would need a
lot of work later on to fix all those errors. Fundamental error checking like a buffer overrun
should always be in our minds from the beginning, so we do it immediately. Note that this test
isavery simple one.

1.27.1 The organization of the table

Now, we have no choice but to start thinking about that “EnterWord” function. All the easy
work is done, we have to figure out now, an efficient organization for our word table. We have
the following requirements:

1) It should provide a fast access to a word to see if a given sequence of characters is there
aready.

2) It should not use alot of memory and be simple to use.

The best choiceisthe hash table. We use a hash table to hold all the words, and before entering
something into our hash table we look if isin there already. Conceptually, we use the foll ow-
ing structure:

120 C programming with lcc-win32

Shat Slat Slot Slat Slat weard takle

liztz of
WIORDLIST
structures

P S
R N

)
l]

)
)

Our word table is a sequence of lists of words. Each list is longer or shorter, depending on the
hash function that we use and how good our hash function randomizes the input. If we use a
table of 65535 positions (slots) and a good hash algorithm we divide the access time by 65535,
not bad.

To enter something into our table we hash the word into an integer, and weindex the slot in the
table. We then compare the word with each one of the wordsin the list of words at that slot. If
we found it, we do nothing else than increment the count of the word. If we do not find it, we
add the word at the start of that slot.

Note that this requires that we define a structure to hold each word and its associated count.
Since al the words are in alinked list, we could use the following structure, borrowing from
the linked list representation discussed above:
typedef struct _WordList {
i nt Count;
struct _WordLi st *Next;

char Word[];
} WORDLI ST;

We have an integer that holds the number of times this word appears in the text, a pointer to
the next word in the list, and an unspecified number of characters just following that pointer.
Thisis a variable sized structure, since each word can hold more or less characters. Note that
variable sized structures must have only one “flexible” member and it must be at the end of the
definition.

Our “EnterWord” function can look like this:

voi d EnterWrd(char *word)
{

int h = hash(word); // Get the hash code for this word
WORDLI ST *wW = WordTable[h]; // Index the list at that sl ot
while (W) { // Go through the |ist
if (!strcmp(w ->Word, word)) {
W ->Count++; // Word is already in the table.
return; /1 increment the count and return

}
w = w ->Next; /] Go to the next itemin the |ist

}

/! Here we have a new word, since it wasn’'t in the table.
/! Add it to the table now

W = Newwobr dLi st (word);

W - >Next = WordTabl e[h];

WrdTable[h] = W ;

Counting words 121

What would be a good hash function for this application?
Thisisatutorial, so we keep things ssmple. Here is avery ssmple hash function:

i nt hash(char *word)

{
int h =0;
while (*word) {
h += *word;
wor d++;

}
return h & Oxffff;

}

We just add up our characters. If we get a hash value of more than 65535 (the size of our
table), we just take the lower 16 bits of the hash value. Easy isn’t it?

We declare our word table now, like this:
WORDLI ST *Wor dTabl e[Oxffff+1];

1.27.2 Memory organization

Now we write the constructor for our word list structure. It should get more memory from the
system to hold the new structure, and initialize itsfields.

WORDLI ST * NewWbr dLi st (char *wor d)
{

int len = strlen(word);

WORDLI ST *result = nore_nenory(sizeof (WORDLI ST) +l en+1) ;
resul t->Count = 1;

strcpy(result->Wrd, word);

return result;

}

We allocate more memory to hold the structure, the charactersin the word, and the terminating
zero. Then we copy the characters from the buffer we got, set the count to 1 since we have
seen thisword at least once, and return the result. Note that we do not test for failure. We rely
on “more_memory” to stop the program if there isn’'t any more memory left, since the pro-
gram can’'t go on if we have exhausted the machine resources.

Under windows, the implementation of the standard “malloc” function is very slow. To avoid
calling “malloc” too often, we devise an intermediate structure that will hold chunks of mem-
ory, caling malloc only when each chunk is exhausted.

typedef struct nenory {
i nt used;
int size;
char *nenory;

} MEMORY

Now, we write our memory allocator:

#define MEM ALLOC_SI ZE Oxffff
i nt menoryused = 0;
void *nore_menory(int siz)
{
static MEMORY *nmem
void *result;
if (mem== NULL || nmem >used+siz >= nmem >size) {
mem = nmal | oc(si zeof (mem +MEM ALLOC SI ZE)
if (mem == NULL) {
fprintf(stderr,"No nore nenory at line %\n",line);
exit(l);

122 C programming with lcc-win32

}

mem >used = O;

menor yused += MEM ALLOC Sl ZE;
mem >si ze = MEM ALLCC SI ZE;

}

result = mem >nenory+nem >used;
mem >used += si z;

menset (result, siz, 0);

menor yused += si z;

return result;

}

We use a static pointer to a MEMORY structure to hold the location of the current memory
chunk being used. Sinceitisstaticit will beinitialized to NULL automatically by the compiler
and will keep its value from one call to the next. We test before using it, if the chunk has
enough room for the given memory size we want to allocate or if it is NULL, i.e. thisis the
very first word we are entering. If either of thoseif true, we allocate a new chunk and initialize

its fields.”®

Otherwise we have some room in our current chunk. We increase our counters and return a
pointer to the position within the “memory” field where this chunk starts. We clean the mem-
ory with zeroes before returning it to the calling function.

Note that we do not keep any trace of the memory we have alocated so it will beimpossible to
free it after we use it. Thisis not so bad because the operating system will free the memory
after this program exists. The downside of this implementation is that we can’'t use this pro-
gram within another one that would call our word counting routine. We have a memory leak
“built-in” into our software.

A way out of thisis very easy though. We could just convert our memstructures into a linked
list, and free the memory at the end of the program.

1.27.3 Displaying the results

After all thiswork, we have a program that will compile when run, but is missing the essential
part: showing the results to the user. Let’sfix this.

We need to sort the words by frequency, and display the results. We build a table of pointersto
word-list structures and sort it.

But... to know how big our table should be, we need to know how many words we have
entered. This can be done in two ways:. Either count the number of words in the table when
building the report, or count the words as we enter them.

Obviously, the second solution is simpler and requires much less effort. We just declare a glo-
bal integer variable that will hold the number of words entered into the table so far:

int words = O;
We increment this counter when we enter anew word, i.e. in the function NewWordList. 1
We will need a comparison function for the gsort library function too.

i nt conparewords(const void *wl, const void *w2)

{
WORDLI ST *pwl = *(WORDLI ST **)wL, *pw2 = * (WORDLI ST **)w2;

70. Note that we alocate MEM_ALLOC_SIZE bytes. If we want to change to more or less bytes, we
just change the #define line and we are done with the change.

Counting words 123

i f (pwl->Count == pw2->Count)
return strcnp(pwl->Word, pw2- >Wor d) ;
return pwl->Count - pw2->Count;
}

Note that we have implemented secondary sort key. If the counts are the same, we sort by
a phabetical order within a same count.

voi d DoReports(char *fil enane)

{ . .
int i;
int idx =0; // Index into the resulting table
/l Print file name and number of words
printf("%: % different words.\n",fil enane, words);
/ allocate the word-list pointer table
WORDLI ST **tab = nore_nmenory(words*si zeof (WORDLI ST *));
/I Go through the entire hash table
for (i=0; i< sizeof(WrdTable)/sizeof (WrdTable[0]);i++) {
WORDLI ST *wW = WordTable[i];
while (W) {
/l'look at the list at this slot
tab[idx] = w;
w = w ->Next;
i dx++;
if (idx >= words && W) {
fprintf(stderr,"programerror\n");
exit(l);
}
}
}
/I Sort the table
gsort (tab, words, si zeof (WORDLI ST *), conpar ewor ds) ;
Il Print the results
for (i=0; i< words;i++) {
printf("% %d\n",tab[i]->Wrd,tab[i]->Count);
}
}

We start by printing the name of the file and the number of different words found. Then, we go
through our hash table, adding a pointer to the word list structure at each non-empty slot.

Note that we test for overflow of the allocated table. Since we increment the counter each time
that we add aword, it would be very surprising that the count didn’t match with the number of
itemsin the table. But it is better to verify this.

After filling our table for the gsort call, we call it, and then we just print the results.

71. Global variables like this should be used with care. Overuse of global variables |eads to problems
when the application grows, for instance in multi-threaded applications. When you got alot of global
variables accessed from many points of the program it becomesimpossible to use threads because the
danger that two threads access the same global variable at atime.

Another problem isthat our global is not static, but visible through the whole program. If somewhere else
somebody writes afunction called “words’ we are doomed. In this case and for this example the glo-
bal variable solution is easier, but not as a general solution.

124 C programming with lcc-win32

1.27.4 Code review

Now that we have a bare skeleton of our program up and running, let’s come back to it with a
critical eye.

For instance look at our “i sWbr dSt art ” function. We have:

int isWwordStart(int c)

{
if (c=="'_")

return 1;

if (c>"'"a && c <="2")
return 1;

if (c >"A && c <="'2Z")
return 1;

return O;

}

A look in the “ctype.h” system header file tells usthat for classifying characters we have alot
of efficient functions. We can reduce all this code to:

int isWwordStart(int c)
{

}
The “isalpha’ function will return 1 if the character is one of the uppercase or lowercase
alphabetic characters. Always use library functionsinstead of writing your own. The “isalpha’
function does not make any jumps like we do, but indexes atable of property bits. Much faster.

return ¢ =="'_"' || isalpha(c);

And what about error checking? Remember, we just open the file given in the command line
without any test of validly. We have to fix this.

Another useful feature would be to be able to report a line number associated with our file,
instead of just an error message that leaves to the user the huge task of finding where is the
offending part of the input file that makes our program crash. This is not very complex. We
just count the new line characters.

The output of our program is far from perfect. It would be better if we justify the columns. To
do that, we have to just count the length of each word and keep a counter to the longest word
we find. Another nice thing to have would be a count of how many words with 1 character we
find, how many with two, etc.

In the Appendix you will find the complete source code containing the answers to this prob-
lem.

1.28 Time and Date functions

The C library offersalot of functions for working with dates and time. The first of them isthe
time function that returns the number of seconds that have passed since January first 1970, at

midnight. 2

Several structures are defined that hold time information. The most important from them are
the “tm” structure and the “timeb” structure.

struct tm{
i nt tm sec;
i nt tmmn;
i nt tm hour;

72. Thisclock will overflow in something like 2.000 years so be prepared for windows 4.000!

Time and Date functions 125

nt t m nday;
nt t m_non;
nt tmyear;
nt t m wday;
nt t m yday;
nt tmi sdst;
H
The fields are self-explanatory. The structure “timeb” is defined in the directory include\sys,
asfollows:

struct tineb {
time_t tine;
unsi gned short padoO;
unsi gned | ong | padO;
unsi gned short mllitm // Fraction of asecondin ms
unsi gned short padl;
unsi gned | ong | padl;
/I Difference (minutes), moving westward, between UTC and local time
short timezone;
unsi gned short pad2;
unsi gned | ong | pad2;
/I Nonzero if daylight savings time is currently in effect for the local time zone.
short dstfl ag;

s
We show here a small program that displays the different time settings.

#i ncl ude <tine. h>

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/tineb. h>
#i ncl ude <string. h>

voi d main()
{
char tnpbuf[128], ampni] = "AM';
time_t Itine;
struct _tinmeb tstruct;
struct tm *today, *gnt, xmas = { 0, 0, 12, 25, 11, 93 };

[* Display operating system-style date and time. */
strtime(tmpbuf);
printf("OS time:\t\t\t\t%\n", tnpbuf);
strdate(tnpbuf);
printf("OS date:\t\t\t\t%\n", tnpbuf);

/* Get UNIX-style time and display as number and string. */
time(&time);
printf("Tinme in seconds since UTC 1/1/70:\t% d\n", I[time);
printf("UNIX time and date:\t\t\t%", ctine(&tinme));

/* Display UTC. See note (1) in text */
gnt = gntime(&tinme);
printf("Coordinated universal tinme:\t\t%", asctime(gnt));

/* Convert to tinme structure and adjust for PMif necessary. */
today = localtine(&tine);

i f(today->tmhour > 12) {

strcpy(ampm "PM);

t oday- >t m hour -= 12;

}

126 C programming with lcc-win32

if(today->tmhour == 0) /* Adjust if mdnight hour. */
t oday- >t m hour = 12;

[* See note (2) in text */
printf("12-hour tine:\t\t\t\t% 8s %s\n",
asctinme(today) + 11, anpm);

/* Print additional time information. */

ftinme(& struct);

printf("Plus mlliseconds:\t\t\t%\n", tstruct.mllitm);

printf("Zone difference in seconds fromUTC: \t%u\n",
tstruct.tinmezone);

printf("Tinme zone name:\t\t\t\t%\n", _tznane[O0]);
printf("Daylight savings:\t\t\t%\n", // See note (3) in text
tstruct.dstflag ? "YES" : "NO');

/* Make time for noon on Christmas, 1993. */
if(nktine(&mas) !'= (tinme_t)-1)
printf("Christnmas\t\t\t\t%\n", asctine(&nas));

/* Use time structure to build a customized time string. */
today = localtinme(&tinme);

[* Use strftime to build a customized time string. */
strftinme(tnpbuf, 128,
"Today is %A, day % of the nonth of %8B in the year %.\n",
today);
printf(tnpbuf);
}

We use this opportunity for introducing new C constructs.

We see the function call gmtime(&Itime);. What does this mean? The function gmtime
requires a pointer to a variable of type time_t. We do not have a pointer, so we make one “on
the fly” by using the “address-of” operator.

The printf statement uses pointer addition to skip the first 11 characters of the result of asc-
time. That function returns a pointer to a character string. To skip characters we just add up a
constant (11) to that pointer, effectively skipping those characters. Since we want to display
the 8 following characters only, we pass a width argument to the %s directive of printf. Asyou
know, “%s’ is a directive that instructs printf to display a character string. Since we giveit a
maximum width of 8, only the first 8 chars will be displayed.

We see here the construct (expr) ? vall : val2; This construct evaluates first the expression, in
this case “tstruct.dstflag”. If the value is different than zero, the return value of the expression
will be the first value, in this case the character string “YES’. If the expression evaluates to
zero, the second value will be chosen, in this case the character string “NO”. The result of this
Is passed to printf as an argument.

The Windows system too has a lot of time-related functions. Here is a handy list of the most
important. Note that file times are kept using 64 bits in modern versions of windows, i.e. the

numbers represent the number of 100 nanosecond intervals since January first, 1601. "3

73. | hope this happensto you too...

Time and Date functions 127

To convert from the ANSI C time format to the Windows time format you can use the follow-

Function Purpose
CompareFileTime Compares two 64-hit file times
DosDateTimeToFileTime Converts MS-DOS date and time values to a 64-bit file time.
FileTimeToDosDateTime Converts a 64-hit file time to MS-DOS date and time val ues.

Converts afile time based on the Coordinated Universal Time

FileTimeToLocalFileTime (UTC) toalocl filetime.

FileTimeToSystemTime Converts a 64-bit file time to system time format
_— Retrieves the date and time that afile was created, | ast accessed, and
GetFileTime .
last modified.
GetLocalTime Retrieves the current local date and time.
GetSystemTime Retrieves the current system date and time.

Determines whether the system is applying periodic time
GetSystemTimeAdjustment adjustments to its time-of-day clock at each clock interrupt, along
with the value and period of any such adjustments.

Obtains the current system date and time. The informationisin

GetSystemTimeAsFileTime Coordinated Universal Time (UTC) format.

Retrieves the number of milliseconds that have elapsed since the

GetTickCount system was started. It islimited to the resol ution of the system timer.
Retrieves the current time-zone parameters. These parameters
GetTimeZonelnformation control the translations between Coordinated Universal Time (UTC)

and local time.

Converts alocal file time to afile time based on the Coordinated
Universal Time (UTC).

Sets the date and time that a file was created, |ast accessed, or last

LocalFileTimeToFileTime

SetFileTime modified.
SetLocalTime Sets the current local time and date.
SetSystemTime Sets the current system time and date. The system time is expressed

in Coordinated Universal Time (UTC).

Tellsthe system to enable or disable periodic time adjustmentsto its

SetSystemTimeAdjustment time of day clock.

Sets the current time-zone parameters. These parameters control

SetTimeZoneInformation translations from Coordinated Universal Time (UTC) to local time.

SystemTimeToFileTime Converts a system time to afile time.

Converts a Coordinated Universal Time (UTC) to a specified time

SystemTimeToTzSpecificLocalTime Z0ne's corresponding local time.

ing function:

#i ncl ude <wi nbase. h>
#i ncl ude <wi nnt. h>
#i ncl ude <tine. h>

void Uni xTi neToFil eTinme(time_t t, LPFILETIME pft)
{

long long I1;

[l = Int32x32To64(t, 10000000) + 116444736000000000;
pft->dwlLowDat eTimre = (DWORD)I | ;

128 C programming with lcc-win32

pft->dwH ghDateTime = || >> 32;
}
Once the UNIX timeis converted to a FILETIME structure, other Win32 time formats can be
easly obtained by using Win32 functions such asFi | eTi meToSyst enili me() and Fi | eTi me-
ToDosDat eTi me() .

voi d Uni xTi neToSystentli me(time_t t, LPSYSTEMII ME pst)

{
FI LETI ME ft;

Uni xTi meToFi | eTi me(t, &ft);
Fi | eTi meToSystentTi ne(&t, pst);
}

1.29 Using structures (continued)

C alowsimplementation of any type of structure. Here is a description of some simple ones so
you get an idea of how they can be built and used.

1.29.1 Lists

Lists are members of a more general type of objects called sequences, i.e. objects that have a
natural order. You can go from agiven list member to the next element, or to the previous one.

We have severa types of lists, the smplest being the single-linked list, where each member
contains a pointer to the next element, or NULL, if there isn't any. We can implement this
structure in C like this:

typedef struct _list {
struct _list *Next; // Pointer to next el enent
void *Data;// Pointer to the data el enent

} LIST;

We can use a fixed anchor as the head of the list, for instance a global variable containing a
pointer to the list start.

LI ST *Root ;
We define the following function to add an element to the list:
LI ST *Append(LI ST **pLi st Root, void *data)

LI ST *rvp = *pLi st Root ;

if (rvp == NULL) { // is the list enpty?
/'l Yes. Allocate nenory
*pLi stRoot = rvp = GC _nmall oc(sizeof (LIST));
}
else { // find the last el ement
whil e (rvp->Next)
rvp = rvp->Next;
/! Add an elenent at the end of the |ist
rvp->Next = GC _mall oc(sizeof (LIST));
rvp = rvp->Next;
}
/[l initialize the new el ement
rvp- >Next = NULL;
rvp->Data = dat a;
return rvp;

Using structures (continued) 129

This function receives a pointer to a pointer to the start of the list.
Why?

If the list is empty, it needs to modify the pointer to the start of the list. We would normally
call thisfunction with:

newkEl erent = Append(&Root, dat a) ;
Note that |oop:

whil e (rvp->Next)

rvp = rvp->Next;

This means that as long as the Next pointer is not NULL, we position our roving pointer
(hence the name “rvp”) to the next element and repeat the test. We suppose obvioudy that the
last element of the list contains a NULL “Next” pointer. We ensure that this condition is met
by initializing ther vp- >Next field to NULL when we initialize the new element.

To access alist of n elements, we need in average to access n/2 elements.

Other functions are surely necessary. Let’s see how afunction that returns the nth member of a
list would look like:

LI ST *Li stNth(LI ST *list, int n)

{
while (list & n-- > 0)
list = 1ist->Next;
return |ist;

}
Note that this function finds the nth element beginning with the given element, which may or

may not be equal to the root of the list. If there isn't any nth element, this function returns
NULL.

If this function is given a negative n, it will return the same element that was passed to it.
Given aNULL list pointer it will return NULL.

Other functions are necessary. Let’slook at Insert.

LI ST *Insert (LI ST *list,LIST *el ement)

{
LI ST *t np;

if (list == NULL)
return NULL;

if (list == elenent)
return |ist;
tnmp = list->Next;

list->Next = el ement;
if (elenent) {

el ement - >Next = tnp;
}

return |ist;

}

We test for different error conditions. The first and most obvious is that “list” is NULL. We
just return NULL. If we are asked to insert the same element to itsdlf, i.e. “list” and “element”
are the same object, their addresses are identical, we refuse. Thisis an error in most cases, but
maybe you would need a circular element list of one element. In that case just eliminate this
test.

Notethat | nsert (1ist, NULL); will effectively cut thelist at the given element, since
al elements after the given one would be inaccessible.

130 C programming with lcc-win32

Many other functions are possible and surely necessary. They are not very difficult to write,
the data structure is quite simple.

Double linked lists have two pointers, hence their name: a Next pointer, and a Previous
pointer, that points to the preceding list element.

Our data structure would look like this:

typedef struct _dlList {
struct _dl List *Next;
struct _dl List *Previous;
voi d *dat a;

} DLLI ST;

Our “Append” function above would look like: (new material in bold)
LI ST *AppendDl (DLLI ST **pLi st Root, void *data)

{

DLLI ST *rvp = *pLi st Root ;

/1 is the list empty?

if (rvp == NULL) {
Il Yes. Allocate memory
*pLi stRoot = rvp = GC nal |l oc(sizeof (DLLIST));
rvp->Previ ous = NULL;

}

el se {
/I find the last element
whil e (rvp->Next)

rvp = rvp->Next;

/1 Add an el enent at the end of the |ist
rvp->Next = GC _mal | oc(sizeof (DLLIST));
rvp- >Next - >Previ ous = rvp;
rvp = rvp->Next;

}

/[initialize the new element

rvp->Next = NULL;

rvp->Data = dat a;

return rvp;

}

The Insert function would need some changes too:

LI ST *Insert(LIST *list,LIST *el enent)

{
LI ST *t np;

if (list == NULL)
return NULL,
if (list == el enent)
return |ist;
tnp = |ist->Next;
list->Next = el enment;
if (elenent) {
el ement - >Next = tnp;
el ement - >Previ ous = |ist;
if (tmp)
t mp- >Pr evi ous = el enent;
}

return |ist;

}

Note that we can implement a Previous function with single linked liststoo. Given a pointer to
the start of the list and an element of it, we can write a Previous function like this:

Using structures (continued) 131

LI ST *Previ ous(LI ST *root, LIST *el enent)
{

if (root == NULL)
return NULL;
while (root && root->Next != el enent)

root = root->Next;
return root;
}
Circular lists are useful too. We keep a pointer to a special member of the list to avoid infinite
loops. In general we stop when we arrive at the head of the list. Wedit uses this data structure
to implement a circular double linked list of text lines. In an editor, reaching the previous line
by starting at the first line and searching and searching would be too slow. Wedit needs a dou-
blelinked list, and a circular list makes an operation like wrapping around easier when search-

ing.

1.29.2 Hash tables

A hash tableis atable of lists. Each element in a hash tableisthe head of alist of element that
happen to have the same hash code, or key.

To add an element into a hash table we construct from the data stored in the element a number
that is specific to the data. For instance we can construct a number from character strings by
just adding the charactersin the string.

This number is truncated module the number of elements in the table, and used to index the
hash table. We find at that slot the head of alist of strings (or other data) that maps to the same
key modulus the size of the table.

To make things more specific, let’s say we want a hash table of 128 elements, which will store
list of strings that have the same key.

Suppose then, we have the string “abc”. We add the ASCII value of ‘@ + ‘b’ + ‘¢’ and we
obtain 97+98+99 = 294. Since we have only 128 positionsin our table, we divide by 128, giv-

ing 2 and arest of 38. We use the rest, and use the 3gth position in our table.

This position should contain a list of character strings that all map to the 3gth position. For
instance, the character string “akE”: (97+69 = 166, mod 128 gives 38). Since we keep at each
position a single linked list of strings, we have to search that list to find if the string that is
being added or looked for exists.

A sketch of an implementation of hash tables looks like this:

#defi ne HASHELEMENTS 128

typedef struct hashTabl e {
i nt (*hashfn)(char *string);
LI ST *Tabl e[HASHELEMVENTS] ;

} HASH TABLE;

We use a pointer to the hash function so that we can change the hash function easily. We build
a hash table with a function.

HASH TABLE newHashTabl e(i nt (*hashfn)(char *))

{
HASH TABLE *result = GC mal |l oc(si zeof (HASH TABLE)) ;

resul t->hashfn = hashfn;
return result;

}
To add an element we write:
LI ST *HashTabl el nsert (HASH TABLE *tabl e, char *str)

132 C programming with lcc-win32

{
int h = (tabl e->hashfn)(str);

LI ST *slotp = tabl e->Tabl e[h % HASHELEMENTS] ;

while (slotp) {
if (!'strcnp(str,(char *)slotp->data)) {
return slotp;
}

slotp = sl ot p- >Next;

}
return Append(&t abl e->Tabl e[h % HASHELEMENTS] , el enent) ;

}

All those casts are necessary because we use our generic list implementation with a void
pointer. If we would modify our list definition to use a char * instead, they wouldn't be neces-
sary.

We first call the hash function that returns an integer. We use that integer to index the table in
our hash table structure, getting the head of alist of strings that have the same hash code. We
go through the list, to ensure that there isn’t aready a string with the same contents. If we find
the string we return it. If we do not find it, we append to that list our string

The great advantage of hash tables over listsisthat if our hash function is a good one, i.e. one
that returns a smooth spread for the string values, we will in average need only n/128 compar-
isons, n being the number of elementsin the table. Thisis an improvement over two orders of
magnitude over normal lists.

A closer look at the pre-processor 133

1.30 A closer look at the pre-processor

The first phase of the compilation processisthe “ pre-processing” phase. This consists of scan-
ning in the program text all the preprocessor directives, i.e. lines that begin with a“#’ charac-
ter, and executing the instructions found in there before presenting the program text to the
compiler.

We will interest us with just two of those instructions. The first one is the “#define” directive,
that instructs the software to replace a macro by its equivalent. We have two types of macros.

Parameterless. For example:
#define Pl 3.1415

Following this instruction, the preprocessor will replace al instances of the identifier Pl with
the text “3.11415".

Macros with arguments. For instance:
#define s2(a,b) ((a*a + b*b) /2.0)
When the preprocessor finds a sequence like:
s2(x,y)
It will replaceit with:
(x*x + y*y)/2.0)
The problem with that macro is that when the preprocessor finds a statement like:
s2(x+6.0,y-4.8);
It will produce:
(x+6. 0*x+6.0 + y+6.0*y+6.0) /2.0)
What will calculate completely another value:
(7.0%*x + 7.0*y + 12.0)/2.0

To avoid this kind of bad surprises, it is better to enclose each argument within parentheses
eachtimeit is used:

#define s2(a,b) (((a)*(a) + (b)*(b))/2.0)

This corrects the above problem but we see immediately that the legibility of the macros suf-
fers... quite complicated to grasp with all those redundant parentheses around.

Another problem arises when you want that the macro resembles exactly a function call and
you have to include a block of statements within the body of the macro, for instance to declare
atemporary variable.

#define s2(x,y) { int tenp = x*x+y*y; x=tenp+y *(tenp+6);}
If you call it likethis:

if (x <y) s2(x,y);
el se
X = 0;

Thiswill be expanded to:

if (x <y) { int tenp = x*x+y*y; x=tenp+y *(tenp+6);} ;
el se
x = 0;

Thiswill provoke a syntax error.
To avoid this problem, you can use the do... while statement, that consumes the semicolon:
#define s2(x,y) do { int tenmp = x*x+y*y; x=tenp+y *(tenp+6);} \

134 C programming with lcc-win32

whi | e(0)
Note the\ that continues thislong line, and the absence of a semicolon at the end of the macro.

An “#undef” statement can undo the definition of a symbol. For instance
#undef Pl

will erase from the pre-processor tables the Pl definition above. After that statement the iden-
tifier Pl will be ignored by the preprocessor and passed through to the compiler.

The second form of pre-processor instructions that is important to know is the

#1 f (expression)
... program t ext
#el se

... program t ext
#endi f

or the pair

#i fdef (symbol)
#el se

#endi f

When the preprocessor encounters this kind of directives, it evaluates the expression or looks
up in its tables to see if the symbol is defined. If it is, the “if” part evaluates to true, and the
text until the #else or the #endif is copied to the output being prepared to the compiler. If it is
NOT true, then the preprocessor ignores all text until it finds the #else or the #endif. This
allows you to disable big portions of your program just with a ssmple expression like:

#if 0

#endi f
This is useful for allowing/disabling portions of your program according to compile time
parameters. For instance, lcc-win32 definesthe macro __ LCC__. If you want to code some-

thing only for this compiler, you write:

#ifdef _LCC _
...Statenents ...
#endi f

Note that there is no way to decide if the expression:
SonmeFn(f 00);

Is afunction call to SomeFn, or is a macro call to SomeFn. The only way to know is to read
the source code. Thisiswidely used. For instance, when you decide to add a parameter to Cre-
ateWindow function, without breaking the millions of lines that call that APl with an already
fixed number of parameters you do:

#define CreateWndowa, b, ...) CreateWndowkx(O0, a, b, ..)

This means that all callsto CreateWindow API are replaced with a call to another routine that
receives a zero as the new argument’s val ue.

It is quite instructive to see what the preprocessor produces. You can obtain the output of the
preprocessor by invoking lcc with the —E option. This will create a file with the extension. i
(intermediate file) in the compilation directory. That file contains the output of the preproces-
sor. For instance, if you compile hello.c you will obtain hello.i.

1.30.1 Preprocessor commands

The preprocessor receives its commands with lines beginning with the special character “#”.
Thislines can contain:

A closer look at the pre-processor 135

1) Macros

2) Conditional compilation instructions
3) Pragmainstructions

4) The“##" operator

5) Lineinstructions

1.30.1.1 Preprocessor macros

The #define command has two forms depending on whether a left parenthesis appears imme-
diately after the name of the macro. The first form, without parenthesisis simply the substitu-
tion of text. An example can be:

#defi ne MAXBUFFERSI ZE 8192

This means that whenever the preprocessor find the identifier MAXBUFFERSIZE in the pro-
gram text, it will replace it with the character string “8192"

The second form of the preprocessor macros is the following:

#define add(a,b) ((a)+(b))
This means that when the preprocessor finds the sequence:

int n = add(7,b);
it will replace this with:

int n = ((7)+(b));
Note that the left parenthesis MUST be immediately after the name of the macro without any
white space (blanks, tabs) in between. It is often said that white space doesn’t change the
meaning of a C program but that is not always true, as you can see now. If there is white space

between the macro name and the left parenthesis the preprocessor will consider that thisis a
macro with no arguments whose body starts with a left parentheses!

If you want to delete the macro from the preprocessor table you use the
#undef <macro nane>

command. Thisis useful for avoiding name clashes. Remember that when you define a macro,
the name of the macro will take precedence before everything else since the compiler will not
even see the identifier that holds the macro. This can be the origin of strange bugs like:

int fn(int a)

{

// sonme code

}
If you have the idea of defining a macro like this
#define fn 7987

the definition above will be transformed in

int 7987(int a)
{
}

136 C programming with lcc-win32

not exactly what you would expect. This can be avoided by #undefining the macros that you
fear could clash with other identifiers in the program.

1.30.1.2 Conditional compilation

Very often we need to write some kind of code in a special situation, and some other kind in
another situation. For instance we would like to call the function “initUnix()” whenwearein a
UNIX environment, and do NOT call that function when in other environments. Besides we
would like to erase all UNIX related instructions when compiling for a windows platform and
all windows related stuff when compiling for Unix.

Thisis achieved with the preprocessor

#i fdef UNI X
lines for the Unix system
#el se
lines for other (non-unix) systens.
#endi f
This means:

If the preprocessor symbol “UNIX” is defined, include the first set of lines, else include the
second set of lines.

There are more sophisticated usages with the #¢lif directive:

#i fdef UN X

Uni x stuff
#el i f MACI NTCSH

Mac stuff
#eli f W N32

W ndows st uff
#el se
#error “Unknown systeml”
#endi f

Note the #error directive. Thisdirective just prints an error message and compilation fails.

The lines that are in the inactive parts of the code will be completely ignored, except (of
course) preprocessor directives that tell the system when to stop. Note too that the flow of the
program becomes much difficult to follow. This feature of the preprocessor can be abused, to
the point that is very difficult to see which code is being actually compiled and which is not.
The IDE of lcc-win32 provides an option for preprocessing a file and showing al inactive
linesin grey color. Go to “Utils” the choose “ Show #ifdefs” in the main menu.

Note: You can easily comment out a series of lines of program text when you enclose them in
pairs of

#if O
/1 lines to be comment ed out
#endi f

1.30.1.3 The pragma directive

This directive is compiler specific, and means that what follows the #pragma is dependent on
which compiler is running. The pragmas that |cc-wi32 uses are defined in the documentation.
In general pragmas are concerned with implementation specific details, and are an advanced
topic.

A closer look at the pre-processor 137

1.30.1.4 The ## operator
This operator allows you to concatenate two tokens:

#define join(a,b) (a##b)
a = joi n(anne, bob)

When preprocessed this will produce:
a = (annebob)

This is useful for constructing variable names automatically and other more or less obscure
hacks.

1.30.1.5 The # operator

This operator converts the given token into a character string. It can be used only within the
body of a macro definition. After defining a macro like this:

#define toString(Token) #Token
an expression like
toString(MyToken)
will be tranglated after preprocessing into:
"MyToken"

An example of its use is the following situation. We have a structure of an integer error code
and a character field containing the description.

static struct table {
unsi gned i nt code;
unsi gned char *desc;
} hresultTab;

Then, we have a lot of error codes, defined with the preprocessor: E_ UNEXPECTED,
E NOTIMPL, E_INVALIDARG, etc. We can build atable with:

hresult Tab Table[] = {
{ E_UNEXPECTED, " E_UNEXPECTED", }
{ E_NOTI MPL, " E_NOTI MPL", }
etc
}
Thisis tedious, and there is a big probablity of making a typing mistake. A more intelligent
way is.
#defi ne CASE(a) {a, #a},
Now we can build our table like this:

hresult Tab Table[] = {
CASE(E_UNEXPECTED)
CASE(E_NOTI MPL)
Lo
1.30.2 Things to watch when using the preprocessor

1) One of the most common errorsisto add a semi colon after the macro:
#defi ne add(a, b) a+b;

138 C programming with lcc-win32

When expanded, this macro will add a semicolon into the text, with the consequence of a
cascade of syntax errors with apparently no reason.

2) Watch for side effects within macros. A macro invocation is similar to afunction call, with
the big difference that the arguments of the function call is evaluated once but in the macro

can be evaluated several times. For instance we have the macro “ square”
#define square(a) (a*a)

If weuseit likethis:
b = square(at+);

After expansion thiswill be converted into:
b = (at++)*(at++);

and the variable a will be incremented twice.

Using function pointers 139

1.31 Using function pointers

A very common programming problem is to recursively explore a certain part of the file sys-
tem to find files that have a certain name, for instance you want to know all the files with the
“.c” extension in adirectory and in all subdirectories.

To build such a utility you can do:
1) Build alist or table containing each file found, and return those results to the user.

2) For each file that is found, you call a user provided function that will receive the name of
the file found. The user decides what does he/she want to do with thefile.

Note that solution 2 includes solution 1, since the user can write a function that builds the list
or table in the format he wants, instead of in a predefined format. Besides, there are many
options as to what information should be provided to the user. I's he interested in the size of the
file? Or in the date? Who knows. You can’'t know it in advance, and the most flexible solution
isthe best.

We can implement this by using a function pointer that will be called by the scanning function
each time afileisfound. We define

typedef int (*call back)(char *);

This means, “afunction pointer called callback that points to afunction that returns an int and
receives a char * asits argument”. This function pointer will be passed to our scanning func-
tion and will return non-zero (scanning should be continued) or zero (scanning should stop).

Hereis a possible implementation of this concept:

#i ncl ude <stdi o. h>
#i ncl ude <w ndows. h>
#i ncl ude <direct. h>
/I Here is our callback definition
typedef int(*call back)(char *);
/I This function has two phases. In the first, we scan for normal files and ignore any
/I directories that we find. For each file that matches we call the given function pointer.
/I The input, the char * “spec” argument should be a character string like “*. ¢c” or“*. h”.
I If several specifications are needed, they should be separated by the * ; * semi colon char.
/I For instance we can use “*. c; *. h; *. asni to find all files that match any of those
/I file types. The second argument should be a function that will be called at each file
/I found.
i nt ScanFil es(char *spec, cal |l back fn)
{
char *p,*q; // Used to parse the specs
char dir[MAX_PATH]; // Contains the starting directory
char full name[MAX_PATH];// will be passed to the function
HANDLE hdi r;
HANDLE h;
W N32_FI ND_DATA di r dat a;
W N32_FI ND_DATA dat a;

/I Get the current directory so that we can always come back to it after calling
I recursively this function in another dir.
menset (dir, 0, si zeof (dir));
getcwd(dir, sizeof (dir)-1);
/I This variable holds the current specification we are using
g = spec;
Il First pass. We scan here only normal files, looping for each of the specifications
Il separated by ;'
do {
/I Find the first specification

140 C programming with lcc-win32

p = strchr(q,”;");
/I Cut the specification at the separator char.

if (p)
*p = O’

h = FindFirstFil e(q, &ata) ;

if (h !'= INVALI D HANDLE VALUE) {
do {

if (!(data.dwFileAttributes &
FI LE_ATTRI BUTE_DI RECTORY)) {
/' We have found a matching file. Call the user’s function.
sprintf(fullnanme,"%\\%",dir, data. cFil eNane);
if (!'fn(fullnane))
return O;
}
} while (FindNextFile(h, &ata));
Fi ndCl ose(h);
}
/I Restore the input specification. It would be surprising for the user of this
/I application that we destroyed the character string that was passed to
// this function.
if (p)
prt o=t
/I Advance ¢ to the next specification
q=p;
} while (q);
/l OK. We have done all the files in this directory. Now look if there are any
/Il subdirectories in it, and if we found any, recurse.
hdir = FindFirstFile("*.*", &lirdata);
if (hdir !'= I NVALI D_ HANDLE VALUE) ({
do {
if (dirdata.dwFileAttributes &
FI LE_ATTRI BUTE_DI RECTORY) {

/[This is a directory entry. Ignore the “. ” and “. . " entries.
if (! (dirdata.cFileNang[0] =="'." &&
(dirdata.cFil eNane[1] == 0 ||
dirdata.cFileNane[1] == "."))) {

/I We change the current dir to the subdir and recurse
chdir (dirdata. cFil eNane);
ScanFi | es(spec, fn);
/I Restore current directory to the former one
chdir(dir);

}

}
} while (FindNextFile(hdir, &irdata));
Fi ndCl ose(hdir);
}

return 1;

}
This function above could be used in a program like this:

static int files; // used to count the nunber of files seen
/I This is the callback function. It will print the name of the file and increment a counter.
int printfile(char *fnane)

{
printf("%\n", fnane);
files++;
return 1,

}

/I main expects a specification, and possibly a starting directory. If no starting directory
/I is given, it will default to the current directory.

Using function pointers 141

/I Note that many error checks are absent to simplify the code. No validation is done to the
I result of the chdir function, for instance.
int main(int argc,char *argv[])

{
char spec[MAX_PATH ;
char startdir[MAX PATH|;

if (argc == 1) {
printf(“scan files expects a file spec\n”);
return 1,

}

menset (startdir, 0, sizeof (startdir));

menset (spec, 0, si zeof (spec));

strncpy(spec, argv[1], si zeof (spec)-1);

if (argc > 2) {
strcpy(startdir,argv[2]);

}

if (startdir[0] == 0) {
getcwd(startdir, sizeof (startdir)-1);
chdir(startdir);

}

files = 0;

ScanFi | es(spec, printfile);

printf("%l files\n",files);

return O;

}

What is interesting about this solution, is that we use no intermediate memory to hold the
results. If we have alot of files, the size of the resulting list or table would be significant. If an
application doesn’t need this, it doesn’t have to pay for the extra overhead.

Using the name of thefile, the callback function can query any property of thefile like the date
of creation, the size, the owner, etc. Since the user writes that function there is no need to give
severa optionsto filter that information.

One of the big advantages of C isitsability of using function pointers asfirst class objects that
can be passed around, and used as input for other procedures. Without this feature, this appli-
cation would have been difficult to write and would be alot less flexible.

Note too that any error in the function pointer argument will provoke a crash, since we do not
test for the validity of the received function pointer.

But, let’s be clear: the biggest drawback is that the user has to write a function in C. Imagine
telling your friends that before they use your program they just write a function in C, compile
it, link it with your stuff, etc.

1.31.1 Function pointers as decision tables

Problem:

Write aprogram to print all numbers from 1 to n where n integer > 0 without using any control
flow statements (switch, if, goto, while, for, etc). Numbers can be written in any order.

Solution:

The basic ideais to use a table of function pointers as a decision table. This can be done like
this:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

typedef void (*call back)(int);

142 C programming with lcc-win32

void zero(int);
voi d greaterZero(int);
/I We define a table of two functions, that represent a boolean decision
/I indexed by either zero or one.
cal | back cal | backTabl e[2] = {
zero,
greaterZero

s
void zero(int a)
{
exit(0); // This terninates recursion
}
voi d greaterZero(int a)
{
printf("%l\n",a--);
cal | backTabl e[a>0] (a); // recurse with a-1
}
int main(int argc,char *argv[])
{
/1 assume correct argunents, n > 0
greaterZero(atoi (argv[1]));
return O;
}

Error checking can be added to the above program in asimilar way. Thisis left as an exercise
for the interested reader.

Of course the utility of function tablesis not exhausted by this rather artificia example; Deci-
sion tables can be used as a replacement of dense switch statements, for instance. When you
are very interested in execution speed, thisis the fastest way of making multi-way branches.

Instead of writing:

switch(a) {
case 1:
/] some code
br eak;
case 2.
br eak;
}

you could index a table of functions, each function containing the code of each case. You
would construct a function table similar to the one above, and you would go to the correct
“case” function using:

Tabl e[a] () ;

The best is, of course, to use the switch syntax and avoid the overhead of afunction call. Lcc-
win32 alows you to do this with:

#pragma density(0)

This will modify the threshold parameter in the switch construction in the compiler so that a
dense table of pointersis automatically generated for each case and all of the cases that aren’t
represented. Thisis dangerousif your code contains thingslike:

case 1:

case 934088:

Using function pointers 143

In this case the table could be a very bad idea. Thisis a good technique for very dense switch
tables only.

There are many other uses of function tables, for instance in object oriented programming
each object has a function table with the methods it supports.

Since function pointers can be assigned during the run time, this allows to change the code to
be run dynamically, another very useful application.

1.31.1.1 An even shorter solution
There is always someone cleverer than you. Now look at this:

#i ncl ude <stdio. h>
void print(int n)

{
}

int main(int argc,char*argv[]) {
print(atoi(argv[1]);
return O;

n & (print(n-1), 1) && printf("%\n", n);

}
How does thiswork?

By using short circuit evaluation. The statement:

n & (print(n-1), 1) & printf("%\n", n);
can be read (from left to right) like this:
If niszero do nothing and return.

The second expression (print(n-1),1) calls print, then yields 1 asitsresult. This means that the
third expression is evaluated, that prints the number.

144 C programming with lcc-win32

1.32 Advanced C programming with Icc-win32

Lcc-win32 offers several extensions to the C language described below. This extensions are
not part of the C standard, but they are very much like similar features of the C++ language so
they should be able to run in other environments as well.

1.32.1 Operator overloading

When you write:

int a=6, b=8;

int ¢ = a+b;
you are actually calling a specific intrinsic routine of the compiler to perform the addition of
two integers. Conceptualy, it islike if you were doing:

int a=6, b=8;

int ¢ = operator+(a,b);
This*operator+” function isinlined by the compiler. The compiler knows about this operation
(and several others), and generates the necessary assembly instructions to perform it at run
time.

L cc-win32 alows you to define functions written by you, to take the place of the built-in oper-
ators. For instance you can define a structure complex, to store complex numbers. Lcc-win32
allows you to write:

COWPLEX oper at or +(COWLEX A, COVPLEX B)
{

}
This means that whenever the compiler sees“at+b” and “a” isa COVPLEX and “b” is a COW
PLEX, it will generate a call to the previously defined overloaded operator, instead of com-
plaining about a“ syntax error”.

...Code for conpl ex nunber addition goes here

Thisis called in “tech-speak” operator overloading. There are several rules for writing those
functions and using this feature. All of them explained in-depth in the user’s manual. This
short notice isjust a pointer, to show you what is possible.

The implementation of this feature is compatible with the C++ language that offers a similar
facility.

1.32.1.1 How to use this facility

Operator overloading is a powerful feature but that doesn’t mean that you are exempted from
thinking before you write your code. Please. OK?

For instance, even it is very tempting to do:

typedef struct _date {
i nt year, nonth,day, hour, sec;
} DATE;

DATE oper at or +(DATE d1, DATE d2) { ... }
DATE operator-(DATE d1, DATE d2) { ... }

The operator “+” can’'t be used for dates. There is nothing that can be assigned to 16/July/1970
+23/December/1980. The operation “ +” has no sense for dates. The same applies to multipli-
cation and division.

Advanced C programming with lcc-win32 145

Subtraction is alegal operation for dates, but the result type is not a date but a dimensionless
number that represents a time interval (in days, hours, etc). The only overloaded operator that
makes sense then is:

i nt operator-(DATE d1, DATE d2) { ... }

Operator overloading is best done for numbers, and similar objects. Thisfacility allows you to
implement any kind of numbers you would like to design, it is fully general. Just look at
gfloat.h and see what would happen with gfloat being any other number type you want.

Note too, that nothing has changed about C. There are no classes or any other underlying con-
text, and you are free to build the context you wish, as always C has been.

1.32.2 References

References are a special kind of pointers that are aways dereferenced when used. When you
declare a reference, you must declare immediately the object they point to. There are no
invalid references since they can't be assigned. Once a reference is declared and initialized,
you can’t reassign them to another object.

They are safer pointers than normal pointers, since they are guaranteed correct, unless the
object they point to is destroyed, of course. References are initialized with the construct:

int a;
int &a = a;

The “pa’ variable is areference to an integer (an “int &”), and it isimmediately initialized to
point to the integer “a’. Note that you do not have to take the address of “a’, but just put its
name. The compiler takes the address.

Again, hereisashort pointer only. A complete description is found in the user manual.

1.32.3 Generic functions

You can declare a function that receives several types of arguments, i.e. a generic function by
using the "overloaded" keyword. Suppose a function that receives as arguments a gfloat or a
double.

i nt overl oaded docal cs(qfloat *pq) { .}

i nt overl oaded docal cs(double *pd) { ...}

This function can receive either a"gfloat” number or a double number as input. The compiler
notices the type of argument passed in the call and arranges for calling the right function.

Notice that you define two internally different functions, and that the decision of which one
will be called will be done according to the type of argumentsin the call.

It is not possible to declare a function overloaded after a call to this function is aready gener-
ated. The following code will NOT work:

docal s(2. 3);
i nt overl oaded docal s(doubl e *pd);

Here the compiler will signal an error.

1.32.4 Default arguments

Default arguments allow you to simplify the interface of a function by providing arguments
that if not present will assume a default value.

For instance:

146 C programming with lcc-win32

int fn(int a,int b = 78);

This declares a function called «fn», that takes one argument and optionally a second. When
the second is not given, the compiler will arrange for it being 78. For instance

fn(2);
Isequivalent to
fn(2,78);

1.32.5 Structured exception handling

1.32.5.1 Why exception handling?
Asyou know very well, the following program will provoke atrap.
#i ncl ude <stdio. h>

i nt mai n(voi d)

{
char *p=NULL;

* —_ .
p=0;

printf(“This will never be reached\n”);
return O;

}

There is no way you can catch this trap, and try to recover, or, at least, exit the program with
an error message.

This means that there isn’t any way for you to prevent your program from failing catastrophi-
cally at the smallest error. It suffices to have a bad pointer somewhere and you are doomed. If
you use athird party library you have to trust it 100%, meaning that the slightest problem in
the library will provoke the end of your application.

The whole application is fragile and very difficult to trust. A small error in ten thousands of
linesis almost inevitable, as you may know...

Of course there is already an exception handling mechanism. When a machine trap occurs,
windows displays the well known “This application...” message and shuts down the program.
Couldn’t the system make something better?

WEell, it can do something better, and it does. Structured exception handling within Icc-win32
is built using the general exception handling mechanism of windows. It has been around since
the beginning of thewin32 AP, i.e. 1995.

1.32.5.2 How do | use SEH?

Structured exception handling alows you to build a solution for the above problems. You
enclose the possibly buggy code within special markers, like this:

#i ncl ude <stdio. h>

#i ncl ude <seh. h>

i nt mai n(voi d)

{

char *p = NULL;
_try {
*p = 0'

}
__except (EXCEPTI ON_EXECUTE_HANDLER) {

printf("Ooops, there was a problemwi th this program\n");
printf("Please call the mmintenance team at 0-800- XXX\ n");

Advanced C programming with lcc-win32 147

return O;
}
Thiswill print

D:\l cc\nc38\t est >t est
Qoops, there was a problemwith this program
Pl ease call the maintenance team at 0-800- XXX

If we changeit to:

#i ncl ude <stdi o. h>
#i ncl ude <seh. h>
int mai n(void)

{
char p[10];
_try {
*p = O’
printf("No exceptions\n");
}
__except (EXCEPTI ON_EXECUTE_HANDLER) {
printf("Ooops, there was a problemw th this program\n");
printf("Please call the mmintenance team at 0-800- XXX\ n");
}
return O;
}

Thiswill now print:
No exceptions
We have three parts here.

Thefirst oneisthe protected code block, enclosed by _ try { }. Thisblock can contain code
that provokes exceptions. To leave it prematurely you usethe __| eave expression.

The second part is an integer expression that appears between parentheses after the __except
keyword. This expression should eventually evaluate to one of the three constants defined in
the <seh. h> header file.

EXCEPTI ON_EXECUTE_HANDLER (1) means that the code in the following expression should be
executed. EXCEPTI ON_CONTI NUE_SEARCH (0) means that the system should go on looking for
another handler. EXCEPTI ON_CONTI NUE_EXECUTI ON (-1) means that the system should attempt
to go on at the same point in the program where the exception happened.

In this case we decided that any exception would provoke the execution of the block following
the _except ().

1.32.5.3 Auxiliary functions

Of course, you are surely keenly interested in the actual exception code. The pseudo-function
GetExceptionCode() will return the current exception code. If we change our program to:

#i ncl ude <stdio. h>
#i ncl ude <seh. h>
int mai n(void)
{
char *p=NULL;
unsi gned code;
_try {
*p = 0;
printf("No exceptions\n");
}
__except (code=Get Excepti onCode(), EXCEPTI ON_EXECUTE_HANDLER) {
printf("COoops, there was a problemw th this program?”);

148 C programming with lcc-win32

printf("Error code: %#x\n", code);

}

return O;

}
Thiswill print:

Qoops, there was a problemwi th this program

Error code: 0xc0000005
We use a comma expression within the except() to catch the value of the exception code into a
local variable. The comma expression returns EXCEPTION_EXECUTE_HANDLER as its
result, with the side effect of storing the exception codein alocal variable.

In other compilers, the GetExceptionCode() function can be called only within an except
expression. Lcc-win32 let’s you call it anywhere you want, it will aways return the exception
code of the last exception that was executed, or zero, if there weren't any.

Another useful functionis

voi d Rai seExcepti on(unsi gned code, unsi gned fl ags,
unsi gned nbArgs, unsi gned *args);
We can use it to call the exception handling mechanism in the same way as a real exception
would. Example:
#i ncl ude <stdio. h>

#i ncl ude <seh. h>
int mai n(void)

{

char p[10];

unsi gned code;

_try {

*p = O,
printf("No exceptions\n");
Rai seExcepti on(Oxdeadbeef, 0, 0, NULL) ;

}

__except (code=Cet Except i onCode() , EXCEPTI ON_EXECUTE_HANDLER) {
printf("Ooops, there was a problemw th this program\n");
printf("Error code: %#x\n", code);

}

return O;

}
Thiswill print:

No exceptions
Qoops, there was a problemwi th this program
Error code: Oxceadbeef

Note that the system will change the exception code from Oxdeadbeef to Oxceadbeef .
Why?
The explanation isin the MSDN site: 7

| quote:

To make sure that you do not define a code that conflicts with an existing exception code, set
the third most significant bit to 1. The four most-significant bits should be set as shown in the
following table.

74. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/htmi/
_core_raising_software_exceptions.asp.

Advanced C programming with lcc-win32 149

Bits Recommended Description
Setting
31-30 11 These two bits describe the basic status of the code:
11 = error, 00 = success, 01 = informational, 10 =
warning.
29 1 Client bit. Set to 1 for user-defined codes.
28 0 Reserved bit. (Leave set t0 0.)

You can set the first two bits to a setting other than 11 binary if you want, although the error
setting is appropriate for most exceptions. The important thing to remember is to set bits 29
and 28 as shown in the previous table.

End quote.

Note that nowhere will be said that the actual code will be changed by the operating system.
Just recommendations... But anyway. Follow this schema and you (may) be happy with it.

1.32.5.4 Giving more information

A 32 bit integer can be too little data for describing what happened. Additional data can be
channeled through the exception arguments using the RaiseException API.

You can pass up to 15 arguments when you raise an exception. For instance, here we will pass
the name of the function that provoked the error in the first parameter:

#i ncl ude <stdi o. h>
#i ncl ude <seh. h>
int fn(void)

{

unsi gned argstabl e[1] ;

argstabl e[0] = (unsigned)_func__;
Rai seExcepti on(0xe0000001, 0, 1, argst abl e) ;
return 0; // Not reached

}

int mai n(voi d)
{

unsi gned code;

_try {
fn();
}

__except (code=Get Excepti onCode(), EXCEPTI ON_EXECUTE_HANDLER) {
EXCEPTI ON_PO NTERS *ex = Get Exceptionl nformation();
printf("Error code: %#x\n", code);
printf("In function %\n",

(char *)ex->Excepti onRecord->Exceptionlnformation[0]);

}

return 0O;

}
Thiswill print:

Error code: 0xe0000001
In function fn

150 C programming with lcc-win32

Thekeyword __func__ will be substituted by the name of the current function by the compiler.
We put that name in the first parameter of the table. We call then RaiseException() with 1
argument and our table. The exception handling code will get the exception information, and
print the first argument.

The function GetExceptionlnformation() returns a pointer to a copy of the exception informa-
tion received by the system by the Icc-win32 runtime. The structure EXCEPTI ON_PO NTERS
contains two pointers, the first points to an EXCEPTI ON_RECORD, and the second to a CONTEXT
structure containing the machine registers at the time of the exception. In the example we use
the exception record to get to the parameters array, and we print the first one.

Nowhere in the shown code there is a test to verify that the exception code is the one we are
expecting. If another exception had happened that has no parameters, or a different set of
parameters we would have crashed.

1.32.5.5 Catching stack overflow

The stack space allocated by windows to a program at start is 4K. This stack can grow up to a
size of IMB. If you go beyond this limit you get a stack overflow exception (0xCOO000FD).
This exception will be catched by the structured exception handling framework however, and
at first it looks like a normal exception. Consider this program:

#i ncl ude <wi ndows. h>

#i ncl ude <seh. h>

#i ncl ude <stdio. h>

#i nclude <intrinsics. h>

voi d StackOQverflow(int depth)

{
char bl ockdat a[90000] ;
printf("Overflow 9% l\n", depth);
St ackOver fl ow(dept h+1);

}

int main(int argc, char* argv[])
{
for(; ;) {
_try |
St ackOverfl ow(0);
}

__except (EXCEPTI ON_EXECUTE_HANDLER) {
printf("Exception handler % X\n", GetExceptionCode());
}

}

return O;

}
When run, this program will print:

Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overflow 10

Excepti on handl er CO0O000FD
Overflow O

©Coo~NOOUITDS WNPFO

Advanced C programming with lcc-win32 151

Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overfl ow
Overflow 10

We see that the first time the handler is invoked, but the second time there is no handler
invoked, the program exits abruptly without any further messages.

The reason for this behavior is that if a thread in your application causes an
EXCEPTI ON_STACK_OVERFLOW then your thread has left its stack in a damaged state. Thisisin
contrast to other exceptions such as EXCEPTI ON_ACCESS VI OLATION oOr
EXCEPTI ON_I NT_DI VI DE_BY_ZERO, Where the stack is not damaged. This is because the stack
Is set to an arbitrarily small value when the program is first loaded, just 4096 bytes, 1 “page’.
The stack then grows on demand to meet the needs of the thread. Thisisimplemented by plac-
Ing a page with PAGE_GUARD access at the end of the current stack. When your code causes the
stack pointer to point to an address on this page, an exception occurs. The system then does
the three following things:

1 Remove the PAGE_GUARD protection on the guard page, so that the thread can read
and write data to the memory.

P OO~NOOThA~, WNEPE

2 Allocate anew guard page that is located one page below the last one.
3 Rerun the instruction that raised the exception.

If athread in your program grows the stack beyond itslimit (IMB with normal programs), the
step 1 above will succeed, but the step 2 will fail. The system generates an exception and the
first try block is executed. Thisis OK, but the stack has been left without a guard page. Since
the second time that we get a stack overflow there is no more stack left, the program will pro-
voke an access violation when it attempts to use the stack within the code of the exception
handling procedure __except_handler3, that receives the exception from windows. This will
provoke the dreaded double fault exception that terminates immediately the program no ques-
tions asked. Note that not even the “this program has attempted an illegal operation” dialog
box appears.

The correct way of handling stack overflow is then, to do the following:
1 Get the page size from the system.
2 Set the page to guard page again

An exampleis given below:

#include <intrinsics.h>// For _GetStackPointer()
int main(int argc, char* argv[])
{

for (5;)

{

_try {
St ackOverfl ow(0);

__except (EXCEPTI ON_EXECUTE_HANDLER)
{
LPBYTE | pPage;
static SYSTEM I NFO si ;
static MEMORY_BASI C_| NFORMATI ON i ;

152 C programming with lcc-win32

stati ¢ DWORD dwd dPr ot ect ;

/I Get page size of system

Get System nfo(&si);

/I Find SP address

| pPage = Get StackPointer();

/I Get allocation base of stack

Vi rtual Query(l pPage, &m, sizeof(m));

/I Go to page beyond current page

| pPage = (LPBYTE) (m . BaseAddr ess) - si . dwPageSi ze;

/I Free portion of stack just abandoned

if (!'Virtual Free(m .All ocationBase,
(LPBYTE) | pPage - (LPBYTE)m . Al l ocati onBase,
MEM DECOW T)) {
/I If we get here, exit, there is nothing that can be done
exit(l);

}

/I Reintroduce the guard page

if (!'Virtual Protect (Il pPage, si.dwPageSi ze,
PAGE_GUARD | PAGE_READVWRI TE,
&dwd dProtect)) {
exit(l);

}

printf("Exception handler % X\n", GetExceptionCode());

Sl eep(2000) ;

}
}

return O;

}

1.32.5.6 The __retry construct

You can correct the error condition that provoked the exception and then restart again using
the _retry construct. A ssimple example of thisisthe following:

#i ncl ude <stdi o. h>
#i ncl ude <seh. h>
int mai n(void)
{
char *p = NULL;

_try |
*p =' A‘,
printf("%\n", p);

}
__except (EXCEPTI ON_EXECUTE_HANDLER) {

p = "abc";
__retry;

}

return O;
}
The first execution of the __ try yields an exception since the pointer p is NULL. Within the
except block we correct this condition by assigning to that pointer a valid value, then we
restart with the __retry. The output of this program is:

Abc

Advanced C programming with lcc-win32 153

1.32.6 The signal function

Besides the structured exception handling mechanism outlined above, lcc-win32 offers the
standard si gnal () utility of the standard C language.

1.32.6.1 Software signals

Software signals are the same thing as the exceptions we described in the proceeding para-
graphs. They can be raised by the CPU (traps) or ssimply raised by the functionr ai se() . To
give you an idea of how this mechanism works let’s repeat the example of above (structured
exception handling) using the signal mechanism:

#i ncl ude <signal . h>

#i ncl ude <stdio. h>
#include <stdlib.h>// For exit()

/I This function will be called by the signal mechanism when a SIGSEGV is raised.
voi d traphandl er(int s)

{
printf("lllegal address exception\n");
exit(1);

}

int main(void)

{
char *p = NULL;
/I Set the function to handle SIGSEGV
si gnal (SI GSEGV, t raphandl er);
*p:O;
return O;

}

Thiswill produce the following output:

D:\lcc\test>tsigna
Il egal address exception

To make it easy to understand, the code above doesn't test the result of setting the signal han-
dler. A more robust version looks like this:

#i ncl ude <signal . h>
#i ncl ude <stdio. h>
#include <stdlib.h>// For exit()
[snip for brevity]
int mai n(void)
{
char *p = NULL;
voi d (*ol dhandl er) (int);

ol dhandl er = signal (SI GSEGV, t raphandl er);

if (oldhandler == SIG ERR) {
printf("lnmpossible to establish a signal handler\n");
exit(1l);

}

*p:O;

si gnal (SI GSEGV, ol dhandl er);

return O;

}

This code testsif the return value of the signal() call is OK. Besides, before the function exists,
the old handler will be restored.

154 C programming with lcc-win32

The software signals that Icc-win32 supports are described in the standard header file <si g-
nal . h>. They include SIGSEGV for illegal addresses, SIGFPE (floating point exceptions),
and others. In general the signal() mechanism is barely supported by the operating system
under Windows.

1.32.6.2 Using the signal mechanism
What can we do within our rescue function?
Not much.

We can’'t call any library functions, since they could call signal too, and they are not reentrant.
Besides, when we return from the signal handling function we will end up crashing anyway
since the signal mechanism will continue at the point where the program failed. Since signal()
disables the specific signal that was raised, the second time we trap the program will crash.

A way out of this dilemma is to use signal() together with the setjmp/longjmp facility to
recover somewhere else in the program. Here is an example:

#i ncl ude <signal . h>

#i ncl ude <stdi o. h>

#include <stdlib.h>// For exit()
#i ncl ude <setj np. h>

j mp_buf j unpbuf f er;

/I This function will call longjmp to reestablish a previous context assumed in the jumpbuffer
/I global variable.
voi d traphandl er(int s)
{
psignal (s, "Error”);
| ongj mp(j unpbuffer, 1);
}
i nt mai n(voi d)
{
char *p = NULL;
void (*ol dhandl er) (int);

ol dhandl er = signal (SI GSEGV, t raphandl er);

if (oldhandler == SI G ERR) {
printf("lnmpossible to establish a signal handler\n");
exit(l);

}

if (setjnmp(junpbuffer)) {

}

el se {
*p:O;
}
si gnal (SI GSEGV, ol dhandl er);

printf("Normal exit\n");
return O;

}
Thiswill print:

Error: Segnentation fault
Nor mal exit

What happens?
Thefirst time we arrive at the statement:
if (setjnp(junpbuffer))

Advanced C programming with lcc-win32 155

the setjmp() function will return zero, and we will enter the else clause. There we produce a
trap (SIGSEGV), what will raise the signal mechanism, that will call the traphandler() func-

tion. In there, we print the name of the signal using the standard library function psignal ()"
and then we make alongjmp that will return to the same

if (setjnp(junpbuffer))

but thistime with avalue of 1. Instead of getting into the else arm of the if statement, we enter
the branch with the empty statement, and we go out normally after the trap.

Note how this code starts to look very similar to the structured exception handling code. The
differenceisthat here we have to trap all possible signals, then run our code, then unset al the
signalsto their former values.

The only reason to prefer using signal() to the structured exception handling is portability. The
signal mechanism will work in many other environments. For instance the program above will
run unmodified in aUNIX system producing the same output.

75. The psignal() function is not part of the standard but it existsin many implementation, specially in
UNIX systems.

156 C programming with lcc-win32

1.33 Numerical programming

Computers are done for making calculations, well, at least originally that was their objective.
Playing games, internet browsing, word processing, etc., came later.

The problem of storing numbers in a computer however, is that the continuum of numbersis
infinite and computers are limited. Yes, we have now many times the RAM amount that we
had just a few years ago, but that amount is finite and the numbers we can represent in it are
just afinite approximation to the infinite mathematical continuum.

The moment we convert a problem from the domain of mathematical analysis to the range of
numbers that can be handled in a machine, even in apaper and pencil “machine”, we are going
to necessarily introduce approximations that can lead to errors, truncation errors, rounding
errors, whatever.

Suppose we want to evaluate exp(x) by using a series expansion:

X2 X3 X4 X5 X6 X7 X8
Xp(x) = 1+ 5+ * 51+ 150" 720 T 5040 T 20320

+0(xY)

We have to stop somewhere. No way out. Here we get tired at the 9th term. And no matter how
much effort we put into this, there will be always a truncation error. In this case the truncation
error can be accurately calculated. Analyzing and estimating the error bounds is the art of
numerical analysis.

Computers use bit patterns to represent any object that can be represented in a computer. In the
section about structures we represented a person by a bit pattern like this:
structure person {

char *Nane;
i nt age;

s
A person is surely not a bit pattern. We use the bit pattern to abstract some characteristics of
the person we are interested in. Numbers aren’t different. They can be represented by a bit pat-
tern too. We can use 32 hits, what allows us to represented almost 4294967296 numbers. But
obviously there are more numbers (infinitely more) than that, so any representation will
awaysfall somewhere.

Any computation involving computer-representable numbers (that map onto the real-line) as
its arguments can potentially produce a result that lies in-between two representable numbers.
In that case, that number is rounded off to one of the grid-points. And this incurs round off
error. Any practical numerical analyst (one who uses a computer to carry out numerical com-
putations) must have a method of bounding, estimating and controlling both the round off
error at each numerical step aswell asthe total round off error.

What do we want from the representation of numbers then?
1) The grid points should be as dense as possible

2) The range (the span between the smallest and the largest number) should be as wide as
possible

3) The number of bits used should be as small as possible.

Numerical programming 157

4) Therules of arithmetic should be mimicked as closely as possible.

5) The rules should be such that they can be implemented in hard-wired computer logic.

Note that all those requirements are completely contradictory. If we want a dense representa-
tion we have to use more bits. If we increase the range we have to thin the spacing between
numbers, etc.

1.33.1 Floating point formats

In lcc-win32 we have a plethora of numeric types, ranging from the smallest single precision
format, to the bignum indefinite precision numbers.

All the numeric types (including the complex numbers type but excluding the bignums) are
based in different floating point formats. In this formats, a number is represented by its sign,
an exponent, and a fraction.

Because the size and number of registers that any computer can have is limited, only a subset
of the real-number continuum can be used in the calculations. The floating point formats are
an approximation of the continuum, leaving wide gaps between each representable number.
The range and precision of this subset is determined by the IEEE Standard 754 for the types
float, double and long double. The gfloat and the bignum data types have their own formats.

1.33.1.1 Float (32 bit) format
Thisformat uses one bit for the sign, 8 bits for the exponent, and 23 bits for the fraction.

struct floatFormat {
unsi gned Fraction: 23;
unsi gned Exponent: 8;
unsi gned sign: 1;
s
Bits 0:22 contain the 23-bit fraction, f, with bit O being the least significant bit of the fraction
and bit 22 being the most significant; bits 23:30 contain the 8-bit biased exponent, e, with bit
23 being the least significant bit of the biased exponent and bit 30 being the most significant;
and the highest-order bit 31 contains the sign bit, s. The normalized numbers are represented
using this formula:

(-1)sx 28127 x 1 f

Here we have an exponent that uses -127 as bias. This means that a constant is added to the
actual exponent so that the number is always a positive number. The value of the constant
depends on the number of bits available for the exponent. In this format the biasis 127, but in
other formats this number will be different.

The range of thisformat isfrom7f 7f ff ff to 00800000, indecimal 3. 40282347e+38
to 1. 17549435e- 38. This numbers are defined in the standard header file <float.h> as
FLT_MAX and FLT_MIN. The number of significant digits is 6, defined in float.h as
FLT DIG

1.33.1.2 Double (64 bit) format
Thisformat uses one bit for the sign, 11 bits for the exponent, and 52 bits for the fraction.

struct doubl eFormat {
unsi gned FractionLow,
unsi gned FractionHi gh: 22;
unsi gned sign: 1;

158 C programming with lcc-win32

Bits 0..51 contain the 52 bit fraction f, with bit O the least significant and bit 51 the most sig-
nificant; bits 52..62 contain the 11 bit biased exponent e, and bit 63 containsthe sign bit s. The
normalized numbers are represented with:

(-1)sx 281023 x 1 f

The bias for the exponent in this case is -1023. The range of this format is from 7f ef f f f f
ffffffff to00100000 00000000 in decima from 1. 7976931348623157e+308
to 2. 2250738585072014e- 308. This numbers are defined in float.h as DBL_MAX and
DBL_MIN respectively. The number of significant digitsis 15, defined as DBL_DIG.

1.33.1.3 Long double (80 bit) format

This format uses one bit for the sign, 15 bits for the biased exponent, and 64 bits for the frac-
tion. Bits 0..63 contain the fraction, the bits 64..78 store the exponent, and bit 79 contains the
sign.
struct | ongdoubl eFor mat {

unsi gned FractionLow,

unsi gned Fracti onHi gh;

unsi gned Exponent: 15;

unsi gned sign: 1;

}
The bias for the exponent is 16383 and the formulais:

('1)5 x 28—16383 x 1f

The range of this format is from 7ffe ffffffff ffffffff to 0001 80000000
00000000, or, in decima notation, from 1.18973149535723176505e+4932 to
3.36210314311209350626e- 4932. Quite enough to represent the number of atomsin
the whole known universe. Those numbers are defined as LDBL_MAX and LDBL_MIN in
float.h. The number of significant digitsis 18, defined as LDBL_DIG.. Note that even if the
number of bits of the long double representation is 80, or ten bytes, si zeof (1 ong dou-
bl e) is 12, and not 10. The reason for this is the alignment of this numbers in memory. To
avoid having numbers not aligned at addresses that are not multiple of four, two bytes of pad-
ding are left empty.

1.33.1.4 The gfloat format

This format is specific to Icc-win32 and was designed by Stephen Moshier, the author of the
“Cephes’ mathematical library that Icc-win32 usesinternally. Its description is as follows:
#define _NQ_ 12
struct gfl oat Format ({
unsi gned int sign;
i nt exponent;
unsi gned int mantissal_NQ];

b
Thisis defined in the “gfloat.n” header file.lt provides 104 significant digits, a fraction of 352
bits, (one word is left empty for technical reasons) and a biased exponent of 32 bits. The bias
uses 0x8001, or 32769.

1.33.1.5 Special numbers

All the floating point representations include two “numbers’ that represent an error or NAN,
and signed infinity (positive and negative infinity). The representation of NANs in the IEEE
formatsis asfollows:

Numerical programming 159

type NAN Infinity (+ and -)
fl oat 7f c00000 7f 800000

f f 800000
doubl e 7f £ 80000 00000000 7f f 00000 00000000

fff 00000 00000000

| ong double | 7fff ffffffff ffffffff | 7fff 80000000 00000000
ffff 80000000 00000000

We have actually two types of NANs: quiet NANs and signalling NANSs.

A Quiet NaN, when used as an operand in any floating point operation, quietly (that is without
causing any trap or exception) produces another quiet NaN as the result, which, in turn, propa-
gates. A Quiet NaN hasa 1 set in the most significant bit-position in the mantissa field.

A Signaling NaN has no business inside an FPU. Its very presence means a serious error. Sig-
naling NaNs are intended to set off an alarm the moment they are fetched as an operand of a
floating point instruction. FPUs are designed to raise a trap signal when they touch a bit pat-
tern like that.

Quiet NaNs are produced, when you do things like try to divide by zero, or you pass incorrect
arguments to a standard FPU function, for instance taking the square root of -1. Modern FPUs
have the ability to either produce a quiet NaN, or raise a signal of some sort, when they
encounter such operands on such instructions. They can be initialized to do either of the two
options, in case the code runs into these situations. We will see this in more details in the
“exceptions’ section further down.

1.33.2 What can we do with those numbers then?

Let’s do some experiments with this formats

1.33.2.1 Range

OK. We have seen how floating point numbers are stored in memory. To give us an idea of the
range and precision of the different formats let’s try this simple program. It calculates the fac-
torial of its argument, and it is not very efficient, since it will repeat al calculations at each
time.

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>
float factf(float f)
{

float result=1.0;

while (f > 0) {
result *= f;
if (lisfinitef(f))
br eak;
f--
}
return result;
}
i nt mai n(voi d)

{
float ff=1.0f,fctf = 1.0;

160 C programming with lcc-win32

while (1) {
ff = factf(fctf);
if (lisfinitef(ff))
br eak;
printf("9d0.0f! = %0.21g\n",fctf,ff);
fectf++
}
printf("Max factorial is %g\n", fctf-1);
return O;

}

We start with the smallest format, the f | oat format. We test for overflow with the standard
function is_finitef, that returns 1 if itsfloat argument isavalid floating point number, zero oth-
erwise. We know that our f act () function will overflow, and produce a NAN (Not A Num-
ber) after some iterations, and we rely on thisto stop the infinite loop. We obtain the following
output:

1 = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7= 5040
8! = 40320
9l = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178289152
15! = 1307674279936
16! = 20922788478976
17 = 355687414628352
18! = 6402374067290112
19! = 121645096004222980
20! = 2432902298041581600
21! = 51090945235216237000
22! = 1.124000724806013e+021
23! = 2.5852017444594486e+022
24! = 6.204483105838766e+023
25! = 1.5511209926324736e+025
26! = 4.032915733765936e+026
27! = 1. 088886923454107e+028
28! = 3.0488839051318128e+029
29! = 8.8417606614675607e+030
30! = 2. 6525290930453747e+032
31! = 8.2228384475874814e+033
32! = 2.631308303227994e+035
33! = 8. 6833178760213554e+036
34! = 2.952328838437621e+038

Max factorial is 34

This measures the range of numbers stored in the float format, i.e. the capacity of this format
to store big numbers. We modify slightly our program by replacing the f | oat numbers by
doubl e numbers, and we obtain this:
1!
2!
3!
4

A ODNPE

Numerical programming 161

168! = 2.5260757449731988e+302
169! = 4.2690680090047056e+304
170! = 7.257415615308004e+306

Max factorial is 170

The range of double precision floats is much greater. We can go up to 170!, quite a big num-
ber. Even greater (as expected) isthe range of long doubles, where we obtain:

1751 = 3.674156538617319512e+4920
1752 = 6. 437122255657543772e+4923
1753 = 1.128427531416767423e+4927
1754 = 1.979261890105010059e+4930

Max factorial is 1754

Changing the declarations of the numbers to gfloats (and increasing the printing precision)
increases even more the range:

3207! = 2.68603536247213602472539298328381221236937795484607e+9853
3208! = 8.61680144281061236731906069037446957728096447914618e+9856
3209! = 2.76513158299792550867268657554116728734946150135801e+9860

Max factorial is 3209
The range increases by more than 3,000 orders of magnitude.

1.33.2.2 Precision
What is the precision of those numbers?
We modify the first program as follows:

i nt mai n(voi d)

{
float f=1.0f,fctf = 1.0;
fctf = factf(34.0f);
f =fctf+1.0f; // Add one to fctf
if (fctf !'=1f) { /] 1+4fctf is equal to fctf ?22?7?
printf("o\n");
}
el se
printf("Not ok\n");
return O;
}

We obtain the factorial of 34. We add to it 1. Then we compare if it isequal or not to the same
number. Against all mathematical expectations, our program prints “Not ok”. In floating
point maths, 1+N = N !!!

Why this?

The density of our format makes the gaps between one number and the next one bigger and
bigger as the magnitude of the numbers increases. At the extreme of the scale, almost at over-
flow, the density of our numbers is extremely thin. We can get an idea of the size of the gaps
by writing this:

i nt mai n(voi d)

{
float f=1.0f,fctf = 1.0;

fctf = factf(34.0f);

f = 1.0f;

while (fctf == (f+fctf)) {
f *= 10. 0f;

162 C programming with lcc-win32

}
printf("Needs: %\n",f);
return O;

}

We get the outpult:

Needs: 1.000000e+019
We see that the gap between the numbersis huge: 1e19!
What are the results for double precision?
We modify our program and we get:

Needs: 1.000000e+019
What??7?7?

Why are the results of double precision identical to the floating point precision? We should
find that the smallest format would yield gaps much wider than the other, more precise format!

Looking at the assembler code generated by our floating point program, we notice:

. while (foctf == (f+fctf)) {
flds -16(%bp) ; loads fctf in the floating point unit
fadds -4(%bp) ; adds f to the number stored in the FPU
fconps -16(%bp) ; conpares the sumwith fctf

Looking at the manuals for the pentium processor we see that the addition is done using the
full FPU precision (80 bits) and not in floating point precision. Each number isloaded into the
FPU and automatically converted to a 80 bits precision number. We modify our program to
avoid this:

int mai n(voi d)

{
float f,fctf,sum

fctf = factf(34.0f);

f = 1.0f;

sum = f+fctf;

while (fctf == sum {
f *= 2.0f;
sum = fctf+f;

}
printf("Needs: %\n",f);
return O;

}

Note that this modified program is mathematically equivalent to the previous one. When we
run it, we obtain:

Needs: 1.014120e+031

OK, now we see that the gap between numbers using the float format is much bigger than the
one with double precision.

Note that both versions of the program are mathematically equivalent but numerically
completely different!

Note too that the results differ by 12 orders of magnitude just by modifying slightly the calcu-
lations.

We modify our program for double precision, and now we obtain:
Needs: 3.777893e+022

Numerical programming 163

The gap using double precision is much smaller (9 orders of magnitude) than with single pre-
cision.’®
Using gfloats now, we write:

#i ncl ude <qfl oat. h>
#i ncl ude <stdio. h>
int mai n(void)
{
gf l oat f=34,fctf;

fctf = factq(f);

f = fctf+1;

if (fctf =€) {
printf("O<\n");

}

el se
printf("Not ok\n");
return O;

}
This prints OK at the first try. Using the extremely precise gfloat representation we obtain
gaps smaller than 1 even when the magnitude of the numbersis 10 3*.

This extension of lcc-win32 allows you to use extremely precise representation only in the
places where it is needed, and revert to other formats when that precision is no longer needed.

1.33.2.3 Going deeper
Let’s take a concrete example: 178.125.
Suppose this program:

#i ncl ude <stdio. h>
/1 No conpiler alignnment
#pragma pack(1)
/1 In this structure we describe a sinple precision floating point
/1 nunber.
typedef union {
float fl;
struct {
unsigned f:23; // fraction part
unsi gned e: 8;// exponent part
unsi gned sign:1;// sign
};77

} nunber;

/1 This function prints the parts of a floating point nunber
/1 in binary and deci mal notation.
voi d pfloat (nunber t)
{
xprintf("Sign %, exponent % (-127= %), fraction: %23b\n",
t.sign,t.e, t.e-127,t.1);

76. Note that there are as many |EEE754 numbers between 1.0 and 2.0 as there are between 256 and
2757 in double format. 257 - 2756 is quite a big humber: 72,057,594,037,927,936.

77. Thisis an unnamed structure within another structure or union. Icc-win32 and other compilers (like
visual C) allow to access the members of an unnamed union/structure without having to write:

t.u.sign,t.u.eetc.

164 C programming with lcc-win32

int mai n(void)

{
nunber t;

t.fl = 178. 125;
pfloat (t);
return O;

}
Thiswill produce the output:

Sign 0, exponent 134 (-127= 7), fraction: 01100100010000000000000
To calculate the fraction we do:

fraction = 01100100001 =
0* 1/2 +

* 1/ 4 +

1/8 +

1/ 16+

1/ 32+

1/64 +

.+

1/ 1024

[E=Y

= OO
EE T

|_\
*

Thisis:

0. 25+0. 125+0. 015625+0. 0009765625 = 0. 3916015625
Then, weadd 1 t0 0. 3916015625 obtaining 1. 3916015625.
This number, we multiply it by 227 = 128:

1,3916015625 * 128 = 178.125.

1.33.2.4 Rounding modes

When the result of a computation does not hit directly a number in our representation grid, we
have to decide which number in the grid we should use as the result. Thisis called rounding.
We have the following rounding modes:

1) Round to the nearest grid point. This is the default setting when a program compiled with
lcc-win32 starts executing.

2) Round upwards. Choose always the next higher grid point in the direction of positive
infinity.

3) Round downwards. Choose always the next lower grid point in the direction of negative
infinity.

4) Round to zero. We choose always the next grid point in the direction of zero. If the number
is positive we round down, if it is negative we round up.

This rounding modes are defined in the standard header file fenv.h as:

/* Rounding direction macros */

#defi ne FE_TONEAREST 0
#defi ne FE_DOMWARD 1
#defi ne FE_UPWARD 2
#define FE_TOMRDZERO 3

You can change the default rounding precision by using the function f eset r ound(i nt),
also declared in the same header file.

Numerical programming 165

The rationale for this “rounding modes” is the following: To know if an algorithm is stable,
change your rounding mode using the same data and run your program in all rounding modes.
Are the results the same? If yes, your program is numerically stable. If not, you got a big prob-
lem and you will have to debug your algorithm.

For atotal of N floating point operations you will have arounding error of:"®

1) For round to nearest is sqrt(N) * machine epsilon
2) For round upisN * machine epsilon.
3) For round down is-N * machine epsilon.

4) For round to zero is-N * machine epsilon if the number is positive, N * Machine Epsilon if
the number is negative.

The number you actually obtain will depend of the sequence of the operations.

The machine epsilon is the smallest number that changes the result of an addition operation at
the point where the representation of the numbers is the densest. In IEEE754 representation
this number has an exponent value of the bias, and afraction of 1. If you add a number smaller
than thisto 1.0, the result will be 1.0. For the different representations we have in float.h:

#define FLT_EPSILON 1.19209290e-07F // fl oat

#define DBL_EPSI LON 2. 2204460492503131e-16 // doubl e

#define LDBL_EPSI LON 1.084202172485504434007452e-19L //1ong doubl e
/1 gfloat epsilon truncated so that it fits in this page...

#define QFLT_EPSILON 1.09003771904865842969737513593110651 ... E-106

This defines are part of the C99 ANSI standard and should be defined in all compilers that
implement that standard.

When in C you convert a floating point number into an integer, the result is calculated using
rounding towards zero. To see thisin action ook at this simple program:

#i ncl ude <stdio. h>
voi d fn(double a)

{
}

int main(void) {
for (double d = -1.2; d < 2.0; d += 0.3)
fn(d);
return O;

printf("(int)(%) =% (int)(%)=%@\n",a,(int)a,-a,(int)-a);

}

This leads to the following output (note the lack of precision: 0.3 can’t be exactly represented
in binary):

(int)(-1.
(int)(-1.

1 (int)(1.5)=1
1

(int)(-0.
0
0

(int)(1.2)=1
0 (int)(0.9)=0
(int)(-0.6)=0 (int)(0.6)=0
(int)(-0.3)=0 (int)(0.3)=0
(int)(1.11022e-016)=0 (int)(-1.11022e-016)=0

(int)(0.3)=0 (int)(-0.3)=0
(int)(0.6)=0 (int)(-0.6)=0
(int)(0.9)=0 (int)(-0.9)=0

78. See http://serc.iisc.ernet.in/~ghoshal /fpv.html#nodeliver, or the home page of the Siddhartha Kumar
Ghoshal, Senior Scientific Officer at the Supercomputer Education and Research Centre, Indian Insti-
tute of Science, Bangalore.

166 C programming with lcc-win32

(int)(1.2)=1 (int)(-1.2)=1
(int)(1.5)=1 (int)(-1.5)=1
(int)(1.8)=1 (int)(-1.8)=1

To round away from zero you can use:
#defi ne Round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
Thiswill result in nonsense resultsif there is an overflow. A better version would be:

#defi ne Round(x) \
((X) < LONGMNO.5 || (x) > LONG MAX+0.5 ?\
error() :
((x)>=0?(1ong) ((x) +0.5): (1 ong) ((x)-0.5))
The standard library function round() does this too.”®
To round towards positive infinity you use:
#defi ne RoundUp(x) ((int)(x+0.5))

Negative infinity is similar.

1.33.3 Numerical s.tability80

Suppose we have a starting point and a recurrence relation for calculating the numerical value
of an integral. The starting value is given by:

1o=[In(x+5)] 1y = 1n 6 - In 5 = 0.182322
The recurrence relation is given by:
Il =1/1 - 5|0

|, = 1/2 - 5l
|3: 1/3 - 5|2
etc

We calculate this, starting with 0.182322. We use the following program:

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>
i nt mai n(voi d)

{
float i = 0.182322;
for (int z = 1; z<9;z++) {
i =1.0f/(float)z - 5.0%i;
printf("1%3d: 99.60\n",z,i);
}
return O;
}
We use single precision. Note the notation 1.0f meaning 1 in float precision.
1 : 0.08839

2 : 0.0580499

79. The round functions round their argument to the nearest integer value in floating-point

format, rounding halfway cases away from zero, regardless of the current rounding

direction. Ansi C standard page 232.

80. | have this example from the very good book “Numerical Mathematics and Scientific Computation”
by Germund Dahlquist and Ake Bjorck. Available on line at: http://www.mai.liu.se/~akbjo/NM book.html

Numerical programming 167

3 : 0.0430839
4 : 0.0345805
5 : 0.0270974
6 : 0.0311798
7 : -0.0130418
8 : 0.190209

The first few numbers look correct, but 16 is bigger than 15, what after the recurrence relation
should never happen. Moreover 17 is negative and later numbers are compl ete nonsense.

Why?

WEell, because the roundoff error ein 10 is multiplied by 5 in the first iteration, then multiplied
again by 5 in the next iteration so that after a few iterations the error becomes bigger than the
result.

Writing this is double precision, and replacing the precalculated constant with a computation
of 1og(6.0) - log(5.0) we get better results.

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>
i nt mai n(voi d)

{

double i = 10g(6.0) - log(5.0);

for (int z = 1; z<29;z++) {
i = 1.0/ (double)z - 5.0%i;
printf("1%3d: 99.60\n",z,i);

}

return O;

}
We get:
1 0. 0883922 11 : 0.0140713 121 : -0.0158682
| 2 0. 0580389 112 : 0.0129767 122 : 0.124796
I3 0. 0431387 113 : 0.0120398 | 23 : - 0. 5805
|4 0. 0343063 114 : 0.0112295 | 24 2.94417
15 0. 0284684 15 : 0.0105192 125 : -14.6808
| 6 0. 0243249 116 : 0.00990385 | 26 : 73. 4427
|7 0. 0212326 117 : 0.00930427 127 : -367.176
| 8 0. 0188369 118 : 0.00903421 | 28 : 1835. 92
19 : 0.0169265 119 : 0.00746051
110 : 0.0153676 | 20 0. 0126975

We see that now we can go up to the 19th iteration with apparently good results. We see too
that the increased precision has only masked a fundamental flaw of the algorithm itself. The
manner the calculation is done produces afive fold increase in the error term at each iteration.
Thisis an example of a numerically unstable algorithm.

1.33.4 Complex numbers

Complex numbers have a real and an imaginary part. According to which concrete number
representation is used to store those parts, they can be

1. float _Complex.
2: double _Complex
3: long double _Complex

168 C programming with lcc-win32

4: gfloat _Complex

In lcc-win32, however, all complex types will be condensed in the long double complex type.
Thisimplementation can be changed later, but in any caseit is better that you are aware of this
feature.

There are several reasons for this.

Using this representation allows memory stored numbers to be identical to numbers as used by
the floating point unit. Programs will give the same results even if they store intermediate
results in memory.

It simplifies the compiler and the complexity of the code generation machinery.

All this types can be mixed in an expression, and most operators like + or * are defined for
them, with the exception of less, less equal, greater, and greater than.

You should always include the “complex.h” standard header file when you use this type of
numbers. In that header file, the basic keyword _Complex is replaced by just “complex”, and
it will be used here as an equivalent keyword.

1.33.4.1 Complex constants:
They can be written in two ways:

#i ncl ude <conpl ex. h>
doubl e conplex s = 123.0+12. 8i

or

#i ncl ude <conpl ex. h>
doubl e conplex s = 123.0+12. 8*[;

Note that the first notation is not standard (but used in the gcc compiler system), and it applies
only to explicit constants. Please do not assume that if you have a variable “Xx”, just writing
“xi” will transform it into a complex number!

When in your code you build a complex number using variables, you use the standard nota-
tion:

doubl e conpl ex w;,

w = (65.0*angl e/ 2) +45. 8*angl e* 1 ;

In this example the real part of the number is (65.0*angle/2) and the imaginary part is
45.8*angle. The constant “1” represents 0,1 or csgrt(-1) and is defined in complex.h.

Programming with security in mind 169

1.34 Programming with security in mind

The C language doesn’t give you many security nets. Actually, thereis no security net. You are
supposed to make no mistakes. This is very difficult to achieve, of course. Here, | will try to
give you some simple advice that you can use in your code to make it safer and more robust.

1.34.1 Always include a ‘default’ in every switch statement

It is very common that you write a switch statement just taking into account the “normal”
cases, i.e. the ones you expect. Thisis not very clever if the data doesn’t fit into the expected
cases, since the program will go on after the switch statement, even with a completely unex-
pected result. Thiswill lead to strange errors further down, what makes the error discovering
more difficult. Alwaysinclude a* default” case, even if you just write:
switch (input) {
case XX:
aéfault:
assert (0);

}

The assert macro (defined in <assert.n>) will stop the program with aclear error message indi-
cating the source line and file of the faulty code. This means that you will be informed when
an unexpected data item arrives, and you can correct this during the debug phase.

1.34.2 Pay attention to strlen and strcpy

As we have seen before, (See page 63) the strl en and st r cpy functions expect a well
formed C string. The st r | en function will not stop until azero byteisfound. Thisisnot very
dangerous, since strlen just reads memory, without modifying it. Our st r cpy function how-
ever, expects alarge enough destination buffer, and awell formed source string. If one of those
requirements is not met, a catastrophe happens:. strcpy will start destroying memory without
any restriction. Always check for those two conditions before using it.

Thisis easier said than done though... Consider this code:

void func(char *p) {
char buf[10+1];
nmenset (buf, 0, si zeof (buf));

/1 limt string to 10 chars
sprintf(buf,"%0s", p);
printf("Hello, %\n", buf);

}
Whereis the error here?

We see that the destination buffer is cleaned with memset, setting it to all zeroes. We see that
the size of the destination buffer is 10+1, i.e. the programmer takes into account the terminat-
ing zero of the destination string. We see too that the sprintf format string indicates a field of
10 positions. Since the eleventh position is already set to zero with memset, the destination
buffer should be always a correct string of at most 10 characters finished with zero.

Well, let’s test our assumptions. We make a test program like this:

#i ncl ude <stdio. h>
#i ncl ude <string. h>
i nt mai n(voi d)
{
char buf[30];

170 C programming with lcc-win32

int i;

menset (buf, 0, si zeof (buf));
for (i=0; i<l14;i++) {

buf[i] ="'a";
printf("[% 3d]
func(buf);
}
return O;
}
O cohymecd S test=thuf Ebuf
[Z] Hellao, a
[1] Hello, aa tbuf.exe has encountered a problem and needs to close.
[z] Hellao, aaa We are sony for the inconvenience.
[3] Hella, aaaa
[4] Hellao, aaaaa
[5] Hell : .
P H:'I 13: a;:;g:: [YU were in the middle of zomething, the information you were warking on
[7] Hello, aaaaaaaa might be: lost.
[2] Hello, aaaaaaaaa))) i
[%] Hello, aaaaaaaaaa For more information about thiz ermor, click here.
[12] Hello, aaaaaaaasaa
Diebug Cloze

Yes, we are sorry for the inconvenience. And no, it doesn’t help to call Microsoft. It isnot their
fault thistime.

What happened?

Obvious. The printf specification “ %d0s” will NOT limit the copy to 10 characters. It just
says that the string will be padded at the left with blanks if it is shorter than 10 chars. If not,

sprintf will continue to copy the characters without any limit.

Our function can be made safe very easily, by just using snprintf, instead of its dangerous
cousin sprintf. The snpri nt f function will take an optional integer argument after the for-
mat string, telling it how many characters it should write at most into its destination buffer.

void func(char *p) {
char buf[10+1];
nmenset (buf, 0, si zeof (buf));

/1 limt string to 10 chars by using snprintf

snprintf (buf, 10, "%0s", p);
printf("Hello, %\n", buf);

}

Thistime, we see the expected output:
[0] Hello, a
[1] Hello, aa
[2] Hello, aaa
[3] Hello, aaaa
[4] Hello, aaaaa
[5] Hello, aaaaaa
[6] Hello, aaaaaaa
[7] Hello, aaaaaaaa
[8] Hello, @aaaaaaaaa
[9] Hello, aaaaaaaaaa

[10] Hell o, aaaaaaaaaa
[11] Hello, aaaaaaaaaa
[12] Hello, aaaaaaaaaa

Programming with security in mind 171

1.34.3 Do not assume correct input

Do you remember the Blaster worm?

Hereis the code that allowed the Blaster worm to exist:8!

HRESULT Get Machi neName(WCHAR *pwszPat h) {
WCHAR wszMachi neNane[N + 1])
LPWSTR pwszServer Name = wszMachi neNane;
while (*pwszPath !'= L"\\')
*pwszSer ver Nanme++ = *pwszPat h++;

}

The error hereisthe assumption that the path is a reasonable path that will not overrun the des-
tination buffer. Machine names are normally at most 10-15 chars long. If you are not expect-
ing unreasonable input, you can just use the above code. And that code was running for quite a
long time before this time bomb exploded and a clever hacker found out that he/she could gain
control of the machine with this sloppy programming snippet.

1.34.4 Watch out for trojans

The windows API CreateProcess, can be given the name of the program to execute in two
ways. as its first argument, or as a whole command line in its second parameter, leaving the
first empty as NULL. Suppose this:

Creat eProcess(NULL, "C \\Program Fil es\\ nmyprogram exe", ...)

Suppose now, that somebody has left a “ c:\program.exe” executable in the right place. What
will happen? CreateProcess will start executing “c:\program” instead of the indicated pro-
gram. A simple way to avoid thisisto enclose the name of the program in quotes.

Creat eProcess(NULL, "\"C \\Program Fil es\\ myprogramexe\" -K -F",
oY)
Notice that the related APl WinExec will scan itsinput for the first space, making it worst than
CreateProcess. In the above example, the code:

W nExec(“C:\\program fil es\\ myprogram exe”);
will always try to execute c:\program if it exists.

81. Microsoft Security Bulletin M S03-026: Buffer Overrun In RPC Interface Could Allow Code Execu-
tion (823980). Originally posted: July 16, 2003. Revised: September 10, 2003. Cited by Michael Hor-
ward in his excellent series about security in msdn. The URL for one of its articlesis: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure09112003.asp

172 C programming with lcc-win32

1.35 Pitfalls of the C language

Look. | am not areligious person. C is not areligion for me, and this meansthat | see some of
the pitfalls of the language. | write this so that you see them at the start, and they do not bite
you.

1.35.1 Defining a variable in a header file

If you write:
static int foo = 7;

in aheader file, each C source file that includes that header will have a different copy of “foo”,
each initialized to 7, but each in a different place. These variables will be totally unrelated,
even if the intention of the programmer isto have asingle variable “foo”.

If you omit the static, at least you will get an error at link time, and you will see the bug.

Golden rule: Never define something in a header file. Header files are for declarations only!

1.35.2 Confusing = and ==

If you write

if (a=6) {

}
you are assigning to “a’ the number 6, instead of testing for equality. The “if” branch will be
aways taken because the result of that assignment is different from zero. The compiler will
emit awarning whenever an assignment in a conditional expression is detected.

1.35.3 Forgetting to close a comment

If you write:

a=b; /* this is a bug

c=d; /* c=d will never happen */
The comment in the first line is not terminated. It goes one through the second line and is fin-
ished with the end of the second line. Hence, the assignment of the second line will never be
executed. Wedit helps you avoid this by coloring commentaries in another color as normal
program text.

1.35.4 Easily changed block scope.
Suppose you write the following code:

if (soneCondition)
fnl();

el se
O herFn();

Thisis OK, but if you add some code to debug, for instance, you end up with:

if (soneCondition)
fnl();

el se
printf(“Calling OherFn\n");
O herFn();

The elseis not enclosed in curly braces, so only one statement will be taken. The end result is
that the call to OtherFn is always executed, no matter what.

Pitfalls of the C language 173

Golden rule: ALWAY S watch out for scopes of “if” or “else” not between curly braces when
adding code.

1.35.5 Using the ++ or -- more than once in an expression.

The ANSI C standard®? specifies that an expression can change the value of a variable only
once within an expression. This means that a statement like:

i ++ = 4+
isinvalid, as areinvalid this, for instance:
i = 0+

(incleari ++ + ++i)

1.35.6 Unexpected Operator Precedence

The code fragment,

if(chr = getc() !'= EOF) {
printf("The value of chr is %\n", chr);
}

will always print 1, as long as end-of-file is not detected in getc. The intention was to assign
the value from getc to chr, then to test the value against EOF. The problem occurs in the first
line, which says to call the library function getc. The return value from getc (an integer value
representing a character, or EOF if end-of-file is detected), is compared against EOF, and if
they are not equal (it's not end-of-file), then 1 is assigned to the object chr. Otherwise, they are
equal and O is assigned to chr. The value of chr is, therefore, always 0 or 1.

The correct way to write this code fragment is,

if((chr = getc()) !'= EOF) {
printf("The value of chr is %\ n", chr);
}

The extra parentheses force the assignment to occur first, and then the comparison for equality
is done.®3

82. Doing assignment inside the controlling expression of loop or selection statementsis not
a good programming practice. These expressions tend to be difficult to read, and problems
such as using = instead of == are more difficult to detect when, in some cases, = is desired.

83. How doesit work?

Hetestsfirst if the lower 16 bits contain a 1 bit. The number 65535 consists of eight 1s, in binary notation,
since 65535 = 216 — 1.

If the test fails, this means that the least significant bit can’'t be in the lower 16 bits. He increases the
counter by 16, and shifts right the number to skip the 8 bhits already known to contain zero. If the test
succeeds, this means that there is at least a bit set in the lower 16 bits. Nothing is done, and the program
continues to test the lower 16 hits.

He uses the same reasoning with the 16 bits in x that now contain either the high or the lower word of x.

255is28—1. Thisis applied then recursively. At each step we test 16, then 8, then 4, then 2 and at the end the
last bit.

174 C programming with lcc-win32

1.35.7 Extra Semi-colon in Macros

The next code fragment illustrates a common error when using the preprocessor to define con-
stants:

#define MAXVAL 10; // note the senmicolon at the end

[* o0 %

i f(value >= MAXVAL) break;
The compiler will report an error. The problem is easily spotted when the macro substitution is
performed on the above line. Using the definition for MAXVAL, the substituted version reads,

i f(value >= 10;) break;

The semi-colon (;) in the definition was not treated as an end-of-statement indicator as
expected, but was included in the definition of the macro MAXVAL. The substitution then
results in a semi-colon being placed in the middle of the controlling expression, which yields
the syntax error. Remember: the pre-processor does only atextual substitution of macros.

1.35.8 Watch those semicolons!

Yes, speaking about semicolons, ook at this:

if (x[j] > 25);

x[j] = 25;

The semicolon after the condition of the if statement is considered an empty statement. It
changes the whole meaning of the codeto this:

if (x[j] > 25) { }

x[j] = 25;
Thex[j] = 25 statement will be always executed.

1.35.9 Assuming pointer size is equal to integer size

Today under Icc-win32 the sizeof (void *) isequal to the sizeof(int). Thisis asituation that will
change in the future when we start using the 64 bit machines where int can be 32 bits but
pointers would be 64 bits. This assumption is deeply rooted in many places even under the
windows API, and it will cause problemsin the future. Never assume that a pointer is going to
fitinan integer, if possible.

1.35.10 Careful with unsigned numbers

Consider this loop:
int i;
for (i =5 i >=0; i --) {
printf("i = %\n", i);
}

Thiswill terminate after 6 iterations. Thisloop however, will never terminate:
unsigned int i;
for (i =5 i >=0; i --) {
printf("i = %\n", i);
}

The loop variable i will decrease to zero, but then the decrement operation will produce the
unsigned number 4294967296 that is bigger than zero. The loop goes on forever.Note too that
the common windows type DWORD is unsigned!

Pitfalls of the C language 175

1.35.11 Changing constant strings

Constant strings are the literal strings that you write in your program. For instance, you write:
out Screen(“Pl ease enter your name”);

This constant string “ Please enter your name” is stored (under Icc-win32) in the data section of
your program and can be theoretically modified. For instance suppose that the routine “out-
Screen” adds a“\r\n” to itsinput argument. Thiswill be in amost al cases a serious problem
since:

1) The compiler storesidentical strings into the same place. For instance if you write

a ="This is a string”;

b =*“This is a string”;
there will be only one string in the program. The compiler will store them under the same
address, and if you modify one, the otherswill be automatically modified too since they are al
the same string.

2) If you add charactersto the string (with strcat for instance) you will destroy the other strings
or other data that lies beyond the end of the string you are modifying.

Some other compilers like gcc will store those strings in read memory marked as read only,
what will lead to an exception if you try to modify this. Lcc-win32 doesn’t do thisfor different
reasons, but even if you do not get atrap it is abad practice that should be avoided.

A common beginner error is:

char *a “hel | 07;
char *b “worl d”;
strcat(a, b);

In this case you are adding at the end of the space reserved for the character array “hello”
another character string, destroying whatever was stored after the “a” character array.

1.35.12 Indefinite order of evaluation

Consider this code:
fn(poi nter->nmenber, pointer = &uffer[0]);

Thiswill work for some compilers (gcc, lcc-win32) and not for others. The order of evaluation
of argumentsin afunction call is undefined. Keep thisin mind. If you use a compiler that will
evaluate the arguments from left to right you will get atrap or a nonsense result.

1.35.13 A local variable shadows a global one

Suppose you have a global variable, say “buf”. If you declare a local variable of the same
name at an inner scope, the local variable will take precedence over the global one, i.e. when
you write:

unsi gned char buf[BUFSI Z] ;

int fn(int a)

{
char buf[3];

buf [BUFSI Z-1] = 0; // Error! the local variable is accessed,
/1 not the gl obal one

}

Giving the command line option “-shadows” to the compiler will generate a warning when
this happens.

176 C programming with lcc-win32

1.35.14 Careful with integer wraparound

Consider this code:®*

bool func(size t cbSize) {
if (cbSize < 1024) {
/1 we never deal with a string trailing null
char *buf = nall oc(cbSize-1);
menset (buf, 0, cbSi ze-1);

[/ do stuff

free(buf);

return true;
} else {

return fal se;
}

}

Everything looks normal and perfect in the best of all worlds here. Wetest if the sizeif smaller
than a specified limit, and we then allocate the new string. But... what happensif cbSi ze is
zero???

Our call to malloc will ask for 0-1 bytes, and using 32 bit arithmetic we will get an integer
wrap-around to Oxf fffff ff, or - 1. We are asking then for a string of 4GB. The program
has died in the spot.

1.35.15 Problems with integer casting

In general, the compiler tries to preserve the value, but casting from signed to unsigned types
can produce unexpected results. Look, for instance, at this sequence:

char ¢ = 0x80; //-128

/I now we cast it to short

short s = (short)c; /Inows = Oxff80 still -128
unsi gned short us = (unsigned short)s; //us = Oxff80, which is 65408!

In general you should not try to mix signed/unsigned typesin casts.

Casts can occur automatically as a result of the operations performed. The operators + (addi-
tion), ~ (bitwise negation) - (minus) will cast any type shorter than an int into a signed int. If
the type is larger than an integer, it will be left unchanged.

1.35.16 Octal numbers

Remember that numbers beginning with zero are treated as number written in base 8. The
number 012 is decimal 10, not 12. This error is difficult to find because everything will com-
pile without any error, after all, thisisalegal construct.

84.1 got this example from the excellent column of Michael Horward in the msdn security column.

Pitfalls of the C language 177

178 C programming with lcc-win32

Introduction 179

Windows Programming

2.1 Introduction

OK, up to now we have built a small program that receives al its input from afile. Thisis
more or less easy, but anormal program will need some input from the user, input that can’t be
passed through command line arguments, or files. At this point, many introductory texts start
explaining scanf, and other standard functions to get input from a command line interface.

Thiscan be OK, but I think a normal program under windows uses the features of wi ndows.8>

We will start with the ssmplest application that uses windows, a dialog box with a single edit
field, that will input a character string, and show it in a message box at exit.

The easiest way to do this is to ask wedit to do it for you. You choose ‘new project’ in the
project menu, give a name and a sources directory, and when the software asks you if it should
generate the application skeleton for you, you answer yes.

You choose a dialog box application, when the main dialog box of the “wizard” appears, since
that is the simplest application that the wizard generates, and will fit our purposes quite well.

But let’s go step by step. First we create a project. The first thing you see is a dialog box, not
very different from the one we are going to build, that asks for aname for the new project. You
enter aname likethis:

Enter the new project name

Praoject name? Ok

||:IiaI|:|g Cancel

You press OK, and then we get a more complicated one, that asks quite alot of questions.

85. note 82

180 Windows programming with lcc-win32

You enter some directory in the second entry field, make sure the “windows executable” at the

Definition of a new project

Marme of the project
ithiciLak :
Ev:th] ||:||a||:|g LCancel
Help
Path
Wiarki -
dirzrct::ru}ﬁ: |d:"~lc:c:"~e:-:amples"-.dlaln:|g -

Cutput directory

Objects and

ewecutables dlochexampleshdialog'lo

|lzers

& Single user " Multi user [Usze versioning system

Type of project
o dfindows executabls " Static Libran [lib]
" Console Application " Dipnamic Link Library [dll)

bottom is selected, and press ok. Then we get:
You pressthe “yes’ button. Thisway, we get into the wizard.

Information < |

Do you want to uze the wizard to generate the application skeleton?

Introduction 181

The first panel of the wizard is quite impressing, with many buttons, etc. Ignore all but the
type of application panel. There, select a“dialog based” application, like this:

Application charactenstics

M arme of the project

dialog
Cancel

Type of application Help

4l

" Single window & Dislog based

" Multiple windaw

Features
(" Console application [Statuz bar at the bottam
" DLL [Toolbar
Fath for the templates directory [TCPAP
hehlechlibbwizard [shout’ dislag

Cutput files
Output directary ||:I:"~I|:|:"'.e:-:amples"-.dialcng

td ain file ||j|a||:|g C

Confirm before
oenaniting
any exizsting
zource files

Rezources file ||:|ialu:|g.r|:

Header file ||:Iia||:|gres.h

You see, the “Dialog based’ check button at the upper left is checked. Then press the OK but-
ton.

Then we get to different dialogs to configure the compiler. You leave everything with the
default values, by pressing Next at each step. At the end, we obtain our desired program. For
windows standards, this is a very small program: 86 lines only, including the commentaries.
We will study this program in an in-depth manner. But note how short this program actually is.
Many people say that windows programs are impossible huge programs, full of fat. Thisisjust
not true!

But first, we press F9 to compileit. Almost immediately, we will obtain:

dialog.exe built successfully. (0.0 =e=c).

B build search Winkd i 41:1

182 Windows programming with lcc-win32

Dialog.exe built successfully. Well, this is good news!®® Let’stry it. You execute the program
you just built using Ctrl+F5. When we do this, we see our generated program in action:

dialog [|

h.EanceId

Just a dialog box, with the famous OK/Cancel buttons, and nothing more. But this is a start.
We close the dialog, either by pressing the “x” button at the top right corner, or just by using
OK or Cancel, they both do the same thing now, since the dialog box is empty.

We come back to the IDE, and we start reading the generated program in more detail. It has
three functions:

* WinMain

* InitidizeApp

« DiaogFunc

If weignore the empty function “InitializeApp”, that isjust a hook to allow you to setup things
before the dialog box is shown, only two functions need to be understood. Not a very difficult
undertaking, | hope.

2.1.1 WinMain

Command line programs, those that run in the ill named “msdos window”, use the “main”
function as the entry point. Windows programs, use the WinMain entry poi nt.87

The arguments WinMain receives are a sample of what is waiting for you. They are a mess of
historical accidents that make little sense now. Let’slook at the gory details:

i nt APl ENTRY W nMai n(H NSTANCE hi nst,

HI NSTANCE hi nst Prev,

LPSTR | pCndLi ne,
i nt nCndShow) ;

Thisisafunction that returns an int, uses the stdcall calling convention® denoted by APIEN-
TRY, and that receives (from the system) 4 parameters.

hinst, a“HANDLE” to an instance of the program. Thiswill always be 0x400000 in hexadec-
imal, and is never used. But many window functions need it, so better store it away.

86. Thishasonly historical reasons, from the good old days of windows 2.0 or even earlier. You can use
“main” asthe entry point, and your program will run as you expect, but traditionally, the entry point is called
WinMain, and we will stick to that for now.

87. A calling convention refers to the way the caller and the called function agrees as to who is going to
adjust the stack after the call. Parameters are passed to functions by pushing them into the system stack.
Normally it is the caller that adjusts the stack after the call returns. With the stdcall calling convention, it is
the called function that does this. It is slightly more efficient, and contributes to keeping the code size small.

88. API means Application Programmer Interface, i.e. entry points into the windows system for use by
the programmers, like you and me.

Introduction 183

hinstPrev. Again, this is a mysterious “HANDLE” to a previous instance of the program.
Again, an unused parameter, that will always contain zero, maintained there for compatibil-
ity reasons with older software.

IpCmdL ine. Thisoneisimportant. It isactually a pointer to a character string that contains the
command line arguments passed to the program. Note that to the contrary of “main”, there
isn't an array of character pointers, but just a single character string containing all the com-
mand line.

nCmdShow. This one contains an integer that tells you if the program was called with the
instruction that should remain hidden, or should appear normally, or other instructions that
you should use when creating your main window. We will ignore it for now.

OK OK, now that we know what those strange parameters are used (or not used) for, we can
see what this function does.

i nt APl ENTRY W nMai n(H NSTANCE hi nst,
HI NSTANCE hi nst Pr ev,
LPSTR | pCndLi ne,
i nt nCndShow)

WNDCLASS we; // A structure of type WNDCLASS

menset (&wc, 0, si zeof (wc)); // W set it to zero

.| pf nwhdProc = Def Dl gProc; // Procedure to call for handling messages
. cbWhdExtra = DLGW NDOVEXTRA;

. hl nstance = hinst;

. hCursor = LoadCursor (NULL, |DC _ARROW ;

. hbr Background = (HBRUSH) (COLOR W NDOW + 1);

.1 pszd assNane = "di al og";

Regi st er Cl ass(&wc) ;

523883853

return Di al ogBox(hi nst,
MAKEI NTRESOURCE(| DD_MAI NDI ALOG) ,
NULL,
(DLGPROC) Di al ogFunc);
}

We see that the main job of this function is filling the structure wc, a WNDCLASS structure
with data, and then calling the API® DialogBox. What is it doing?

We need to register a class in the window system. The windows system is object oriented,
since it is derived from the original model of the window and desktop system developed at
Xerox, a system based in SmallTalk, an object oriented language. Note that all windows sys-
tems now in use, maybe with the exception of the X-Window system, are derived from that
original model. The Macintosh copied it from Xerox, and some people say that Microsoft cop-
ied it from the Macintosh. In any case, the concept of aclassis central to windows.

A class of windows is a set of window objects that share a common procedure. When some
messages or events that concern this window are detected by the system, a message is sent to
the window procedure of the concerned window. For instance, when you move the mouse over
the surface of a window, the system sends a message called WM_MOUSEMOVE to the win-
dows procedure, informing it of the event.

There are quite alot of messages, and it would be horrible to be forced to reply to all of them
in al the windows you create. Fortunately, you do not have to. You just treat the messages that
interest you, and pass all the others to the default windows procedure.

89. PLEASE never do thisif you use the garbage collector!

184 Windows programming with lcc-win32

There are severa types of default procedures, for MDI windows we have MDIDefWindow-
Proc, for norma windows we have DefWindowProc, and for dialog boxes, our case here, we
have the DefDIgProc procedure.

When creating a class of windows, it is our job to tell windows which procedure should call
when something for this window comes up, so we use the class registration structure to inform
it that we want that all messages be passed to the default dialog procedure and we do not want
to bother to treat any of them. We do this with:

we. | pf nWadProc = Def Dl gProc;

As we saw with the gsort example, functions are first class objects in C, and can be passed
around easily. We pass the address of the function to call to windows just by setting this field
of our structure.

Thisis the most important thing, conceptually, that we do here. Of course there is some other

stuff. Some people like to store datain their windows™. We tell windows that it should reserve
some space, in this case the DLGA NDONEXTRA constant, that in win.h is #defined as 30. We
put in this structure too, for obscure historical reasons, the hinst handle that we received in
W nMai n. We tell the system that the cursor that this window usesis the system cursor, i.e. an
arrow. We do this with the APl LoadCursor that returns a handle for the cursor we want. The
brush that will be used to paint this window will be white, and the class name is the character
string “dialog”.

And finaly, we just call the RegisterClass API with a pointer to our structure. Windows does
its thing and returns.

The last statement of WinMain, is worth some explanation. Now we have a registered class,
and we call the DialogBox API, with the following parameters:
Di al ogBox(hi nst,

MAKEI NTRESOURCE(| DD_MAI NDI ALOG) ,

NULL, (DLGPRCC) Di al ogFunc);
The hinst parameter, that many APIs still want, is the one we received from the system as a
parameter to WinMain. Then, we use the MAKEINTRESOURCE macro, to trick the compiler
into making a special pointer from asmall integer, IDD_MAINDIALOG that in the header file
generated by the wizard is defined as 100. That header file is called dialogres.h, and is quite
small. We will cometo it later.

What is this MAKEI NTRESQURCE macro?

Again, history, history. In the prototype of the DialogBox API, the second parameter is actu-
aly a char pointer. In the days of Windows 2.0 however, in the cramped space of MSDOS
with its 640K memory limit, passing areal character string was out of the question, and it was
decided (to save space) that instead of passing the name of the dialog box resource as a redl
name, it should be passed as a small integer, in a pointer. The pointer should be a 32 bit pointer
with itsupper 16 bits set to zero, and itslower 16 bitsindicating asmall constant that would be
searched in the resource data area as the “name” of the dialog box template to load.

Because we need to load a template, i.e. a series of instructions to a built-in interpreter that
will create al the necessary small windows that make our dialog box. As you have seen, dia-
log boxes can be quite complicated, full of edit windows to enter data, buttons, trees, what
have you. It would be incredible tedious to write all the dozens of calls to the Cr eat eW n-
dowAPI, passing it al the coords of the windows to create, the styles, etc.

90. When the IDE asks you if you want to open it as a resource say NO. We want to look at the text of
that file thistime.

Introduction 185

To spare you this Herculean task, the designers of the windows system decided that a small
language should be devel oped, together with a compiler that takes statements in that language
and produce a binary file called resourcefile.

This resource files are bound to the executable, and loaded by the system from there automat-
ically when using the DialogBox primitive. Among other things then, that procedure needs to
know which dialog template should load to interpret it, and it is this parameter that we pass
with the MAKEI NTRESOURCE macro.

Ok, that handles (at least | hope) the second parameter of the DialogBox API. Let’s go on,
because there are still two parameters to go!

Thethird oneisNULL. Actually, it should be the parent window of this dialog box. Normally,
dialog boxes are written within an application, and they have here the window handle of their
parent window. But we are building a stand-alone dialog box, so we |eft this parameter empty,
I.e. wepass NULL.

The last parameter, is the DialogFunc function that is defined several lines below. The
DefDIgProc needs a procedure to call when something important happens in the dialog box: a
button has been pushed, an edit field receives input, etc.

Ok, this closes the call of the DialogBox API, and we are done with WinMain. It will return
the result of the DialogBox function. We will see later how to set that result within our Dialog
box procedure.

2.1.2 Resources

We mentioned before, that there is a compiler for a small resource language that describes our
dialog boxes. Let's look at that with alittle bit more detail before we go to our dialog proce-
dure.

Open that file that should be called dialog.rc if you gave the project the “dialog” name., and
look at thislines:

| DD_MAI NDI ALOG DI ALOG 7, 20, 195, 86 (1)
STYLE DS_MODALFRAME| W5_POPUP| W5_VI SI BLE| W5_CAPTI ON| W5_ SYSMENU

(2)

CAPTI ON "di al og" (3)
FONT 8, "Hel v" (4)
BEG N
DEFPUSHBUTTON ~ "OK", |DOK, 149, 6, 40, 14 (5)
PUSHBUTTON "Cancel ", |DCANCEL, 149, 23, 40, 14 (6)
END

We see that all those statements concern the dialog box, its appearance, the position of its child
windows, etc. Let’s go statement by statement:

1) We find here the same identifier | DD_MAI NDI ALOG and then the DI ALOG statement,
together with some coordinates. Those coordinates are expressed in Dialog Units, not in
pixels. The motivation behind this, is to make dialog boxes that will look smilar at all
resolutions and with different screen sizes. The units are based somehow in the size of the
system font, and there are APIs to get from those units into pixels, and from pixels into
those units.

91. You will be prompted for a header file, where are stored the definitions for things like
IDD_MAINDIALOG. Choose the one generated by the wizard. Its name is <project name>res.h, i.e. for a
project named “test” we would have “testres.h”.

186 Windows programming with lcc-win32

2) The STYLE statement tells the interpreter which things should be done when creating the
window. We will see later when we create area window and not a dialog box window, that
there can be quite a lot of them. In this case the style indicates the appearance
(DS_MODALFRAME), that this window is visible, has a caption, and a system menu.

3) The CAPTI ON statement indicates just what character string will be shown in the caption.
4) In asimilar way, the FONT statement tells the system to use Helv

5) The following statements enumerate the controls of the dialog box, and their descriptions
are enclosed in a BEGIN/END block. We have two of them, a push button that is the
default push button, and a normal pushbutton

6) the Cancel button. Both of them have a certain text associated with them, a set of coords as
al controls, and an ID, that in the case of the OK button is the predefined symbol | DOK,
with the numerical value of 1, and in the case of the Cancel button | DCANCEL (numerical
value 2).

To convert this set of instruction in this language into a binary resource file that windows can
interpret, we use acompiler called aresource compiler. Microsoft's oneiscalled rc, Borland's
oneis called "brc", and Icc-win32's one is called Irc. All of them take this resource language
with some minor extensions depending on the compiler, and produce a binary resource file for
the run time interpreter of windows.

The resource compiler of Icc-win32 is explained in detail in the technical documentation, and
we will not repeat that stuff again here. For our purposesit is enough to know that it is compat-
ible with the other ones.

The binary resource files generated by the resource compiler are passed to the linker that con-
verts them into resource specifications to be included in the executable.

Note that actually you do not need to know this language, because the IDE has a resource edi-
tor that can be used to build graphically using drag and drop the dialog box. But the emphasis
hereisto introduce you to the system so that you know not only what button should you push,
but why you should push that button too.

But we wanted originally to make a dialog box containing an edit field. We are far away from
our objective yet.

Introduction 187

We come back to Wedit, after closing our text file “dialog.rc”, and we go to the “Design”

menu bar and press “Open/new”. %?The resource editor opens up, and we see the following
display:

& wedit-listbox - [resource: listhox*] =|a] =]
% File Edit Search Project Design Compiler Utils Wersions Window Help = ﬂ
Harne [ETRERRIIR Text [Dialog Title Selection |Dislog 1000 |

Sl U el M= A -~ Y T = i = I T N
= Dialo . [

[] |
| | | ||
8| buld zearch w Bl pt ds 205, dy 111

Near the top left border you see a button like this:

Td

If you click in that button, the controls pal ette opens:

92. Why should introductory texts be clear?
Why not make obfuscated sentences?

There is even an obfuscated C contest. Who writes the most incomprehensible program? Quite a
challenge! With the documentation you can do even better: you write docs that are so incomprehensible that
nobody reads them!

188 Windows programming with lcc-win32

Controls palette

= Controls 3

Conkrals
Tat Text label
[ed[Edit Field
| Group baox
_OK | Push buttan
v Check biox
— Radio button
= Combo bo
Lisk b
[*[*] Horizontal scrall
E Yertical scroll

[] rectangle
B Filed rectangle

¢ Teon

[..] Maonth Calendar

== List wiew

[1ab contral

&= Tree control

] Progress control
% Spin bukton

0~ Slider

i) DateTime

The whole operation of the editor is quite simple: The smaller
window represents al the controls that you can put in a dialog
box: entry fields, buttons, checkboxes, and several others. You
select one button with the mouse, and drag it to your dialog box.
There you drop it at the right position. To add an entry field then,
we just push the edit field icon, the third one from the left in the
upper row of icons, and drag it to our dialog box in the main
wedit window. After doing this, it will look like this:

i i

Our entry field becomes the selected item, hence the red handles
around it. After resizing if necessary, we need to enter its identi-
fier, i.e. the symbolic name that we will use in our program to
refer toit.

5

Mame [IDENTRYFIELD -]

* Ty |38 FF 32| it effe

We will refer then in our program to this entry field with the name
IDENTRY FIELD, maybe not a very cute name, but at |east better
than some bare number. The editor will write a

#defi ne | DENTRYFI ELD 101
in the generated header file.

The number 101 is an arbitrary constant, chosen by the editor. We resize the dialog box a bit (1
like dialogs that aren’t bigger than what they should be), and we press the “test” button.

We see adisplay likethis:

dialog ¢ |

|E|:Iit

% Cancel |

We can enter text in the entry field, and pushing Cancel or OK will finish the test mode and
return usto the dialog box editor.

Introduction 189

OK, seems to be working. We save, and close the dialog box editor. We come back to our dia-
log procedure, where we will use this new entry field to get some text from the user.

2.1.3 The dialog box procedure

static BOOL CALLBACK Di al ogFunc(HWND hwndDli g, Ul NT nsg, WPARAM wPar am
LPARAM | Par am

{
switch (nsg) {
case WM | NI TDI ALOG
InitializeApp(hwndD g, wParam | Par anj ;
return TRUE;
case WV _COVIVAND:
switch (LOANORD(wPar an)) {
case | DXK:
EndDi al og(hwndDl g, 1) ;
return 1,
case | DCANCEL:
EndDi al og(hwndDl g, 0) ;
return 1,

}

br eak;

case WM CLCSE:
EndDi al og(hwndDl g, 0) ;
return TRUE;

}
return FALSE;

}

A dialog box procedure is called by the system. It has then, a fixed argument interface, and
should return a predefined value. It receives from the system the handle of the dialog box win-
dow, the message, and two extra parameters.

Normally these procedures are a big switch statement that handles the messages the program
isinterested in. The return value should be TRUE if the dialog box procedure has handled the
message passed to it, FAL SE otherwise.

The genera form of a switch statement is very simple: you have the switch expression that
should evaluate to an integer and then you have severa “cases’ that should evaluate to com-
pile time constants.

All those names in the switch statement above are just integers that have been given a sym-
bolic name in windows.h using the preprocessor #define directive. A “break” keyword sepa-
rates one “case” from the next one.

Note that in C a case statement can finish without a break keyword.

In that case (') execution continues with the code of the next case. In any case, of course, a
return statement finishes execution of that case, since control is immediately passed to the
calling function.®

In this procedure we are interested in only three messages, hence we have only three “cases’
in our switch:

1) WM_ I NI TDI ALOG This message is sent after the window of the dialog box has been
created, but before the dialog is visible in the screen. Here is done the initialization of the
dialog box data structures, or other things. The wizard inserts here a call to a procedure for
handling this message.

93. You put the cursor under the WM_INITDIALOG identifier and press F1.

190 Windows programming with lcc-win32

2) W_COVMAND. This message is sent when one of the controls (or child windows if you
want to be exact) has something to notify to the dialog: a button has been pressed, a check
box has been pressed, data has been entered in an entry field, etc. Since we can have several
controls, we use again a switch statement to differentiate between them. Switch statements
can be nested of course.

3) WM _CLOSE. This message arrives when the user has pressed the “close” button in the
system menu, or has typed the Alt+F4 keyboard shortcut to close the dialog.

Now, the whole purpose of this exerciseisto input acharacter string. The text is entered by the
user in our entry field. It is important, from a user’s perspective, that when the dialog box is
displayed, the cursor is at the beginning of the entry field. It could be annoying to click each
time in the entry field to start editing the text. We take care of this by forcing the focus to the
entry field.

Under windows, there is always a single window that has the focus, i.e. receives all the input
from the keyboard and the mouse. We can force a window to have the focus using the SetFo-
cus API.

static int InitializeApp(HWD hD g, WPARAM wPar am LPARAM | Par am

{
Set Focus(Get Dl gl t en(hDl g, | DENTRYFI ELD)) ;
return 1,

}

We add this call in the procedure InitializeApp. We test, and... it doesn't work. We still have
to click in the edit field to start using it. Why?

Because, when we read the documentation of the WM _INITDIALOG message™ it says:

WM | NI TDI ALOG

hwndFocus = (HWND) wParam // handle of control to receive focus
I nitParam = | Param /1 initialization paraneter

Par anmet er s

hwndFocus

Value of wParam. Identifies the control to receive the default keyboard focus. Windows
assigns the default keyboard focus only if the dialog box procedure returns TRUE.

WEell, that isit! We have to return FALSE, and our SetFocus API will set the focus to the con-
trol we want. We change that, and... it works! Another bug is gone.®®

Note that the SetFocus APl wants a window handle. To get to the window handle of a control
in the dialog box we use its ID that we took care of defining in the dialog editor. Basically we
give to the SetFocus function the result of calling the APl GetDlgltem. Thisis nice, since we
actually need only one window handle, the window handle of the dialog box that windows
givesto us, to get all other window handles of interest.

Now comes amore difficult problem. When the user pressesthe OK button, we want to get the
text that he/she entered. How do we do that?

We have two problemsin one: thefirst is to decide when we want to get the text, and the other
ishow to get that text.

94. This example shows you how to get rid of those problems, and the kind of problems you will
encounter when programming under Windows. The only solution in most cases is a detailed reading of the
documentation. Fortunately, Windows comes with a clear documentation that solves most problems.

95. All the notifications messages from edit fields begin with the EN_ prefix, meaning Edit field
Notification.

Introduction 191

For the first one the answer is clear. We want to read the text only when the user presses the
OK button. If the Cancel button is pressed, or the window is closed, we surely aren’t interested
in the text, if any. We will read the text then when we handle the message that the OK button
window sends to uswhen is pressed. We change our dialog procedure like this:

case VWV _COVIVAND:
switch (LOANORD(wPar an)) {

case | DOK:
ReadText (hwndDl g) ;
EndDi al og(hwndDl g, 1) ;
return 1,

case | DCANCEL:
EndDi al og(hwndDl g, 0) ;
return 1,

}

br eak;

We add a call to afunction that will get the text into a buffer. That function looks like this:

static char buffer[1024];

i nt ReadText (HWND hwnd)

{
menset (buf fer, 0, si zeof (buffer));
i f (GetDl glteniext (hwnd,

| DENTRYFI ELD,
buffer,
si zeof (buffer))) {
return 1;
}
return O;

}

We define a buffer that will not be visible from other modules, hence static. We set a fixed
buffer with a reasonable amount of storage.

Our function cleans the buffer before using it, and then calls one of the workhorses of the dia-
log procedures: the APl GetDIgltemText. This versatile procedure will put in the designated
buffer, the text in a control window, in this case the text in the entry field. We again indicate to
the API which control we are interested in by using its numerical ID. Note that GetDIgltem-
Text returns the number of characters read from the control. If there isn't anything (the user
pressed OK without entering any text), GetDlgltemText returns zero.

The first time that we do that; we will surely will want to verify that the text we are getting is
the one we entered. To do this, we use the APl MessageBox that puts up a message in the
screen without forcing us to register a window class, define yet another window procedure,
etc.

We add then to our window procedure, the following lines:

case | DOXK:
i f (ReadText (hwndDi g)) {
MessageBox(hwndDl g, buf f er,
"text entered", MB_OK);
EndDi al og(hwndDl g, 1) ;
1 eturn 1;
MessageBox takes a parent window handle, in this case the handle of the dialog box proce-
dure, a buffer of text, atitle of the message box window, and several predefined integer con-
stants, that indicate which buttons it should show. We want just one button called OK, so we
pass that constant.

192 Windows programming with lcc-win32

Note too, that if the user entered no text, we do NOT call the EndDialog API, so the dialog
box will refuse to close, even if we press the OK button. We force the user to enter some text
before closing the dialog. Since we haven't changed anything in the logic for the Cancel but-
ton, the dialog box will still close when the user presses those buttons. Only the behavior of
the OK button will change.

The EndDialog API takes two parameters. the dialog box window handle that it should
destroy, and a second integer parameter. The dialog box will return these values as the result of
the DialogBox call from WinMain remember?

Since WinMain returns itself this value as its result, the value returned by the DialogBox will
be the return value of the program.

2.1.4 A more advanced dialog box procedure

Doing nothing and not closing the dialog box when the user presses OK is not a good inter-
face. You expect adialog box to go away when you press OK don’'t you?

A user interface like this makes for an unexpected behavior. Besides, if we put ourselvesin the
user’s shoes, how can he/she find out what is wrong? The software doesn’t explain anything,
doesn’t tell the user what to do to correct the situation, it just silently ignoresthe input. Thisis
the worst behavior we could imagine.

WEell, there are two solutions for this. We can disable the OK button so that this problem
doesn’t appear at al, or we could put up a message using our MessageBox API informing the
user that a text must be entered.

Let’s see how we would implement the first solution.

To be really clear, the OK button should start disabled, but become active immediately after
the user has typed some text. If, during editing, the user erases all text that has been entered,
the OK button should revert to itsinactive state.

We can do this by processing the messages that our edit field sends to us. Edit fields are very
sophisticated controls, actually afull-blown mini-editor in a small window. Each time the user
types anything init, the edit field procedure sendsusaWM_COMMAND message, informing
us of each event.

We change our dialog procedure as follows:

case VWV _COVIVAND:
switch (LOANORD(wPar an)) {
case | DOK:
/'l suppressed, stays the sane
case | DCANCEL:
EndDi al og(hwndDl g, 0) ;
return 1,
case | DENTRYFI ELD:
swi tch (H WORD(wPar an)) {
case EN_CHANGE:
if (CGetDlglteniText(hwndD g, | DENTRYFI ELD,
buf f er, si zeof (buffer))) {
Enabl eW ndow(
Get Dl gl ten{hwndDl g, | DOK) , 1) ;
}
el se
Enabl eW ndow(
Get Dl gl t en{ hwndDl g, | DOK) , 0) ;
br eak;

}

br eak;

Introduction 193

}

br eak;
We add a new case for this message. But we see immediately that this nested switch state-
ments are getting out of hand. We have to split this into a function that will handle this mes-
sage. We change again our dialog box procedure as follows:

case | DCANCEL:
EndDi al og(hwndDl g, 0) ;
return 1;

case | DENTRYFI ELD:
return EntryFi el dMessages(hwndDl g, wPar anj ;

This is much clearer. We put the code for handling the entry field messages in its own proce-
dure, “EntryFieldMessages’. Itscodeiis:

int EntryFi el dMessages(HWND hDl g, WPARAM wPar am

{
HWND hl dCk = Get Dl gl ten(hDl g, | DOK) ;

swi tch (H WORD(wPar an)) {
case EN_CHANGE:
if (GetDl gltenirext (hDl g, | DENTRYFI ELD,
buffer, sizeof (buffer))) {
/' Thereissometext in the entry field. Enable the IDOK button.
Enabl eW ndow(hl dCk, 1) ;

}
else // no text, disable the | DOK button

Enabl eW ndow(hl dCk, 0) ;
br eak;

}

return 1,
}
Let’slook at this more in detail. Our switch statement uses the HIWORD of the first message
parameter. This message carries different information in the upper 16 bits (the HIWORD) than
in the lower 16 bits (LOWORD). In the lower part of wParam we find the ID of the control
that sent the message, in this case IDENTRYFIELD, and in the higher 16 bits we find which

sub-message of WM_COMMAND the control is sending to us, in this case EN_CHANGE®®,
I.e. achangein the text of the edit field.

There are many other notifications this small window is sending to us. When the user leaves
the edit field and sets the focus with the mouse somewhere else we are notified, etc. But all of
those notifications follow the same pattern: they are sub-messages of WM_COMMAND, and
their code is sent in the upper 16 bits of the wParam message parameter.

Continuing the analysis of EntryFieldMessages, we just use our friend GetDIgltemText to get
the length of the text in the edit field. If thereis some text, we enable the IDOK button with the
APl EnableéWindow. If thereis NO text we disable the IDOK button with the same API. Since
we are getting those notifications each time the user types a character, the reaction of our
IDOK button will be immediate.

But we have still one more thing to do, before we get this working. We have to modify our Ini-
tializeApp procedure to start the dialog box with IDOK disabled, since at the start there is no
text in the entry field.

static int InitializeApp(HWND hD g, WPARAM wPar am LPARAM | Par am
{

96. | remember calling the software support when installing some hardware: many of the options of the
installation software were disabled but there was no way of knowing why.

194 Windows programming with lcc-win32

Set Focus(Get Dl gl t en(hDI g, | DENTRYFI ELD)) ;
// Disable the IDOK button at the start.
Enabl eW ndow(Get Dl gl t en(hDl g, | DOK) , 0) ;
return 1;

}

We recompile, and it works. The OK button starts disabled (grayed), and when we type the
first character it becomes active, just as we wanted. When we select all the text in the entry
field, and then erase it, we observe that the button reverts to the inactive state.

2.2 User interface considerations

There was another way of informing the user that text must be entered: a MessageBox call,
telling him/her precisely what is wrong. This aternative, making something explicit with a
message, or implicit, like the solution we implemented above appears very often in windows
programming, and it is very difficult to give ageneral solution to it. It depends alot of course,
upon the application and its genera style. But personally, | prefer explicit error messages
rather than implicit ones. When you receive an error message, you know exactly what is
wrong and you can take easily steps to correct it. When you see a menu item disabled, it is
surely NOT evident what the hell is happening and why the software is disabling those

options.%’
But there are other user-interface considerations in our dialog box to take into account too.

One of them is more or less evident when you see how small the letters in the edit field are.
Dialog boxes use a default font that shows very thin and small characters. It would be much
better if we would change that font to a bigger one.

In the initialization procedure, we set the font of the edit field to a predefined font. Windows
comes with several predefined items, ready for you to use without much work. One of them is
the system font that comes in two flavors: monospaced, and proportional. We use the mono-
spaced one. Our initialization procedure then, looks now like this:

static int InitializeApp(HWD hD g, WPARAM wPar am LPARAM | Par am

{
HFONT font;

font = Get StockOhj ect (ANSI _FI XED _FONT) ;
SendDl gl t emMvessage(hDl g, | DENTRYFI ELD,

WM _SETFONT, (WPARAM f ont , 0) ;
Enabl eW ndow(Get Dl gl t en(hDl g, | DOK) , 0) ;
Set Focus(Get Dl gl t en(hDl g, | DENTRYFI ELD)) ;
return 1,

}

A HFONT isafont “handle’, i.e. an integer that represents a font for windows. We get that
integer using the GetStockObject API. Thisfunction receives an integer code indicating which
object we are interested in and returns it. There are several types of object we can get from it:

fonts, brushes, pens, etc.%

Yet another point missing in our dialog box is a correct title, or prompt. The title of our dialog
iIsnow just “dialog”. Thistellsthe user nothing at all. A friendlier interface would tell the user

97. Now isagood time to read the documentation for that API. It will not be repeated here.

98. We introduced that to see if we were really getting a string. Since now we are returning that data to
the calling program, that message should disappear.

User interface considerations 195

what data the software is expecting from him/her. We could change the title of the dialog to a
more meaningful string.

The program calling our dialog procedure could give this string as a parameter to the dialog
box. Dialog boxes can receive parameters, as any other procedure. They receive them in the
parameters passed to the WM _INITDIALOG message.

A closer look to the documentation of the WM _INITDIALOG message tell us that the |Param
message parameter contains for the WM _INITDIALOG 32 hits of data passed in the last
parameter of an API called DialogBoxParam.

We have to modify our calling sequence to the dialog, and instead of using DialogBox we use
the DialogBoxParam API. Looking into our program, we see that the DialogBox APl was
called in our WinMain function (see above). We should modify this call then, but a new prob-
lem appears: where does WinMain know which string to pass to the DialogBoxParam API?

WEell, we could decide that this string would be the parameters passed to WinMain in the |pC-
mdLine argument. This is the most flexible way. We modify then the call to DialogBox like
follows:
return Di al ogBoxParam (hi nst,
MAKEI NTRESOURCE(| DD_MAI NDI ALOG) ,
NULL, (DLGPRCC) Di al ogFunc,
(int)l pCdLi ne);
Since our dialog box is now constructed with DialogBoxParam, we receive in the |Param mes-
sage parameter the same pointer that we gave to the DialogBoxParam API. Now, we have just
to set that text in the caption of our dialog box and it’s done. We do that (again) in our initial-
Ization procedure by adding:
Set W ndowText (hDl g, (char *)I Paran;

The SetWindowText API setsthe caption text of awindow, if that window has a caption bar of
course. To test this, we have to tell Wedit to pass a command line argument to the program
when it calls the debugger or executes the program with Ctrl+F5. We do this by selecting the
“debugger” tab in the configuration of wedit:

wedil-dialog - Jlec\eramplesidizlogh.
™ Fik Edi Search Project Jesounces

e IneesTlzs==H=zm= = "d1ial,

Configuration of W edit

Linker] Lang

T Frogct] Help]

196 Windows programming with lcc-win32

The debugger tab isin the upper left corner. When we select it, we arrive at the following tab:

Configuration of Wedit HE
General] Project] Help] Werzionz] Cormpiler] b acrog]
D'ebugger l Linker] Language] Workspace] Ltilities]

Command ling arguments o pazs bo program

theze are the command line arquments

Start directory

h:hlechexamplestdialoghlce

E sxecutable o stark

|h: hecheramplesdialoghlochdialog exe

[Trap all exceptions

k. | Cancel

Note the first line “Command line arguments to pass to program”. There, we write the string
that we want shown in the dialog box.

When now we press Ctrl+F5, we see our dialog box like this:

these are the command line arguments ¢ |

I
Cancel

Nice, we can pass our dialog box a“prompt” string. This makes our dialog box more useful as
ageneral input routine. Remember that the objective of this series of sectionswas to introduce
you a general routine to input a character string from the user. We are getting nearer.

Still, there is one more problem that we haven't solved yet. We have a buffer of a limited
length, i.e. 1024 characters. We would like to limit the text that the user can enter in the dialog
box so that we avoid overflowing our buffer. We can do this with the message
EM SETLI M TTEXT. We have to send this message to the control when we start the dialog
box, so that the limit will be effective before the user has an occasion of overflowing it. We
add then

SendDl gl t emvessage(hDl g, | DENTRYFI ELD,
EM SETLI M TTEXT, 512, 0) ;

Libraries 197

2.3 Libraries

What we would likeis away of using this dialog box in our applications of course. How could
we do that?

One way would beto call it as an independent program. We could use the facilities for caling
a program within the windows system, and pass our prompt in the command line parameters.
This would work, but the problem of getting the string from the user would be quite compli-
cated to solve. Programs can only return an error code, and in some situations this error code
can only be from zero to 255... We can’t pass pointers just like that from one program to
another; we can't just pass a pointer to a character string as the result of the program.

Why?

Because windows, as other systems like linux, Solaris, and UNIX in general, uses a protected
virtual address schema. The machine addresses that the program uses are virtual, asif the pro-
gram was the only one running in the machine. It is the operating system and the CPU that
does the tranglation of those virtual addresses into real RAM locations in the machine you are
using. This means the addresses of each program aren’t meaningful for another program. We
can pass specia pointers (shared memory) within windows, but that’s too advanced stuff for
an introductory text, sorry.

But there are many other ways of solving this problem without costly interface devel opment.
What do we want? Let’s get that clear first, worrying about implementation details later.

int GetString(char *pronpt, char *buffer,int bufferlen);

This routine would return either true or false, depending if the user has pressed OK or can-
celled the operation. If the user pressed OK, we would find the string that was entered in the
buffer that we pass to GetString. To avoid any overflow problems, we would pass the length of
the character string buffer, so that the GetString routine stops input when we reach that limit.

The C language supports code reuse. You can compile code that is useful in many situations
and build libraries of routines that can be reused over and over again. The advantages are
many:

» The code has to be written once and debugged once.

» Thesize of our program stays small, since we call aroutine instead of repeating the code
al over the place.

Function calls are the mechanism of code reuse since a function can be used in many situa-
tions. Libraries are just a collection of routines that are linked either directly or indirectly with
the main program.

From the standpoint of the user of the library, not the one who is building it, the usage is quite
simple:

1) You have to include the header file of the library to make the definition available to the
compiler.

2) You use the functions or data

3) You add the library to the set of files that the linker usesto build your program.

This simplicity of usage makes libraries a good way to reuse and share the code between dif-
ferent applications.

Under windows we have two types of libraries:

198 Windows programming with lcc-win32

Static libraries. These libraries are built in files that normally have the .lib extension and are
linked with the program directly, i.e. they are passed to the linker as arguments. The linker
takes the code of the needed functions from the library and copies the code into the pro-
gram.

Dynamic libraries. These aren’t copied into the main program, but are resolved at load time by
the program loader. When you double-click a program’s icon you activate a system pro-
gram of windows called program loader that goes to the disk, finds the code for the execut-
able you have associated with the icon, and loads it from disk into RAM. When doing this,
the loader finds if the program needs any dynamic libraries, that normally have the .DLL
extension, and reads their code too, linking it dynamically to the program being loaded.

Which one should we use in this application?
Static or not static? That is the question!

Our program needs a class registration before it can call the DialogBoxParam API. If we use
the static library approach, we would have to require that the user of the library calls someini-
tialization routine before, to allow usto register our class with windows.

But this would complicate the interface. We introduce with this requirement yet another thing
that can go wrong with the program, yet another thing to remember.

A way out of this dilemma would be to take care of doing the registration automatically. We
could setup an integer variable that would start as zero. Before calling our DialogBoxParam
procedure we would test the value of this variable.

If it is zero it means that our class wasn't registered. We would register our class and set this
variable to one, so that the next call finds a value different than zero and skips the class regis-
tration code.

Libraries 199

We haveto tell the IDE to produce a static library now, instead of a normal executablefile. We
do this by going into the linker configuration tab, and checking the library radio-button, like

this:
Configuration of Wedit HE
General] Project] Help] Werzionz] Compiler] b acroz]
[rebugger Librarian l Language] Wiorkzpace] [Itilities]

Output file name

||:|:"-.Iu:u:'\e:-:amples'xdialng'xlu:u:"-.u:lialu:ug. s}

Additional files ta be included in the link,

O ptians Type of output

r r O wWindows appl
" Conzole appl.

|— PP
" DLL

Entry point name [for dlls]

| % Static librany

Additional command line arguments

k. | Cancel

You see the “ Static library” radio-button checked. The name of the library is the name of the
project with the .lib extension.

Now we are ready to change our WinMain. We change our WinMain function to be the Get-
String procedure, like this:

static char buffer[1024];
static int classRegistered;

i nt API ENTRY Get String(char *prompt, char *destbuffer,int bufferlen)
{

WADCLASS wc;

int result;

HANDLE hi nst ;

hi nst = Get Modul eHandl e(NULL) ;
if (classRegistered == 0) {
nmenset (&ac, 0, si zeof (we)) ;
we. | pf nvwdProc = Def Dl gProc;
we. cbWhdExtra = DLGAN NDOWEXTRA;
we. hl nstance = hinst;
we. hCur sor = LoadCursor (NULL, | DC_ARROW ;
we. hbr Background = (HBRUSH) (COLOR_W NDOW + 1);
we. | pszd assName = "di al og";
Regi st er Cl ass(&wc) ;
cl assRegi stered = 1;

200 Windows programming with lcc-win32

result = Di al ogBoxPar an(hi nst,
MAKEI NTRESOURCE(| DD_MAI NDI ALOG)
NULL,
(DLGPROC) Di al ogFunc,
(int)pronpt);

if (result == 1) {
strncpy(dest buffer, buffer, bufferlen-1);
destbuffer[bufferlen-1] = 0;

}

return result;

}
We have several thingsto explain here.

1) We move the declaration of our static buffer that was before further down, to the beginning
of thefile, so that we can use this buffer in the GetString procedure to copy its contentsinto
the destination buffer.

2) We declare our flag for testing if the class has been registered as a static int, i.e. an integer
visible only in this module. We do not need to initialize it to zero, since the C language
guarantees that al non-explicitly initialized static variables will be set to zero when the
program starts.

3) We modify the declarations of local variables in the GetString procedure, adding a result
integer variable, and a HANDLE that will hold the instance of the current module. Before,
we received this as a parameter in the arguments of WinMain, but now we have to get it by
some other means. The solution is to call the GetModuleHandle API, to get this. We
indicate it that we want the handle of the currently running executable by passing it a
NULL parameter.

4) We test then our global flag classRegistered. If it is zero, we haven't registered the class,
and we do it now. Afterwards, we set the variable to one, so that this piece of code will not
be executed again.

5) We call our DialogBox procedure just like we did before, but now we assign its result to an
integer variable and we test if the result is one (i.e. the user pressed OK). If that is the case,
we copy the string from the temporary buffer to the destination buffer. Note that we use the
strncpy function. This standard library function takes an extra parameter, a maximum
length to copy. We do not want to overflow the destination buffer under any circumstances,
so we only copy a maximum of bufferlen characters minus one, to account for the
terminating zero of the string. We ensure afterwards that the string is zero terminated, and
we return the result.

The rest of the program remains the same, so it is not shown. It is important to remember to
get rid of that MessageBox call however!®°

We compile the library, and we want to test it, but... we need atest program. A library is not
an executable by itself.

Besides this, we need a header file that the user of the library will use to get the prototype of
our function. Its contents are very simple:

int GetString(char *pronpt, char *destBuffer,int bufferlen);
and that's all.

99. WEel, thisisnot great deal; we have just to answer Y ES when it proposes to create the skeleton.

Libraries 201

Now, we have to define a new project that will contain the test code. We do that in the same
way as we have created the other projects. we choose the ‘Create project’ option in the
‘Project’ menu bar, and we name it appropriately “testdialog”.

We do NOT specify a windows application. Since our library should be independent whether
it is called from awindows program or a console application, we should test that now.

Additional filez to be included in the link,

|dialog.iib teconio. b

Now, when creating the project, we ask the wizard to create a console application.!% We leave
everything by default, but when we arrive at the linker settings dialog, we add our dialog.lib to
the libraries entry field, likethis:

Another issue to remember, is the following:

We need a resource file. Since in our library there are no resources, we have to add those
resources to our test program. Thisis easy to do in this case: we just add the dialog.rc resource
file to the project. The interface for the users of the library however is terrible. All programs
that use our library will be forced to include somehow the resource for the dialog box! Includ-
ing aresource in another resource file is difficult, to say the least.

Wow, this looks like a showstopper actually.

OK. This presents an unexpected and serious trouble for our library project, but we will not
leave things at midway. We finish our test program by changing our “main” function, like this:

extern int APIENTRY GetString(char *pronpt, char *buf,int |en);

int mai n(voi d)

{
char buffer[1024];
if (GetString("Enter a string", buffer, sizeof(buffer))) {
printf("String is %\n", buffer);
}
el se printf("User cancelled!\n");
return O;
}

100. It could be argued that this could be done with DLLs too: the linker should export al externally
visible symbols. In practice is better only to export symbols that should be visible. This avoids name clashes.

202 Windows programming with lcc-win32

When we start this program from the command line, we see:

A
e}

v ochexamplestdialogy]lcocatestdialog

Ithis i= the string Ll

Cancel

Thisisn't that bad, for a start. We have a sophisticated line editor, complete with arrow inter-
face to move around in the text, clipboard support built in, delete and backspace keys already
taken care of, etc. If we would have to write ourselves an equivalent program, it would cost us
probably days of development. To develop the clipboard interface already is quite a challenge.

But we are confronted to the problem of resources. Our static library idea was a dead end. We
have to find something else.

Summary: The C language supports the concept of code reuse in the form of libraries. The

static libraries are combined with the main application at link time (statically). They can’'t
contain resources.

Dynamically linked libraries (DLLs) 203

2.4 Dynamically linked libraries (DLLS)

A dynamically linked library is just like a static library: it contains a set of useful functions
that can be called from other software. Aswith normal .lib libraries, thereis no main function.

Unlike static libraries however, they have severa features that make them a very interesting
aternative to static libraries:

* When they are loaded, the loader calls a function of the library to alow load time
initializations. This alows us to register our class, for instance, or do other things.

* When the program that loads them starts or ends a new thread the system arranges for
calling the same function. This allows us to take special actions when this event occurs.
We do not need this feature for our application here, but other software do.

* When the library is unloaded, either because the program explicitly does it or because
simply the program is finished, we get notified. Here we can reverse the actions we
performed when the library was loaded: we can, for instance, unregister our window
class.

» DLLscan contain resources. This solves the problem of forcing the user of thelibrary to
link a bunch of resources to his/her program.

DL Ls need to specify which functions are going to be exported, i.e. made visible to the outside
world. With static librariesthisis not really necessary since the librarian will write all the sym-

bols with the external type to the library symbol table automatically. 10t
We can declare that a symbol will be exported using two methods:

1) We can put in the declaration of the symbol the _declspec(dllexport) mark.

2) We can write the name of the symbol in a specia file called definitions file (with the .def
extension) and pass thisfile to the linker.

Which method you use is a matter of taste. Writing __declspec(dllexport) in the source code is
quite ugly, and may be non-portable to other systems where the conventions for dynamically
linked code may be completely different. A definitions file spares us to hard wire that syntax
in the source code.

The definitions file has its drawbacks too however. We need yet another file to maintain,
another small thing that can go wrong.

For our example we will usethe __declspec(dilexport) syntax since we have only one function
to export.

We return to our library project, and reopen it. We go again to the linker configuration tab, that
now is called “librarian” since we are building a static library, and we check the radio-button
corresponding to aDLL project. We answer yes when Wedit says whether it should rebuild the
makefile and there we are. Now we have to make the modifications to our small library.

We have to define a function that will be called when the library is loaded. Traditionaly, the
name of this function has been LibMain since the days of Windows 3.0 or even earlier. We
stick to it and define the following function:

int WNAPI LibMai n(H NSTANCE hDLLI nst, DWORD Reason, LPVO D Reserved)
{

swi tch (Reason)

{

101. You can change this by pressing the corresponding button in the linker configuration tab, or by
giving the argument —nounderscores to the linker, when building the DLL.

204 Windows programming with lcc-win32

case DLL_PROCESS ATTACH:
hi nst = hDLLI nst;
DoRegi sterd ass();
br eak;

case DLL_PROCESS DETACH:
Unr egi sterd ass("di al og", hDLLI nst);
br eak;

case DLL_THREAD ATTACH:
br eak;

case DLL_THREAD DETACH:
br eak;

}
return TRUE;

}
This function, like our dialog function or many other functions under windows, is a callback
function, i.e. a function that is called by the operating system, not directly from our code.
Because of this fact, its interface, the arguments it receives, and the result it returns is fixed.
The operating system will always pass the predefined arguments to it, and expect a well-
defined result.

The arguments that we receive are the following:

1) We receive a HANDLE to the instance of the DLL. Note that we have to pass to several
functions this handle later on, so we will storeit away in aglobal variable.

2) We receive a DWORD (an unsigned long) that contains a numerical code telling us the
reason why we are being called. Each code means a different situation in the life cycle of
the DLL. We have a code teling us that the we were just loaded
(DLL_PROCESS ATTACH), another to inform us that we are going to be unloaded
(DLL_PROCESS_DETACH), another to inform us that a new thread of execution has been
started (DLL_THREAD ATTACH) and another to tell us that a thread has finished
(DLL_THREAD_DETACH).

3) Thethird argument isreserved by the system for future use. It is aways zero.

The result of LibMain should be either TRUE, the DLL has been correctly initialized and
loading of the program can continue, or zero meaning a fatal error happened, and the DLL is
unable to load itself.

Note that we return always TRUE, even if our registration failed.
Why?

If our registration failed, this module will not work. The rest of the software could go on run-
ning however, and it would be too drastic to stop the functioning of the whole software
because of a small failurein aroutine that could be maybe optional.

Why the registration of our class could fail?

One of the obvious reasons is that the class is already registered, i.e. that our calling program
has already loaded the DLL, and it is loading it again. Since we do not unregister our class,
thiswould provoke that we try to register the class a second time.

For the time being, we need to handle only the event when the DLL isloaded or unloaded. We
do two things when we receive the DLL_PROCESS _ATACH message: we store away in our
global variable the instance of the DLL, and then we register our string dialog box class. We
could have just done it in the LibMain function, but is clearer to put that code in its own rou-
tine. We write then:

static void DoRegisterd ass(void)

Dynamically linked libraries (DLLs) 205

VWNDCLASS wc;

menset (&ac, 0, si zeof (we)) ;

. | pf nWhdPr oc = Def Dl gPr oc;

. cbWhdExtra = DLGW NDOVEXTRA;

. hl nstance = hinst;

. hCursor = LoadCursor (NULL, |DC ARROW ;

. hbr Background = (HBRUSH) (COLOR W NDOW + 1);
.1 pszd assNane = "di al og";

Regi st er Cl ass(&wc) ;

855885

}

You see that the code is the same as the code we had originally in WinMain, then in our Get-
String procedure, €tc.

To finish LibMain, we handle the message DLL_PROCESS DETACH unregistering the class
we registered before.

With this, our GetString procedure is simplified: We do not need to test our flag to see if the
class has been registered any more. We can be certain that it was.

i nt API ENTRY _ decl spec(dl | export)
Get String(char *pronpt, char *destbuffer,int bufferlen)

{

int result;

result = Di al ogBoxParan(hi nst,
MAKEI NTRESOURCE(| DD_MAI NDI ALOG)
NULL,
(DLGPRCOC) Di al ogFunc,
(int)pronpt);

if (result == 1) {
strncpy(dest buffer, buffer, bufferlen-1);
destbuffer[bufferlen-1] = 0;

}

return result;

}

We compile and link our DLL by pressing F9. Note that when we are building a DLL, Icc-
win32 will generate three files and not only one as with anormal executable.

1) We obtain of course adiaog.dll file that containsthe DLL.

2) We obtain an import library that allows other programs to be linked with this DLL. The
name will be dialog.lib, but thisis not a normal library. It is just a library with amost no
code containing stubs that indicate the program loader that a specific DLL is used by the
program.

3) We obtain atext file called dialog.exp that contains in text form the names that are exported
from the DLL. If, for any reason we wanted to regenerate the import library for the DLL,
we could use this file together with the buildlib utility of Icc-win32 to recreate the import
library. This can be important if you want to modify the names of the exported functions,
establish synonyms for some functions or other advanced stuff.

206 Windows programming with lcc-win32

2.5 UsingaDLL

To use our newly developed DLL we just plug-in the older test program we had done for our
static library. The interface is the same; nothing has changed from the user code of our library.
The only thing that we must do differently isthe link step, since now we do not need to add the
resource file to our program.

Wedit leaves our DLL in the Icc directory under the project main directory. We just recompile
our testdialog.c program that we had before. Here is the code for testdialog.c again:

extern int APIENTRY GetString(char *pronpt, char *buffer,int |en);

int main(int argc,char *argv[])

{
char buffer[1024];
if (GetString("Enter a string"
buf fer, si zeof (buffer))) {
printf("String is %\n", buffer);
}
el se printf("User cancelled\n");
return O;
}

We compile thisin the directory of the project, without bothering to create a project. Suppose
that our projectisin

h:\1 cc\ projects\dial og
and thedll isin
h:\ 1 cc\projects\dialog\lcc
We compile with the command:
I cc testdial og.c
then we link with the command:
I ccl nk testdialog.obj lcc\dialog.lib
Perfect! We now type the name of the program to test our dll.
testdialog
but instead of the execution of the program we see adialog box like this:

: testdialog.exe - Unable To Locate DLL [|

The dynamic link library dialog.dil could not be found in the specified path
[hlechexampleshdialog; .C:\WIMM ThSpstem3 2 CAMINM T dapstem C:AWARNMT C: WM N T heystem 32, CAWANNT b blechbingh: imedewhbingc: \ntreskit ke
amifsmikkessbin;h: \medesibin;e:\performiinclude;e: ssmalleiffel\bin:k: Y borlandybocB5hbin; d: Mech bin:c: \eomman.

The system tellsusthat it can’t find the dll.

WEell, if you reflect about this, thisis quite normal. A DLL must be linked when the execution
of the program starts. The system will search in the start directory of the program, and in all
directories contained in the PATH environment variable. If it doesn’t find a “dialog.dll” any-
whereit will tell the user that it can’t execute the program because amissing DLL, that’'s all.

The solution isto copy the DLL into the current directory, or copy the DLL in one of the direc-
tories in your PATH variable. Another solution of course is to go to the directory where the
DLL is, and start execution of the program there.

Using a DLL 207

This dependency on the DLL isquite disturbing. All programsthat use the DLL in thisfashion
would need to have the DLL in their startup directory to be able to work at all.

A way to get rid of thisisto avoid linking with the DLL import library. Yes you will say, but
how will we usethe DLL?

DLLs can beloaded into the program’s address space with the APl LoadLibrary. This API will
do what the program loader does when loading a program that contains areferenceto aDLL.
If the load succeeds, the API will return us a handle to the library, if not, it will return us an
INVALID_HANDLE as defined in windows.h.

After loading the DLL, we can get the address of any exported function within that DLL just
by calling another windows API: GetProcAddress. This API receivesavalid DLL handle, and
a character string containing the name of the function to find, and will return an address that
we can store in a function pointer.

Let'sdo this.
#i ncl ude <w ndows. h> (1)
#i ncl ude <stdi o. h> (2)
int (API ENTRY *pfnCetString)(char *,char *,int); (3)
int main(int argc, char *argv[])
{
char buffer[1024];
HANDLE dI | Handl e = LoadLi brary((4)
"h:\\lcc\\exanmpl es\\di al og\\l cc\\dialog.dll");
if (dllHandl e == | NVALI D_HANDLE_VALUE) { (5)
fprintf(stderr,"Inpossible to load the dlI\n");
exit(0);
}
pfnCGetString = (int (APIENTRY *)(char *,char *,int))
Get ProcAddress(dl | Handl e, " _Get String@?2"); (6)
if (pfnGetString == NULL) {
fprintf(stderr,
"Inmpossible to find the procedure GetString\n");
exit(1);
}
if (pfnGetString(
"Enter a string", buffer,sizeof(buffer))) {
printf("String is %\n", buffer);
}
el se printf("User cancelled\n");
return O;
}
We go step by step:

We need to include windows.h for getting the prototypes of LoadLibrary, and GetProcAd-
dress, besides some constants like | NVALI D_HANDLE VAL UE.

stdio.h is necessary too, since we use fprintf

Thisis afunction pointer called pfnGetString, that points to a function that returns an int and
takes achar *, another char * and an int as arguments. If you do not like this syntax please bear
with me. Even Dennis Ritchie says this syntax isn’t really the best one.

We store in our dlIHandle, the result of calling LoadLibrary with an absolute path so it will
always work, at least in this machine. Note that the backslashes must be repeated within a
character string.

208 Windows programming with lcc-win32

We test if the handle received is a correct one. If not we put up some message and we exit the
program.

We are now ready to assign our function pointer. We must cast the return value of GetProcAd-
dress to afunction like the one we want. The first part of the statement is just a cast, using the
same construction that the declaration of the function pointer before, with the exception that
we do not include the identifier of course, since thisis a cast. But the argumentsto Get Pr o-
cAddr ess are weird. We do not pass redly the name of the function Get St ri ng, but a
name _CGet St ri ng@l2. Where does this name come from?

The rest of the program stays the same.

To understand where this weird name comes from, we have to keep in mind the following
facts:

Icc-win32 like many other C compilers, adds always an underscore to the names it generates
for the linker.192

Since our function is declared as _stdcall, windows conventions require that we add to the
name of the function the character ‘@’ followed by the size of the function arguments. Since
our function takes a char pointer (size 4) another char pointer, and an integer (size 4 too), we
have 12 bytes of procedure arguments, hence the 12. Note that all types smaller than an integer
will be automatically be promoted to integers when passing them to a function to keep the
stack always aligned, so that we shouldn’t just take the size of the arguments to make the addi-
tion. All of this can become really complicated if we have structures that are pushed by value
into the stack, or other goodies.

The best thing would be that our DLL would export _GetString@12 as GetString. PERIOD.

WEell, thisis exactly where our dialog.def file comes handy. Here is a dialog.def that will solve
our problem.
LI BRARY di al og

EXPORTS
_GetString@2=Get String

We havein thefirst line just the name of the DLL inaLIBRARY statement, and in the second
line two names. The first one is the name as exported by the compiler, and the second one is

the name as it should be visible from outside. By default, both are the same, but now we can
separate them. With these ingtructions, the linker will put in the export table of the DLL the

character string “GetString”, instead of the compiler-generated name. 1%

Once this technical problems solved, we see that our interface is much more flexible now. We
could just return FAL SE from our interface function if the DLL wasn’t there, and thus disable
some parts of the software, but we wouldn’t be tied to any DLL. If the DLL isn’t found, the
functionality it should fulfill can’t be present but nothing more, no catastrophes.

102. In the documentation of windows, you will find out that in the .def file you can write other kinds of
statements. None of them are supported by Icc-win32 and are silently ignored since they are redundant with
the command line arguments passed to the linker. Do not write anything else in the .def file besides the names
of the exports.

103. The Macintosh worksin the same manner, albeit with a much more primitive system.

A more formal approach. 209

2.6 A more formal approach.

2.6.1 New syntax
Now that we know how to make a DLL, we should be able to understand more of C, so let's
come back again to the syntax and take a closer look.
A problem areais function pointer casting, what leads straight into gibberish-looking code.
int (API ENTRY *pfn)(char *,char *,int);
Better isto typedef such constructs with:
typedef int (APIENTRY *pfn)(char *,char *,int);
Now we declare our function pointer just with
pfn pfnGetString;
and we can cast the result of GetProcAddress easily with:
pfnGet String = (pfn)GetProcAddress(...);

Hiding the gibberish in a typedef is quite useful in this situations, and much more readable
later.

2.6.2 Event oriented programming

In another level, what those programs show us is how to do event-oriented programs, i.e. pro-
grams designed to react to a series of events furnished by the event stream.

Under windows, each program should make this event-stream pump turn, by writing some-
where:

whil e (Get Message()) {
ProcessMessage() ;

}

we will describe the exact syntax later.19% This message-pump is hidden now from view under
the DefDIgProc procedure, but it is the source of all the messages passed to the dialog proce-
dure that we defined.

A windows program is designed to react to those messages, or events. It will process them in
sequence, until it decides to stop the message pump ending the program.

The general structureisthen:

104. Application frameworks like MFC introduce an additional simplifying layer between you and the
operating system. Much has been said and written about them, and here | will not discuss this in much more
detail. Suffice to note that the purpose of Icc-win32 isto let you be alwaysin control of what is going on. You
can do here anything, contrary to a framework, where you can only do what the framework provides for, and
nothing else.

True, an application framework can simplify the coding, and many people use them. It would be feasible
to build such a framework with lcc-win32, but ... | will leave this problem “as an exercise to the reader” ...

210 Windows programming with lcc-win32

 Initialize the application, register the window classes, etc.
o Start the message pump

* Process events until a predefined event (generally the closing of the main window)
provokes the stop of the message pump.

e Cleanup

Thiswas the standard way of windows programming until the C++ “wizards’ decided that this
message pump was too ugly to be shown to programmers and hid it behind an “application
object”. Later, severa years later, things changed again and the ATL environment made the

famous “message pump” visible again. 1%°
Texts started appearing explaining the surprised programmers what was WinMain and that

“message pump” that was again the non-plus-ultra of modernity.1% Luckily for people pro-
gramming in C, all those fads were invisible. Since C programming emphasizes low-level
knowledge of what is going on, the “message pump” has always been there and we knew
about it.

Messages are sent to window objects that are members of a class of similar objects or window
class. The procedure SendMessage can also send messages to a window object, as if they
would have been sent by the system itself. We send, for instance, the message
EM_SETLIMITTEXT to an entry field to set the maximum number of characters that the
entry field will process.

The system relies on the window procedure passing all messages that it doesn’t handle to the
default message procedure for that class of objects, to maintain a coherent view of the desktop
and to avoid unnecessary code duplication at each window.

We are now ready to start our next project: building areal window, not just asimple dialog.

2.7 A more advanced window

We will create the next example with the wizard too. It is a handy way of avoiding writing a
lot of boilerplate code. But it is obvious that we will need to understand every bit of what the
wizard generates. We create a new project, as usual with the “project” then “Create” menu
option, and we give it the name of "winexample”. The wizard shows us a lot of dialogs with
many options that will be explained later, so just stick with the defaults. Choose a single win-

dow application:
| ype of_ applicaton
" Dialog bazed
" hulhple window

" Conzole application
 [DLL

After pressing the “next” button till the dialog boxes disappear, we press F9, compile the
whole, and we run it. We see a single white window, with a status bar at the bottom, a sum-

105. Inthe data processing field, we have been always recycling very old ideas as “new, just improved”.
Object oriented programming was an idea that came from the old days of Simula in the beginning of the
seventies but was “rediscovered” or rather “reinvented” in the late 80s. Garbage collection was standard in
lisp systems in the seventies, and now has been discovered again by Mr. Bill Gates, in the next century, with
his proposal for the C# language.

106. Remember the basics of Boolean logic: abit ANDed with another will be one only if both bits are 1.
A bit Ored with another with return 1 only if one or both of themis 1.

A more advanced window 211

mary menu, and nothing else. Well, thisis the skeleton of a windows application. Let’s see it
in more detail.

We start as always in the same place. We go to the WinMain function, and we try to figure out
what isit doing. Hereit is:

i nt WNAPI W nMi n(H NSTANCE hl nstance, HI NSTANCE hPrevl nstance, LPSTR
| pCndLi ne, | NT nCndShow)
{

MSG nsgQ;

HANDLE hAccel Tabl e;

/I Saves in this global variable the instance handle, that must be passed as an
/I argument to many window functions.
hl nst = hl nst ance;
/'If the initialization of the application fails, WinMain exits
if (!'lInitApplication())

return O;
/I Loads the keyboard accelerators for common menu options
hAccel Tabl e = LoadAccel erat ors(hl nst, MAKEI NTRESOURCE(| DACCEL)) ;
/I Creates the main window, and exits if it can’t be created
if ((hwndMain = CreateAppl WidCl assWhd()) == (HWND) 0)

return O;
Il Creates the status bar at the bottom of the main window
Cr eat eSBar (hwndMai n, " Ready", 1) ;
/I Shows the main window
ShowW ndow(hwndMai n, SW SHOW ;
/I Starts the message loop. When the main window post the quit message, GetMessage
I/ will return NULL
whil e (Get Message(&rsg, NULL, 0,0)) {

if (!Transl ateAccel erator(nsg. hwnd, hAccel Tabl e, &rsg)) {

Transl| at eMessage(&sQ) ;
Di spat chMessage(&sQ) ;

}
}
/I Returns the wParam of the WM_QUIT message
return nsg. wPar am

We have the same schema that we saw before, but this time with some variations. We start the
application (registering the window class, etc.), we load the keyboard accelerators, we create
the window, the status bar, we show our window, and then we enter the message loop until we
receive a\VW_QUI T, that breaks it. We return the value of the “wParam” parameter of the last
message received (WM _QUI T of course).

Simpleisn'tit?
Now let’slook at it in more detail.

The “InitApplication” procedure initializes the WNDCLASS structure with a little more care
now, since we are not using our Def Di al ogPr oc any more, there are alot of things we have
to do ourselves. Mostly, that procedure uses the standard settings:

static BOOL InitApplication(void)

{
VINDCLASS wc;

nmenset (&ac, 0, si zeof (VWNDCLASS)) ;

/I The window style

we. styl e = CS_HREDRAW CS_VREDRAW | CS_DBLCLKS ;
we. | pf nwhdProc = (WNDPROC) Mai nWhdPr oc;

212 Windows programming with lcc-win32

we. hl nstance = hlnst;
/I The color of the background
we. hbr Background = (HBRUSH) (COLOR_W NDOW1) ;
we. | pszCQ assNane = "w nexanpl eWwhdCl ass";
/I The menu for this class
we. | pszMenuNane = MAKEI NTRESCURCE(| DMVAI NVENU) ;
/I default cursor shape: an arrow.
we. hCursor = LoadCursor (NULL, | DC_ARROW ;
/I default icon
we. hl con = Loadl con(NULL, | DI _APPLI CATI ON) ;
if (!'RegisterC ass(&wc))
return O;
/I ---TODO--- Call module specific initialization routines here

return 1;

}

The style of the window used is a combination of integer constants like CS_HREDRAW and
others, combined using the OR operator, the vertical bar. What does this mean?

This is a standard way of using bit flags in C. If you go to the definition of CS_HREDRAW
(right-click in that name and choose the “ Goto definition” option), you will see that the value

Is 2. Other constants like CS_DBLCLKS have a value of 8. All those numbers are a power of

two. Well, a power of two by definition will always have asingle bit set. All other bitswill be

zero. If you OR those numbers with each other, you will obtain a number that has the bits set

that correspond to the different values used. In our case this statement is equivalent to:

we.style =2 | 1| 8
8oredwith1is1001, oredwith2is101 1, what isequal to 11 in decimal notation.

Thisisavery common way of using flagsin C. Now, if you want to know if thiswindow isa
window that answersto double-clicks, you just have to query the corresponding bit in the style
integer to get your answer. You do this with the following construct:

if (we.style & CS DBLCLKS) {
}

We test in thisif expression, if the value of the “style” integer ANDed with 8 is different than
zero. Since CS_DBLCLKS s apower of two, this AND operation will return the value of that

single bit.2%” Note too that 1 is a power of two since 2 to the power of zero is one.
We will return to this at the end of this section.

Coming back to our initialization procedure, there are some new things, besides this style set-
ting. But thisis just a matter of reading the windows documentation. No big deal. There are
many introductory books that augment their volume just with the easy way of including a lot
of windows documentation in their text. Here we will make an exception.

But what is important however is that you know how to look in the documentation! Suppose
you want to know what the hell isthat CS_DBL CLKS constant, and what does it exactly mean.
You press F1 in that identifier and nothing. It is not in the index.

WEell, this constant appears in the context of RegisterClass API. When we look at the docu-
mentation of RegisterClass, we find a pointer to the doc of the WNDCLASS structure. Going
there, we find in the description of the style field, all the CS_* constants, neatly explained.

Notethat not al isintheindex. You have to have afeeling of where to look. L.cc-win32 comes
with ahelp file of reasonable size to be downloaded with a standard modem. It is 13MB com-
pressed, and it has the essentials. A more detailed documentation complete with the latest stuff
Isin the Software Development Kit (SDK) furnished by Microsoft. It is available at their Web
site, and it has a much more sophisticated help engine.

A more advanced window 213

The WinMain procedure is the right place for initializing other things like Colnitialize() if you
are going to use COM, or WSAStartup() if you are going to use the sockets layer, etc. The
command line parameters are available in the IpCmdLine parameter.

The messages for the main window are handled in the MainWndProc function, that is passed
as the message handling function when registering the window class. The standard version
looks like this: each event is mapped to a case in a big switch of possible events.

LRESULT CALLBACK Mai nWwhdProc(HVWAD hwnd, Ul NT nsg, WPARAM wPar am LPARAM
| Par am
{
switch (nmsg) {
case WM Sl ZE:
/I Windows has been resized. Resize any child windows here
SendMessage(hwhdSt at usbar, msg, wPar am | Par am ;
InitializeStatusBar(hwdSt atusbar, 1);
br eak;
case WM MENUSELECT:
/I The user is browsing the menu. Here you can add code
/I to display some text about the menu item being browsed for instance
return MsgMenuSel ect (hwnd, nsg, wPar am | Par am ;
/I The WM_COMMAND message reports an item of the menu has been selected.
case WM _COMVAND:
HANDLE WM COMMVAND(hwnd, wPar am | Par am Mai nwhdPr oc_OnConmrand) ;
br eak;
/I This message reports that the window will be destroyed. Close the application now.
case WM DESTROY:
Post Qui t Message(0) ;
br eak;
/I All other messages go to the default procedure provided by Windows
defaul t:
return Def WndowPr oc(hwnd, nsg, wPar am | Par am ;

107. You may wonder what that variable “msg” stands for. It is a structure of type MSG, that is defined in
windows.h asfollows:

typedef struct tagMsG

{ HWD hwnd;
Ul NT message;
WPARAM wPar am
LPARAM | Par am
DWORD tine;
PO NT pt; } MBG *PMSG *NPMSG, *LPMSG

Note that in C you can append as many names to a pointer to a structure as you like, and in windows this
isused alot. Thereason is an historical one. In windows 16 bits there were several types of pointers: near (16
bit pointers), far (long pointers of 32 bits) and generally the near pointers were prefixed with NP, the 32 bit
ones with LP. This was retained for compatibility reasons until today, even if there are only 32 bit pointers
Now.

This structure contains then, the following fields:
« hwnd: The handle of the specific window to which the message is directed.
* message: A 16-bit value identifying the message.

e wparam: A 32-bit value identifying the first message parameter. Its meaning depends on the
message being sent.

e |Param: A 32-bit value identifying the second message parameter.
« time A 32-bit valueidentifying the time when the event that provoked this message happened.

e« pt: Thisis a POINT structure containing the coordinates of the mouse in the instant the event
happened that provoked this message.

214 Windows programming with lcc-win32

}

return 0O;

}

2.7.1 Working with keyboard accelerators

After initializing the window class, the WinMain function loads the accelerators for the appli-
cation. Thistable is just a series of keyboard shortcuts that make easy to access the different
menu items without using the mouse and leaving the keyboard. In the resource editor you can
edit them, add/delete/change, etc. To do this you start the resource editor and you press the
“dir” button in the upper right. You will see the following display.

<]

g

[Dialngs
[leons
+- [Menusz

+-[17 Shings
[0 Acceleratar =--Herel

You click inthe “ Accelerator” tree tab, and you will see the following:

Accelerator keys

| dentity

[IDM_EXIT

Walle:

K.ey valie

200

Agzociated menu (D

IDM EXIT

Flagz
VIRTKEY CONTREOL

Cancel

[

Help

Add

Delete

Bl

kodify

We have here the accelerator called | DM_EXI T that has the value of 300. Thisis just Ctrl+Q
for quit. The key value is 81, the ASCII value of the letter ‘q’, with a flag indicating that the
control key must be pressed, to avoid quitting just when the user happens to press the letter g
in the keyboard!

A more advanced window 215

Double-clicking in the selected line leads us to yet another dialog:

Changing an accelerator key
ey kd odifierz
E M Ol [Shit I~ At T Noinvert .
ance
Menu equivalent Tupe
||DM—E><|T ﬂ " Azci fe irtual Key Change key

Here you can change the accelerator as you want. The flags are explained in the documenta-
tion for the resource editor.

But this was just another digression, we were speaking about WinMain and that statement:
LoadAccelerators... Well, let’s go back to that piece of code again.

After loading the accelerators, the status bar is created at the bottom of the window, and then,
at last, we show the window. Note that the window is initially hidden, and it will be shown
only when all things have been created and are ready to be shown. This avoids screen flicker-
ing, and saves execution time. It would be wasteful to redraw the window before we created
the status bar, since we would have to do that again after it is created.

We will speak about status bar later, since that is not crucial now. What really is important is
the message loop that begins right after we call ShowWindow.
whil e (Get Message(&nrsg, NULL, 0,0)) {
if (!Transl ateAccel erat or(nsg. hwnd, hAccel Tabl e, &rsg)) {
Tr ansl at eMessage(&89) ;
Di spat chMessage(&rsQ) ;
}
}
This loop calls the APl GetMessage. If that returns TRUE, we call the API to trandate the
accelerators. This APl will convert a sequence of keystrokes into a WM_COMMAND mes-
sage, as it was sent by a menu, if it finds a correspondence between the keystrokes and the
accelerator table that we loaded just a few lines above. If TrandateAccelerator doesn’t find
any correspondence, we go on by calling TrandateMessage, that looks for sequences of key
pressing and key up messages, and does the dirty work of debouncing the keyboard, handling
repeat sequences, etc. At last, we dispatch our message to the procedure indicated in the win-
dow class.

And that isit. We loop and loop and loop, until we eventually get a\VWM QUI T, that provokes
that GetM essage returns FAL SE, and the while loop is finished.1%®
Wow. Finished?

We have hardly started. What is interesting now, is that we have a skeleton to play with. We
will show in the next sections how we add things like a dialog box, etc.

Summary: Windows programming looks intimidating at first. But it is just the looks. Before
we go on, however, as promised, let’s look in more details to how flags are set/unset in C.
Flags are integers where each bit is assigned a predefined meaning. Usually with a pre-
processor define statement, powers of two are assigned a symbolic meaning like in the case of
CS_DBLCLKS above. In a 32-bit integer we can stuff 32 of those. We test those flags with:

108. Never forget this: local variables do NOT retain their value from one call of the function to the next
onel

216 Windows programming with lcc-win32

if (flag & CONSTANT) {
}

we set them with:

flag | = CONSTANT;

we unset them with:

flag &= ~CONSTANT,;

Thislast statement needs further explanations. We use the AND operator with the complement
of the constant. Since those constants have only one bit set, the complement of the constant is
an integer with al the bits turned into ones except the bit that we want to unset. We AND that
with our flag integer: since all bits but the one we want to set to zero are one, we effectively
turn off that bit only, leaving all others untouched.

Customizing the wizard generated sample code 217

2.8 Customizing the wizard generated sample code

The generator can be configured for different types of applications. Use first the simple win-
dow application. This setup produces a standard WinMain procedure, like this:

You can add code for theinitialization of your application in the InitApplication function. The
standard version just registers the class of the main window.

In the next paragraphs we will try to see how we modify this skeleton to add different items
you may want to add to your application.

2.8.1 Making a new menu or modifying the given menu.

Add your item with the resource editor, and give it an identifier, normally written in uppercase
like: | DVENU_ASK PARAMETERS, or similar. This is surely not the text the user will see,
but a symbolic name for an integer constant, that windows will send to the program when the
user presses this option. We can then, continue our beloved programming traditions.

Once that is done, and your menu displays correctly, go to the wizard code in theMainwWnd-

Proc function.® There, you will see a big switch with different code to handle the events we
are interested in. The menu sends a command event, called WM _COMVAND. In there you see
that this event will be handled by the HANDLE_COVMAND macro. It is just a shorthand to
break down the 64 bits that windows sends us in smaller pieces, disassembling the message
infformation into its congtituent parts. This macro ends caling the
Mai nWhdPr oc_OnComrand function that is a bit higher in the text. There, you will find a
switch with the comment:

[/---TODO--- |Insert new commands here.

WEell, do exactly that, and add (as a new case in the switch) your new identifier
| DVENU_ASK PARANMETERS. There you can do whatever you want to do when that menu
itemis clicked.

2.8.2 Adding a dialog box.

Draw the dialog box with controls and all that in the resource editor, and then open it as a
result of a menu option, for instance. You would use Di al ogBox, that handy primitive

explained in detail in the docs to fire up your dialog.° You have to write the procedure to

handle the dialog box’s messages first. You can start the dialog box in a non-modal mode with
the Cr eat eDi al og API.

To make thisa bit more explicit, let’s imagine you have defined your dialog under the name of

| DD_ASK_PARANS in the resource editor.'™! You add a menu item corresponding to the dia-
log in the menu editor, one that will return | DM_PARAMETERS, say. You add then in the func-
tion Mai nWhdPr oc_OnConmrand code like this:

case | DM PARAMETERS:
r = Di al ogBox(hl nst,

109. Goto “help”, then click in Win32 API, get to the index and write the name of that function.
110. Again, thisisthe #defined identifier of the dialog, not the dialog'stitle!

111. The registry has been criticized because it represents a single point of failure for the whole system.
That is obviously true, but it provides as a redeeming value, a standard way of storing and retrieving
configuration data and options. It allows your application to use the same interface for storing this data,
instead of having to devise a schema of files for each application. The software is greatly simplified by this,
even if itisrisky, asagenera principle.

218 Windows programming with lcc-win32

MAKEI NTRESOURCE(| DD_ASK_PARAMNS) ,
ghwndMai n, Par ansDl gProc) ;
br eak;

You give to that API the instance handle of the application, the numerical ID of the dialog
enclosed in the MAKEI NTRESOURCE macro, the handle of the parent window, and the name of
the procedure that handles the messages for the dialog. You will need the prototype of the
function in some header file to be able to use the name of it, soitisagood ideato writea“dlg-
boxprotos.h” header file that isincluded in every source file of the application.

If you want to pass a parameter to the dialog box procedure you can use DialogBoxParam.

2.8.3 Drawing the window

You have to answer to the WM_PAI NT message. See the documentation for a longer descrip-
tion. This will provoke drawing when the window needs repainting only. You can force a
redraw if you usethel nval i dat eRect API.

You add code like this:

case WM _PAI NT:

PAI NTSTRUCT ps;

HDC hDC = Begi nPai nt (hwnd, &ps) ;

/1 Code for painting using the HDC goes here

EndPai nt (hwnd, &ps) ;

br eak;
You use the APl BeginPaint to inform windows that you are going to update the window. Win-
dows gives you information about the invalid rectangles of the window in the PAI NTSTRUCT
area. You pass to windows the address of such an area, and the handle to your window. The
result of Begi nPai nt is an HDC, a Handle to a Device Context, that is required by most
drawing primitives like Text Qut , Li neTo, etc. When you are finished, you call EndPaint,
to inform windows that this window is updated.

To draw text you use Text Qut, or Dr awText . Note that under windows there is no auto-
matic scrolling. You have to program that yourself or use a multi-line edit control.

2.8.4 Initializing or cleaning up

You can write your initialization code when handling the WM_CREATE message. This mes-
sage is sent only once, when the window is created. To cleanup, you can rely on the
VWM CLOSE message, or better, the WM DESTROY message. Those will be sent when the
window is closed/destroyed. Note that you are not forced to close the window when you
receive the WM CL OSE message. Even if this is not recommended, you can handle this mes-
sage and avoid passing it to the Def WAdPr oc procedure. In this case the window is not
destroyed. Another thing is when you receive the WM DESTROY message. There, you are just
being informed that your window is going to be destroyed anyway.

2.8.5 Getting mouse input.

You can handle the WM_LBUTTONDOW, or WM RBUTTONDOWN messages. To follow the
mouse you handle the WM MOUSEMOVE messages. In the information passed with those mes-
sage parameters you have the exact position of the mouse in pixel coordinates.

Message Meaning

Customizing the wizard generated sample code 219

VW _LBUTTONBDBLCLK

Double click in left mouse button

WV_LBUTTONDOWN
VWM_LBUTTONUP

L eft mouse button click. For the middle and right button the
messages used use the letters ‘M’ and ‘R’ instead of ‘L’ here.

WM_MOUSEWHEEL

The mouse whed has been used.

W MOUSENMOVE

Thisis posted to awindow when the cursor moves. If the mouse
is not captured, the message is posted to the window that con-
tainsthe cursor. Otherwise, the message is posted to the window
that has captured the mouse.

W MOUSEHOVER

Thisis posted to awindow when the cursor hovers over the cli-
ent area of the window for the period of time specified in aprior
call to TrackMouseEvent.

VW_MOUSEL EAVE

Thisis posted to awindow when the cursor leaves the client
area of the window specified in aprior call to TrackMou-
seEvent.

2.8.6 Getting keyboard input

Handle the WM_KEYDOWN message or the WM_CHAR message. Windows allows for a fine-
grained control of the keyboard, with specific messages when akey is pressed, released, repeat
counts, and all the keyboard has to offer. Hereis a small description of each:

Message Meaning
WM_ACTI VATE Window is being either activated or desactivated.
WM_CHAR The user has typed a character. Here you receive characters like ‘'m’
for instance.
WV_KEYDOWN A key has been pressed. Here you can use keys like the arrows of the
keyboard, Del Insr, etc.
WM KEYUP A key has been released

2.8.7 Handling moving/resizing

You get WM_MOVE when your window has been moved, VWM SI ZE when your window has
been resized. In the parameters of those messages you find the new positions or new size of
your window. You may want to handle those events when you have child windows that you
should move with your main window, or other measures to take, depending on your applica-

tion.
Message Meaning
VW MOVE Sent after awindow has been moved.
VW_MOVI NG Sent to a window when the user ismoving it. By pro-
cessing this message, you can monitor the position of
the drag rectangle and, if needed, change its position.

220 Windows programming with lcc-win32

Message Meaning
VWM _SI ZE Sent after awindow has been resized.
VWM _SI ZI NG Sent to awindow that the user isresizing. By process-

ing this message, an application can monitor the size
and position of the drag rectangle and, if needed,
change its size or position.

VWM W NDOWPOSCHANGED Sent to a window whose size, position, or place in the
Z order has changed as aresult of acall to the SetWin-
dowPos function or another window-management

function
VWM W NDOWPOSCHANG NG | Same as above message but sent before the changes.
VWM _GETM NVAXI NFO Sent to a window when the size or position of the win-

dow is about to change. You can use this message to
override the window's default maximized size and
position, or its default minimum or maximum tracking
size.

VW _ENTERSI ZEMOVE Sent one time to awindow after it enters the moving or
sizing modal loop. The window enters the moving or
sizing modal loop when the user clicks the window's
title bar or sizing border, or when the window passes
the WM_SY SCOMMAND message to the DefWin-
dowProc function and the wParam parameter of the
message specifiesthe SC_MOVE or SC_SIZE value.
The operation is complete when DefWindowProc
returns.

VW _EXI TSI ZEMOVE Sent one time to awindow, after it has exited the mov-
ing or sizing modal loop.

2.9 Window controls

A “control” is a technical name for a child window that has a characteristic appearence and
fillsafunctionality for user input. A list box for instance is a child window that has a rectangu-
lar appearence with lines and scrollbars that displays alist of items.

When the system creates a dialog box, it creates all its child windows according to the specifi-
cationsit finds in the executable file. The dialog box procedure is the parent window of all the
controls that appear in it.

When an event happens that possible needs that the control notifies the application about it,
the control sends a notification message. For instance, when the user types a character into an
edit field, the edit control sends a notification to the parent window specifying the character
received.

Notifications can be sent in the form of a WM_COMMAND message, or in the form of a
WM_NOTIFY message.

Window controls 221

The following controls send aWM_COMMAND message to notify the parent window of an
event:

Control Notifications

Button Notifies the parent window when it has been selected. See the doc-
umentation for the BN_XXX messages

Combobox These controls are a combination of alist box and an edit field, so
the notifications it sends are a combination of both. See the docu-
mentation for CBN_XXX messages.

Edit These controls are used for text input. They notify the parent when
acharacter has been received or in general when the text has been
modified. See the EN_XXX messages

Listbox These controls display avariable length list. They notify the parent
window when an item has been selected, or clicked.

Scrollbar These controls | et the user choose the amount of scrolling that
should be done for the information being displayed. They notify
the parent window when they are used.

Static These controls do not send any notifications (hence they are called
“static”). They are text strings, or lines, rectangles.

Rich edit controls They are used to display text with more than a single font or color.
They have along list of notifications, you can even specify that
you want to be notified when the user clicksin an URL in the text.
This control uses both the WM_COMMAND interface and the
WM_NOTIFY interface.

The interface using the WM_COMMAND message was described above (See page 225).
Another interface used by many controlsisthe WM_NOTIFY interface. This message has the
following format:

| Result = SendMessage(/1 returns LRESULT
(HWND) hwhdControl , /1 handl e to parent w ndow
(Ul NT) WM _NOTI FY, /'l nmessage I D
(WPARAM) wPar am /1 (WPARAM (int) idCtrl;

(LPARAM | Param /1 (LPARAM (LPNMHDR) pnnh;

)
This code is executed by the control when it sends a message to the parent window. The
important parameters of this message are:

1 idCtrl Thisisanumerical constant (an integer) that is used asthe ID of this control.

2 pnmh Thisisapointer to a structure that contains further information about the message.
It points to a NMHDR structure that contains the following fields:
typedef struct tagNVHDR {
HWD hwndFr om
U NT i dFrom
U NT code;
} NVHDR;

222 Windows programming with lcc-win32

3 This struture can be followed by more datain some of the notifications that a control can
send. In that case this fixed fields will be membbers of alarger structure and they will be
always at the same position.

The controls that use this interface were introduced into windows later (in 1995) than the first
ones, that were present in all the earlier versions of windows. They are the following:

Control Notifications

Animation control | An animation control isawindow that displays an Audio-Video
Interleaved (AV1) clip. An AVI clip isaseries of bitmap frameslikea
movie. Animation controls can only display AV1 clips that do not
contain audio. Thiscontrol is currently not supported by the resource
editor.

Date and time They allow the user to input a date or atime. The notifications use
picker controls the prefix DTN_XXX.

Header controls A header control isawindow that is usually positioned above col-
umns of text or numbers. It contains atitle for each column, and it
can be divided into parts. The user can drag the dividers that separate
the parts to set the width of each column. The notifications use the
prefix HDN_XXX. Not currently supported in the resource editor.

Hot key controls | A hot key control isawindow that enables the user to enter a combi-
nation of keystrokes to be used as a hot key. A hot key isakey com-
bination that the user can press to perform an action quickly. For
example, auser can create a hot key that activates a given window
and brings it to the top of the z-order. The hot key control displays
the user's choices and ensures that the user selects avalid key combi-
nation. Not supported in the resource editor.

IP address control | Allowsto input an IP address. Not currently supported in the
resource editor.

Month calendar Allows the user to choose a month or a calendar date. The notifica-
tions use the prefix MCN_XXX.

Pager control A pager control isawindow container that is used with a window
that does not have enough display areato show all of its content. The
pager control allows the user to scroll to the area of the window that
isnot currently in view. Not supported in the editor.

Progress bar. A progress bar isawindow that an application can useto indicate the
progress of alengthy operation. It consists of arectangle that is grad-
ualy filled with the system highlight color as an operation
progresses. This control sends no notifications but receives messages
that use the PBM_XXX prefix.

Window controls 223

Control Notifications

Tab controls A tab control isanaogousto the dividersin a notebook or the labels
in afile cabinet. By using atab control, an application can define
multiple pages for the same area of awindow or dialog box. Each
page consists of a certain type of information or a group of controls
that the application displays when the user selects the corresponding
tab. The notifications specific to this control use the TCN_XXX pre-
fix.

Trackbar control A trackbar isawindow that contains a slider and optional tick marks.
When the user moves the dlider, using either the mouse or the direc-
tion keys, the trackbar sends notification messages to indicate the
change. The notifications used are only the NM_CUSTOMDRAW
and the NM_REAL EASEDCAPTURE messages.

Treeviews A tree-view control isawindow that displays a hierarchical list of
items, such as the headings in a document, the entriesin an index, or
the files and directories on a disk. Each item consists of alabel and
an optional bitmapped image, and each item can have alist of sub-
items associated with it. By clicking an item, the user can expand or
collapse the associated list of subitems. The notifications sent use the
TVN_XXX prefix

Up-down control | An up-down control isa pair of arrow buttons that the user can click
to increment or decrement avalue, such asascroll position or anum-
ber displayed in a companion control. The value associated with an
up-down control is called its current position. An up-down control is
most often used with a companion control, which is called a buddy
window.

The documentation for all this controls is very detailed and it would be impossible to repro-

duce here. 12 Note that many of the controls not directly supported in the resource editor can
be created “by hand” by just calling the CreateWindow procedure. Most of them are not spe-
cialy useful in the context of adialog box.

To handle the messages with the WM_NOTIFY interface you should add code to handle the
message of interest in the window procedure. Suppose, for instance, that you have atree con-
trol and you want to be notified when the user has clicked on an an item with the right mouse
button.

case WM _NOTI FY:

LPNVHDR nmhdr = (LPNVHDR) | Par am

swi tch (nnmhdr->code) {
case NM RCLI CK:
TV_H TTESTI NFO t est | nf o;
/I The structure testinfo will be filled with the coordinates
/I of the item at this particular point.
nmenset (&t est I nfo, 0, si zeof (TV_H TTESTI NFO)) ;
/1l Get the cursor coordintes
Get Cur sor Pos(&t est | nfo. pt);
ptl = testlnfo.pt;
/I Translate the coordinates into coordinates of the tree window
MapW ndowPoi nt s(HAND_DESKTOP, hwndTr ee, &t est I nfo. pt, 1) ;

112.See “ The windows user interface” in the online documentation of lcc-win32.

224 Windows programming with lcc-win32

/I Now ask the tree view control if there is an item at this position
hti = TreeVi ew Hit Test (hwndTree, & estlnfo);
/1 1f nothing is found stop.
if (hti == (HTREEI TEM 0) break;
/I There is something. Show the context menu using the information returned by
/Il the control in the item handle hti.
hnewMenu = Creat eCont ext Menu(hti);
/1 If the creation of the menu did not work stop.
i f (hnewMenu == (HMENU)0) break;
menul t em = TrackPopupMenu(hnewivenu,
TPM_RI GHTBUTTON| TPM_TOPALI GN| TPM_RETURNCND,
ptl.x,ptl.y,
0, hwnd, NULL) ;
Dest r oyMenu(hnewivenu) ;
/I Here we would do some action indicated by the menultem code
br eak;

}

This code begins with a cast of the IParam message parameter into a pointer to a NMHDR
structure. Then it examines the passed notification code. If it is a right click it fills a
TV_HITTESTINFO structure with the coordinates of the mouse, and translates those into the
coordinates of the tree control that this code supposes in a global variable “hwndTree”. The
control should return either NULL, meaning there is no item at that position, or the handle of
an item that was right-clicked with the mouse. If there was an item, a context menu is created,
shown, and the result is an integer indicating which menu item was chosen, if any.

Thisisone of the many ways you can interact with the window system. Each control will have
its own interface since they are all different and perform quite different actions.

You can see the above code in action when you click with the right button in an item of the
project workspace window in Wedit.

2.9.1 Using controls without a dialog box

You use the Cr eat eW ndow API with a predefined window class. You pass it as the parent-
window parameter the handle of the window where you want to put the control on. For
instance if you want to create somewhere in your window an edit field, you would write:

hEdi t Whd = CreateW ndow("EDI T, // wi ndow class is “edit”
NULL,
WS_CHI LD | W5_VI SI BLE |
ES_MULTI LI NE |
W5_VSCROLL | W5 _HSCROLL |
ES_AUTOHSCROLL | ES_AUTOVSCROLL,
0,
0,
(Rect.right - Rect.left), //Assume a rectangle structure
(Rect.bottom - Rect.top), // that contains the coordinates
hPar ent Whd,
(HVENU) 14376, // Wndow identifier
hinst, // Application instance
NULL) ;

The controls “edit”, “listbox” and others are already predefined when windows starts. You can
use them at any time. Some others however are NOT like that, and you need to call the AP
I ni t CommonCont r ol sEx() before you can use them.

A more complex example: a "clone" of spy.exe 225

2.10 A more complex example: a"clone" of spy.exe

What can we do with the empty window that Wedit generates?

Let's do a more difficult problem: We want to find out all the windows that are opened at a
given time in the system. We will display those windows in atree control, since the child win-
dows give naturally a tree structure. When the user clicks in a window label, the program
should display some information about the window in the status bar.

We generate a skeleton with Wedit, as described above. We create a new project, and generate
asimple, single window application.

2.10.1 Creating the child windows

OK. Now we come back to the task at hand. The first thing to do is to create the tree control
window. A good place to do these kinds of window creationsis to use the opportunity the sys-
tem gives to us, when it sends the WM _CREATE message to the main window. We go to the
procedure for the main window, called Mai nWhdPr oc, and we add the WM _CREATE case to
the switch of messages:

LRESULT CALLBACK Mai nWhdProc(HWND hwnd, Ul NT nsg, WPARAM wPar am LPARAM
| Par am

{
stati c HAND hwndTr eg;

switch (msg) {

case WM CREATE:
hwndTree = CreateTree(hwnd, | DTREEW NDOW ;
br eak;

Thisis "top down" design. We hide the details of the tree window creation in a function that
returns the window handle of the tree control. We save that handle in a static variable. We

declareit as static, so that we can retrieve its value at any call of Mai n\widPr oc .13
Our Cr eat eTr ee function, looks like this:
static HWND _stdcall CreateTree(HAND hWhd, i nt |D)

{
return
Cr eat eW ndowEx(W5_EX_CLI ENTEDGE,
WC TREEVIEW"",
W5 _VI SI BLE| W_CHI LD] W5_BORDER| TVS_HASLI NES|
TVS_HASBUTTONS| TVS_DI SABLEDRAGDRCP,
0,0,0,0,
hwhd, (HVENU) | D, hl nst, NULL) ;
}

This function receives a handle to the parent window, and the numeric ID that the tree control
should have. We call the window creation procedure with a series of parameters that are well
described in the documentation. We use the value of the hl nst global as the instance, since
the code generated by Wedit conveniently leaves that variable as a program global for us to
use.

Note that we give the initial dimensions of the control as zero width and zero height. Thisis
not so catastrophic as it seems, since we are relying in the fact that after the creation message,
the main window procedure will receive a\WWM_SI ZE message, and we will handle the sizing

113. In page 218. Published by St Martin's Press. 1990. ISBN 0-312-06179-X (pbk)

226 Windows programming with lcc-win32

of the tree control there. This has the advantage that it will work when the user resizes the
main window too.

2.10.2 Moving and resizing the child windows

We add code to the WM_SI ZE message that Wedit already had there to handle the resizing of
the status bar at the bottom of the window.

LRESULT CALLBACK Mai nwhdProc(HWAND hwnd, Ul NT msg, WPARAM wPar am LPARAM
| Par am
{

stati ¢ HWND hwndTr eg;

RECT rc, rcStatus;

switch (msg) {
case WM CREATE:
hwndTree = CreateTree(hwnd, | DTREEW NDOW ;
br eak;
case WM Sl ZE:
SendMessage(hwhdSt at usbar, nsg, wPar am | Par am ;
InitializeStatusBar(hWwdSt atusbar, 1);
Get d i ent Rect (hwnd, &rc);
Get W ndowRect (hWhdSt at usbar, & cSt at us) ;

rc.bottom-= rcStatus. bottomrcStatus.top;
MoveW ndow hwndTree, 0,0, rc.right,rc. bottom1);
br eak;

We ask windows the current size of the main window with Get Cl i ent Rect . This proce-
dure will fill the rectangle passed to it with the width and height of the client area, i.e. not con-
sidering the borders, title, menu, or other parts of the window. It will give usjust the size of the
drawing surface.

We have a status bar at the bottom, and the area of the status bar must be subtracted from the
total area. We query thistime using the Get W ndowRect function, since we areinterested in
the whole surface of the status bar window, not only in the size of its drawing surface. We sub-
tract the height of the window from the height that should have the tree control, and then we
move it to the correct position, i.e. filling the whole drawing surface of the window. And we
are done with drawing.

2.10.3 Starting the scanning.

Now we pass to the actual task of our program. We want to fill the tree control with a descrip-
tion of all the windows in the system. A convenient way to do this is to change the "New"
menu item into "Scan", and start scanning for windows when the user chooses this item.

To do this, we add an entry into the Mai nWhdPr oc_OnConmand function:

voi d Mai nWwhdPr oc_OnComand(HVWAD hwnd,
int id, HWND hwndCt 1, Ul NT codeNoti fy)
{
switch(id) {
case | DM_NEW
Bui | dTr ee(hwnd) ;
br eak;
case |IDM EXIT:
Post Message(hwnd, WM CLCSE, 0, 0) ;
br eak;

A more complex example: a "clone" of spy.exe 227

Simpleisn't it? We just call "BuildTree" and we are done.

2.10.4 Building the window tree.

We start with the desktop window, we add it to the tree, and then we call a procedure that will
enumerate all child windows of a given window. We have two directions to follow: the child
windows of a given window, and the sibling windows of a given window. Thisis true for the
desktop window too.

Let'slook at the code of "Bui | dTr ee":

int BuildTree(HAND parent)

{
HWD Start = Get Deskt opW ndow() ;

HWD hTree = Get Dl gl t en(parent, | DTREEW NDOW ;
TV_I NSERTSTRUCT TreeCtrlltem
HTREEI TEM hNewNode;

menset (&TreeCr ItemO sizeof (TreeCtrlltem);
TreeCtrlltem hParent = TVI _ROOT;

TreeCtrlltem hlnsert After = TVl _LAST,;
TreeCtrlltemitemmask = TVIF_TEXT | TVI F_PARAM
TreeCtrlltemitem pszText = "Desktop";

hNewNode = TreeView Insertltem hTree, &TreeCrliten);
Start = Get Wndow(Start, GNCH LD);

Scan(hTr ee, hNewNode, Start);

return 1,

}

We start at the start, and we ask windows to give us the window handle of the desktop window.
We will need the tree window handle too, so we use "Get DI gl t ent' with the parent window
of the tree control, and it's ID. Thisworks, even if the parent window is a normal window, and
not a dialog window.

We go on by filling our TV_| NSERTSTRUCT with the right values. Thisis a common inter-
face for many window functions. Instead of passing n parameters, we just fill a structure and
pass a pointer to it to the system. Of coursg, it isaways agood ideato clean the memory space
with zeroes before using it, so we zero it with the "menset " function. Then we fill the fields
we need. We say that thisitem is the root item, that the insertion should happen after the last
item, that the item will contain the text "Desktop”, and that we want to reserve place for a
pointer in theitem itself (TVI F_PARAM). Having done that, we use the macro for inserting an
item into the tree.

The root item created, we should then scan the siblings and child windows of the desktop.
Since the desktop is the root of al windows it has no siblings, so we start at itsfirst child. The
Get W ndowfunction, givesus ahandleto it.

2.10.5 Scanning the window tree

We call our "Scan" function with the handle of the tree control, the handle to the just inserted
item, and the window handle of the first child that we just obtained.

The "Scan" function looks like this:

voi d Scan(HWND hTr ee, HTREEI TEM hTr eePar ent , HWND St art)
{

HWD hwnd = Start, hwndl;

TV_I NSERTSTRUCT TreeCtrl|ltem

HTREEI TEM ht i NewNode;

char buf Txt [256], buf Cl assNane[256], Qut put [1024] ;

228 Windows programming with lcc-win32

while (hwnd !'= NULL) {
SendMessage(hwnd, WM GETTEXT, 250, (LPARAM) buf Txt);
Get d assNanme(hwnd, buf d assNane, 250) ;
wsprintf(Qutput,"\"%\" %", buf Txt, buf Cl assNan®) ;
menset (&TreeCtrlltem 0, si zeof (TreeCtrllten));
TreeCtrlltem hParent = hTreeParent;
TreeCtrlltem hlnsert After = TVl _LAST;
TreeCtrlltemitemmask = TVIF_TEXT | TVI F_PARAM
TreeCtrlltemitem pszText = (LPSTR) CQutput;
TreeCtrlltemitem| Param = (LPARAM hwnd;
ht i NewNode =
TreeView Insertltem (hTree, &TreeCirlltem;
i f((hwndl=Get W ndow(hwnd, GW CHI LD)) ! =NULL)
Scan(hTree, hti NewNode, hwnd1l) ;
hwnd=Get W ndow(hwnd, GW HWNDNEXT) ;
}
}

We loop through all sibling windows, calling ourselves recursively with the child windows.
In our loop we do:

We get the text of the window, to show it in our tree. We do this by sending the WM_GETTEXT
message to the window.

We get the class name of the window.
We format the text (enclosed in quotes) and the class name in a buffer.

We start filling the TV_I NSERTSTRUCT. These steps are very similar to what we did for the
desktop window.

After inserting our node in the tree, we ask if this window has child windows. If it has, we call
Scan recursively with the new node and the new child window.

Then we ask if this window has sibling windows. If it has, the main loop will go on since
GetWindow will give us a non-null window handle. If it hasn't we are done and we exit.

2.10.6 Review

Let'slook at our "BuildTree" function again and ask us.
How could thisfail?

We notice immediately several things.

We aways add items to the tree at the end, but we never cleanup the tree control. This means
that after afew times the user has clicked in the menu, we will have severa times all the win-
dows of the system in our tree. All nodes should be deleted when we start.

The tree control will redraw itself several times when we add items. This is unnecessary and
produces a disturbing blinking in the display. We should hold the window without any redraw-
ing until all changes are done and then redraw once at the end.

We modify the "BuildTree" procedure as follows:

int BuildTree(HAND parent)
{
HW\D St art CGet Deskt opW ndow() ;
HWD hTree Get DI gl t enm(par ent , | DTREEW NDOW ;
TV_I NSERTSTRUCT TreeCtrlItem
HTREEI TEM hNewNode;

SendMessage(hTr ee, WM_SETREDRAW 0, 0) ;

A more complex example: a "clone" of spy.exe

TreeView Del eteAl I ltens(hTree);

menset (&TreeCtrlltem 0, si zeof (TreeCtrllten));
TreeCtrlltem hParent = TVI_ROOT;

TreeCtrlltem hlnsert After = TVl _LAST,;
TreeCtrlltemitemmask = TVIF_TEXT | TVI F_PARAM
TreeCtrlltemitem pszText = "Desktop";

hNewNode = TreeView Insertltem hTree, &TreeCrliteny;

Start

= Get Wndow Start, GW CHI LD);

Scan(hTr ee, hNewNode, Start);

TreeVi ew_Expand(hTr ee, hNewNode, TVE_EXPAND) ;
SendMessage(hTr ee, WM SETREDRAW 1, 0) ;

return 1,

}

229

We enclose all our drawing to the control within two calls to the SendMessage function, that
tell essentially the tree control not to redraw anything. The third parameter (i.e. the wParam of
the message) is a Boolean flag that indicates whether redrawing should be on or off. This
solves the second problem.

After setting the redraw flag to off, we send a command to the control to erase all itemsit may
have. This solves our first problem.

Hereisthe output of the program after we press the " Scan™ menu item.

B windowtree =13
File Help

+

Desktop -

BaseBar

koaltips_class3z

BaseBar

koaltips_class3z

BaseBar

BaseBar e
tooltips_class3z

"Awance Sound Effect Control Panel" alcEaxCplClass

" tooltips_class3z

tooltips_class3z

"MetDDE agent” NDDEAgNE

" tooltips_class3z

"windowtres" windowtreeWwndClass

" smallTextPopup

“wedit-windowtree - [di\downloadsiwindowtreewindowtree.c]" cdMDIFrame
"Tirmer" ATL:STATIC

"-tutorial. doc - Microsoft Word" Opusfpp

"Font" OFficeToolkip

"Edit" MsoZommandEarPopup

+- "IrfanYiew3Z2 - <Clipboard:> (485 x 508 x SBPPY" Irfaniiew3z
+- "How To Select & Window" #32770
+- "How To Select a Rectangle” #32770

"Screen Capture” WinCap ﬂ

LIS | gy oy I R ... Iy

A lot of code is necessary to make this work, but thankfully it is not our code but window's.
The window resizes, redraws, etc., without any code from us.

230 Windows programming with lcc-win32

2.10.7 Filling the status bar

Our task consisted in drawing the tree, but also of displaying some useful information about a
window in the status bar when the user clicks on atree item.

First, we have to figure out how we can get notified when the user clicksin an item.

The tree control (as many other controls) sends notifications through its WM_NOTI FY mes-
sage. We add a snippet of code to our MainWndProc procedure:

case WM CREATE:
hwndTree = CreateTree(hwnd, | DTREEW NDOW ;
br eak;

case WM _NOTI FY:
return Handl eWmot i f y(hwnd, wPar am | Par anj ;

The function HandleWmNotify looks as follows:

LRESULT Handl eWmNot i f y(HWND hwnd, WPARAM wPar am LPARAM | Par am

{
NVHDR * nmhdr ;

TV_HI TTESTI NFO t est | nf o;

HWAD hTree = Get D gltem hwnd, | DTREEW NDOW ;
HTREEI TEM ht i ;

HWD hwndSt art ;

nmhdr = (NVHDR *) 1| Par am
swi tch (nnmhdr->code) {
case NM CLI CK:
nmenset (&t est I nfo, 0, si zeof (TV_H TTESTI NFO)) ;
Get Cur sor Pos(&t est I nfo. pt);
MapW ndowPoi nt s(HWND_DESKTOP, hTr ee, & est I nfo. pt, 1) ;
hti = TreeView HitTest(hTree, & estlnfo);
if (hti == (HTREEI TEM 0) break;
hwndStart = Get Treeltem nfo(hTree, hti);
Set Text | nSt at usBar (hwnd, hwndSt art) ;
br eak;

}
return Def W ndowPr oc(hwnd, WM _NOTI FY, wPar am | Par am ;

}

We just handle the NM_CLI CK special case of all the possible notifications that this very com-
plex control can send. We use the NMHDR part of the message information that is passed to us
with this message in the IParam message parameter.

Our purpose hereisto first know if the user has clicked in an item, or somewhere in the back-
ground of the tree control. We should only answer when there is actually an item under the
coordinates where the user has clicked. The algorithm then, islike this:

Get the mouse position. Since windows has just sent a click message, the speed of current
machinesislargely enough to be sure that the mouse hasn't moved at all between the time that
windows sent the message and the time we process it. Besides, when the user is clicking it is
surely not moving the mouse at super-sonic speeds.

Map the coordinates we received into the coordinates of the tree window.
Ask the tree control if there is an item under this coordinates.
If there is none we stop

Now, we have atree item. We need to know which window is associated with thisitem, so that
we can query the window for more information. Since we have left in each item the window
handleit is displaying, we retrieve thisinformation. We hide the details of how we do thisin a
subroutine "CGet Tr eel t eml nf 0", that returns us the window handle.

A more complex example: a "clone" of spy.exe 231

Using that window handle we call another function that will display the info in the status bar.

We pass all messages to the default window procedure. this is a non-intrusive approach. The
tree control could use our notifications for something. We just need to do an action when this
event happens, but we want to disturb as little as possible the whole environment.

2.10.8 Auxiliary procedures

To retrieve our window handle from atree item, we do the following:

static HWND Get Treelt em nf o(HWND hwndTr ee, HTREEI TEM ht i)

{
TV ITEM tvi;

nmenset (&t vi, 0, si zeof (TV_I TEM)) ;
tvi.mask = TVI F_PARAM
tvi.hltem= hti;

TreeVi ew _Getltem hwndTree, & vi);
return (HWND) tvi.l Param

}

Asyou can see, it isjust amatter of filling a structure and querying the control for the item. we
are interested only in the PARAM part of the item.

More complicated is the procedure for querying the window for information. Hereisa simple
approach:

voi d Set Text | nSt at usBar (HWND hPar ent , HAAND hwnd)

{
RECT rc;
HANDLE pi d;
char info[4096], *pProcessNane;
Get W ndowRect (hwnd, &rc);
CGet W ndowThr eadPr ocessl d(hwnd, &pi d) ;
pProcessNane = Print ProcessNaneAndl D((ULONG) pi d) ;
wsprintf(info,
"Handl e: Ox%& %, left %l, top %, right %l, bottom %l,
hei ght %, width %, Process: %",
hwnd,
| sSW ndowVi si bl e(hwnd) ? "Visible" : "Hi dden",
rc.left,rc.top,rc.right,rc.bottom
rc.bottomrec.top,
rc.right-rc.left,
pProcessNane) ;
Updat eSt at usBar (i nfo, 0, 0);
}

The algorithm hereis asfollows:

Query the window rectangle (in screen coordinates).

We get the process I D associated with this window

We call a subroutine for putting the name of the process executable file given its process ID.
We format everything into a buffer

We call UpdateStatusBar, generated by wedit, with this character string we have built.

The procedure for finding the executable name beginning with a process ID is quite advanced,
and here we just giveit like that.

static char * PrintProcessNaneAndl D{ DWORD processl D)
{

232 Windows programming with lcc-win32

static char szProcessName[MAX PATH] ;
HMODULE hMbd;
DWORD cbNeeded;
HANDLE hProcess = OpenProcess(PROCESS QUERY_ | NFORVATI ON |
PROCESS_VM READ,
FALSE, processiD);
szProcessNane[0] = O;
if (hProcess) {
i f (EnunProcessModul es(hProcess, &hMd, sizeof (hMod),
&cbNeeded)) {
Get Modul eBaseNane(hProcess, hMd, szProcessNane,
si zeof (szProcessNane));

}
C oseHandl e(hProcess);

}

return szProcessNane;

}

Note that you should add the library PsapPI . LI B to the linker command line. You should do
thisin the linker tab in the configuration of wedit:

Workspace] Macroz] Language] Itilities] System info] Help
General] Compiler Linker l Source control] Froject paths] Debugger

Oukput file name

||:|:"'.u:h:uwnlu:uau:lsHwindnwtree\Iu:u:"-.winu:lu:uwtree.e:-:e

Additional files to be included in the link

|p$api.|i|:|

A more complex example: a "clone" of spy.exe 233

And now we are done. Each time you click in an item window, the program will display the
associated information in the status bar:

B windowtree M=
File Help
Desktop -]
+- " BaseBar

" toolkips_class3z
+- " BaseBar

" toolkips_class3z

"' BaseBar

"' BaseBar —

koalkips_class3z
+- "fvance Sound Effeck Contral Panel" AlcEaxCplClass
" toolkips_class3z
koalkips_class3z
"MetDDE fgent” MDDEAQnE
" toolkips_class3z
+- "windowtree" windowtreewndClass
" toolkips_class3z
+- "Project: windowtree" TreeviewClass
" emallTextPopup
= "wedit-windowtree - [d:downloads)windowtregiwindowtree, c]" clMDIFrame
+- " MDIClient
" Margin
+- " WeditOukput
+- "C-kukorial doc - Microsoft Wwiord" Opusapp
"Skop Current Jump" QfficeToolkip
"Edit" MsoCommandBarPopup
"Edit Picture” MsoZommandBar

+ " imnAnn j

Handle: 0x34013a Visible, left 396, kop &, right 1127, bokttom 928, height 920, width 731, Process: wedit, exe

Summary: There are many things that could be improved in this small program. For instance,
it could be useful to have aright mouse menu, or a dialog box with much more information
etc. Thisisjust a blueprint to get you started however.

The whole code for this program is in the appendix 4.

234 Windows programming with lcc-win32

2.11 Numerical calculations in C.

WEell, we have a beautiful window with nothing in it. Blank. It would look better if we would
draw something initisn’t it? By the way, thisis an introduction to C, not to windows...

What can we draw?

Let's draw a galaxy. In his wonderful book “Computers Pattern Chaos and Beauty”, Clifford
A. Pickover' writes:

We will approximate a galaxy viewed from above with logarithmic spirals. They are eas-
ily programmable in a computer, representing their stars with just dots. One armis 180
degrees out of phase with the other. To obtain a picture of a galactic distribution of dots,
simply plot dots at (r,&) according to:

r= gl ftan ¢

ry= dratend

whererl and r2 correspond to the intertwined spiral arms. The curvature of the galactic
arms is controlled by gwhich should be about 0.2 radians for realistic results. In addi-
tion, 0 < &< 1000 radians. For greater realism, a small amount of random jitter may be
added to the final points.

He is kind enough to provide us with a formal description of the program in some computer
language similar to BASIC. Hereitis:

Algorithm: How to produce a galaxy.

Notes: The program produces a double logarithmic spiral. The purpose of the random number
generator isto add jitter to the distribution of stars.

Variables:
in = curvature of galactic arm (try in = 2)
maxit = maximum iteration number
scale = radial multiplicative scale factor
cut = radial cutoff
f =final cutoff

Code:
loopl: Doi =0 to maxit;
theta = float(i)/50;
r = scal e*exp(theta*tan(in));
if r > cut then |l eave |oopl;
X =r * cos(theta)+50;
y =r * sin(theta)+50;
call rand(randx);
call rand(randy);
Pl ot Dot At (x+f *r andx, y+f *r andy) ;
end
loop2: Doi =0 to maxit;

114. The resource editor has several editors specialized for each kind of resource. You get a dialog box
editor, a menu editor, a string table editor, an accelerators editor, and an image editor. Each one is called
automatically when clicking in aresource from the menu, obtained with the dir button.

Numerical calculations in C. 235

theta = float(i)/50;

theta2 = (float(i)/50)-3.14;

r = scal e*exp(theta2*tan(in));
if r >cut then | eave | oop2;

X =r * cos(theta)+50;

y = r*sin(theta)+50;

call rand(randx);

call rand(randy);

Pl ot Dot At (x+f *r andx, y+f *r andy) ;
end

This are quite clear specs. Much clearer than other “specs’ you will find in your future career
as programmer... So let’strandate thisinto C. We can start with the following function:

voi d DrawGal axy(HDC hDC, doubl e i n,
int maxit, doubl e scal e,
doubl e cut, double f)

{

doubl e theta, theta2, r, x, y, randx, randy;

for (int i =0; i <= maxit; i++) { (1)
theta = ((doubl e)i)/ CENTER; (2)
r = scal e*exp(theta*tan(in)); (3)
if (r > cut) break; (4)
X = r * cos(theta)+CENTER, (5)
y =r * sin(theta)+CENTER, (6)
randx = (double)rand() / (doubl e) RAND MAX; (7)
randy = (double)rand() / (doubl e) RAND MAX; (8)
Pl ot Dot At (hDC, x+f *r andx, y+f *randy, RGB(0, 0, 0)) ;

}

for (int i =0; i <= mxit; i++) {
theta = ((doubl e)i)/ CENTER
theta2 = (((double)i)/CENTER) -3.14;
r = scale * exp(theta2*tan(in)); (9)
if (r > cut) break
X = r*cos(theta)+CENTER;
y = r*sin(theta)+CENTER;
randx = (double)rand() / (double) RAND MAX;
randy = (double)rand() / (double) RAND MAX;
Pl ot Dot At (hDC, x+f *r andx, y+f *randy, RGB(255,0,0)); (10)

}

}

We translate both loops into two for statements. The exit from those loops before they are fin-
ished is done with the help of a break statement. This avoids the necessity of naming loops
when we want to break out from them, what could be quite fastidious in the long term...

| suppose that in the language the author is using, loops go until the variable is equal to the
number of iterations. Maybe this should be replaced by a strictly smaller than... but | do not
think a point more will do any difference.

Note the cast of i (doubl e)i . Note too that | always write 50.0 instead of 50 to avoid
unnecessary conversions from the integer 50 to the floating-point number 50.0. This cast is not
necessary at all, and is there just for “documentation” purposes. All integers when used in a
double precision expression will be automatically converted to double precision by the com-
piler, even if thereisno cast.

The functions exp and tan are declared in math.h. Note that it is imperative to include math.h
when you compile this. If you don’t, those functions will be assumed to be external functions
that return an int, the default. this will make the compiler generate code to read an integer
instead of reading a double, what will result in completely nonsensical results.

236 Windows programming with lcc-win32

A break statement “breaks’ the loop.

This statement means

r (r*cos(theta)) + 5 and NOT
r r * (cos(theta)+CENTER,

In line 8 we use the rand() function. This function will return a random number between
zero and RAND_MAX. The value of RAND_MAX is defined in stdlib.h. If we want to obtain a
random number between zero and 1, we just divide the result of rand() by RAND_MAX. Note
that the random number generator must be initialized by the program before calling rand() for
thefirst time. We do thisin WinMain by calling

srand((unsi gned) ti me(NULL));
This seeds the random number generator with the current time.

We are missing several pieces. First of all, notethat CENTER is
#defi ne CENTER 400

because with my screen proportions in my machine thisis convenient. Note that this shouldn’t
be a #define but actually a calculated variable. Windows allows us to query the horizontal and
vertical screen dimensions, but... for asimple drawing of a spiral a#define will do.

The function PlotPixel At lookslike this:

voi d Pl ot Dot At (HDC hdc, doubl e x, doubl e y, COLORREF r gb)
{

}

The first argument is an “HDC”, an opaque pointer that points to a “device context”, not fur-
ther described in the windows documentation. We will speak about opaque data structures
later. A COLORREF is atriple of red, green, and blue values between zero (black) and 255
(white) that describe the colors of the point. We use a simple schema for debugging purposes:
we paint the first arm black (0,0,0) and the second red (255,0,0).

In event oriented programming, the question is “which event will provoke the execution of
this code’?

Windows sends the message WM_PAINT to a window when it needs repainting, either
because its has been created and it is blank, or it has been resized, or when another window
moved and uncovered a portion of the window. We go to out MainWndProc function and add
code to handle the message. We add:
case WM _PAI NT:

dopai nt (hwnd) ;

br eak;
We handle the paint message in its own function. This avoids an excessive growth of the
MainwndProc function. Hereit is:

voi d dopai nt (HAND hwnd)
{

Set Pi xel (hdc, (int)x, (int)y,rgb);

PAI NTSTRUCT ps;
HDC hDC;
hDC = Begi nPai nt (hwnd, &ps) ;
Dr awGal axy(hDC, 3. 0, 20000, 2500. 0, 4000. 0, 18. 1) ;
EndPai nt (hwnd, &ps) ;
}

We call the windows APl Begi nPai nt , passing it the address of a PAI NTSTRUCT, a struc-
ture filled by that function that contains more information about the region that is to be
painted, etc. We do not use it the information in it, because for ssmplicity we will repaint the

Numerical calculations in C. 237

whole window each time we receive the message, even if we could do better and just repaint
the rectangle that windows passes to us in that parameter. Then, we call the code to draw our
galaxy, and inform windows that we are done with painting.

WEell, this finishes the coding. We need to add the

#i ncl ude <mat h. h>
#i ncl ude <tine. h>

at the beginning of the file, since we use functions of the math library and the time() function
to seed the srand() function.

We compile and we obtain:

i winexample _ (O] =]
Fie Edit Help

Feady

It would look better, if we make a better background, and draw more realistic arms, but for a
start thisis enough.

238

There are many functions for drawing under windows of course. Here is a table that provides

Windows programming with lcc-win32

short descriptions of the most useful ones:

Function Purpose
AngleArc Draws aline segment and an arc.
Draws an elliptical arc using the currently selected pen.
Arc . .
You specify the bounding rectangle for the arc.
ArcTo issimilar to the Arc function, except that the
ArcTo

current position is updated.

GetArcDirection

Returns the current arc direction for the specified device
context. Arc and rectangle functions use the arc direction.

Draws aline from the current position up to, but not

LineTo including, the specified point.

MoveToEx Upg:lates the current positi on to the.speufl ed point and
optionally returns the previous position.

PolyBezier Draws one or more Bézier curves.

PolyBezierTo

Same as PolyBézier but updates the current position.

PolyDraw Draws a set of line segments and Bézier curves.
. Draws a series of line segments by connecting the points
PolyLine . -
in the specified array.
PolyLineTo Updat_es current position after doing the same as
PolyLine.
PolyPolyLine Draws multiple series of connected line segments.

SetArcDirection

Setsthe drawing direction to be used for arc and rectangle

functions.

There are many other functions for setting color, working with rectangles, drawing text
(TextOut), etc. Explaining al that is not the point here, and you are invited to read the docu-
mentation.

Summary: C converts integer and other numbers to double precision when used in a double
precision expression. This will be done too when an argument is passed to a function.
When the function expects a double and you pass it an int or even a char, it will be con-
verted to double precision by the compiler.

All functions that return a double result must declare their prototype to the compiler so that
the right code will be generated for them. An unprototyped function returning a double will
surely result in incorrect results!

Opague data structures are hidden from client code (code that uses them) by providing just
a void pointer to them. This way, the client code is not bound to the internal form of the

Filling the blanks 239

structure and the designers of the system can modify it without affecting any code that uses
them. Most of the windows data structures are used this way: an opaque “HANDLE” is
given that discloses none of the internals of the object it is pointing to.

2.12 Filling the blanks

Input goes through dialog boxes under windows. They are ubiquitous; so let’s start to fill our
skeleton with some flesh. Let’s suppose, for the sake of the example that we want to develop a
simple text editor. It should read some text, draw it in the screen, and provide some utilities
like search/replace, etc.

First, we edit our menu, and add an “edit” item. We open the directory window, and select the
menu:
g

(] Dialogs
[lcons
-5 Menuz
(7 IDMAINMENL =
+-[_] Strings
[Accelerator

We arrive at the menu editor™®. If we open each branch of the tree in its left side, it looks like
this:

x|

File Edit Help
SR | File x|

] &MNew

(1] &0pen [dentity

EE Bt &File

@

+-[_] &Help

| [
Walle ||:|

kenu item optionz
| |

| |
Separater |

Popup options

ket bar break
b enu break

Apply

Edit menu header |

115. This type of interface requires an action from the part of the user to indicate when it is finished
modifying the name and desires to “apply” the changes. Another possibility would be that the resource editor
applies the changes letter by |etter as the user types them in, as some other editors do. This has the advantage
of being simpler to use, but the disadvantage of being harder to program and debug. As always, an the
appearance of the user interface is not only dictated by the user comfort, but also by the programming effort
necessary to implement it. You will see this shortly when you are faced with similar decisions.

240 Windows programming with lcc-win32

We have at the left side the tree representing our menu. Each submenu is a branch, and the
itemsin the branch; the leaves are the items of the submenu. We select the “File” submenu and
pressthe “insert” key. We obtain a display like this:

File Edit Help

Dy bl
[&Mew
(1] #0pen
] BEtsit

A new item isinserted after the currently selected one. The nameis*Popup”, and the first item
Is“New item”. We can edit those texts in the window at the right: We can change the symbolic
name, and set/unset several options. When we are finished, we press “Apply” to write our

changes to the resource. 116
OK, we change the default namesto the traditional “Edit” and “ Search”, to obtain this display:

File Edit Help

-1-£5 &File
L] &New
[[] &0pen
[&E &t
- SE
[L] Search

+-[_] &Help

We will name the new item | DM_SEARCH. | am used to name all those constants starting with
IDM_ from ID Menu, to separate them in my mind from IDD_ (1D Dialog).

We can now start drawing the “ Search” dialog. Just a simple one: atext to search, and some
buttons to indicating case sensitivity, etc. We close the menu editor, and we start a new dialog.

116. A debugger is a program that starts another program, the “program to be debugged” or “debuggee”,
and can execute it under the control of the user, that directs the controlled execution. All C development
systems offer some debugger, and Icc-win32 is no exception. The debugger is described in more detail in the
user’s manual, and it will not be described here. Suffice to note that you start it with F5 (or Debugger in the
compiler menu), you can single step at the same level with F4 and trace with F8. The debugger showsyou in
yellow the line the program will execute next, and marks breakpoints with a special symbol at the left. Other
debuggers may differ from this of course, but the basic operations of all of them are quite similar. Note that
Icc-win32 is binary compatible with the debugger of Microsoft: you can debug your programs using that
debugger too.

To be able to use the debugger you need to compile with the g2 flag on. That flag is normally set by
default. It directs the compiler to generate information for the debugger, to enable it to show source lines and
variable values. The compiler generates a whole description of each module and the structures it uses called
“debug information”. Thisinformation is processed by the linker and written to the executable file. If you turn
the debugging flag off the debugger will not work. The best approach is to leave this flag on at all times.
Obvioudly the executable size will be bigger, since the information uses up space on disk. If you do not want
it, you can instruct the linker to ignore it at link time. In this way, just switching that linker flag on again will
allow you to debug the program.

The debug information generated by lcc-win32 uses the NB09 standard as published by Microsoft and
Intel. This means that the programs compiled with lcc-win32 can be debugged using another debugger that
understands how to use this standard.

Filling the blanks 241

In the “Resources’” submenu, we find a“New” item, with several optionsin it. We choose the
“dialog” option.

The dialog editor builds an empty dialog and we are shown the following parameters dial og:

| Properties Eventz |

mal DLG 0800
Symbol value aoo

+ Position 6 18 180 1an0
Caption test Dialog Title
Mernu S NOne
Claszs
Font M5 Sans Serif
Fant size 8

+ Frame/Baorder style

+ Styles

+ Advanced stvles

Even if this quite overwhelming, we are only interested in two things: the title of the dialog
and the symbolic identifier. We leave al other thingsin their default state. We name the dialog
IDD_SEARCH, and we give it the title “ Text search”. After editing it looks like this:

Dialog IDD_SEARCH]
| Properties E'v'.,ntsa______h |

mal IDD SEARCH
Symbal walue

+ Paosition
Caption test
benu

Clazz
Font M5 San= Serif
Font size a

+ Frame/Border ztyle

+ Shyles

+ Advanced ztules

We press the OK button, and we do what we did with the dialog in the DLL, our first example.
The finished dialog should look roughly like this:

Text Search

An edit field, and two push button for OK and Cancel. The edit field should receive the ID
| DTEXT.

Now comes the interesting part. How to connect all this?

We haveto first handle the WM_COMMAND message, so that our main window handles the
menu message when this menu item is pressed. We go to our window procedure MainWnd-
Proc. Hereit is:

242 Windows programming with lcc-win32

LRESULT CALLBACK Mai nWwdPr oc(HAND hwnd, Ul NT nsg, WPARAM wPar am LPARAM
| Par am

{

}

switch (nmsg) {
case WM SI ZE:
SendMessage(hwhdSt at usbar, nsg, wPar am | Par anm ;
InitializeStatusBar(hwdsStatusbar, 1);
br eak;
case VWM MENUSELECT:
return MsgMenuSel ect (hwnd, nsg, wPar am | Par am ;
case WV _COVIVAND:
HANDLE WM COMVAND(hwnd, wPar am | Par am Mai nwhdPr oc_OnConmrand) ;
br eak;
case WM DESTROY:
Post Qui t Message(0) ;
br eak;
def aul t:
return Def WndowPr oc(hwnd, nsg, wPar am | Par an ;
}

return O;

We can see that it handles aready quite afew messages. In order,

We see that when the main window isresized, it resizesits status bar automatically.

When the user is going through the items of our menu, this window receives the
VWM MENUSEL ECT message from the system. We show the appropriate text with the explana-

tions of the actions the menu item in the status bar.

When a command (from the menu or from a child window) is received, the parameters are
passed to a macro defined in windowsx.h that breaks up the wParam and |Param parameters

into their respective parts, and passes those to the Mai nWhdPr oc_ OnCommrand function.

When this window is destroyed, we post the quit message.

The function for handling the commands looks like this:
voi d Mai nWwhdPr oc_OnComand(HWAD hwnd,

{

}

We find a comment as to where we should add our new command. We gave our menu item

int id, HWND hwndCt1, Ul NT codeNoti fy)

switch(id) {

/] ---TODO--- Add new nmenu conmands here
case | DM EXIT:

Post Message(hwnd, WM CLCSE, 0, 0) ;

br eak;

}

“Search” the symbolic ID of | DM_SEARCH. We modify this procedure like this:
voi d Mai nWwhdPr oc_OnComand(HVWAD hwnd, int id, HWD hwndCt1, U NT

codeNot i fy)
{
switch(id) {
[/ ---TODO -- Add new nenu conmands here
case | DM _SEARCH:

{
char text[1024];

if (CallDial og(l DD_SEARCH, Sear chDl gProc,
(LPARAM t ext))
DoSear chText (text);

Filling the blanks 243

br eak;
case |IDM EXIT:
Post Message(hwnd, WM CLOSE, 0, 0) ;
br eak;

}
}
When we receive the menu message then, we call our dialog. Since probably we will make
severa dialogs in our text editor, it is better to encapsulate the difficulties of calling it within
an own procedure: CallDialog. This procedure receives the numeric identifier of the dialog
resource, the function that will handle the messages for the dialog, and an extra parameter for
the dialog, where it should put the results. We assume that the dialog will return TRUE if the
user pressed OK, FALSE if the user pressed the Cancel button.

If the user pressed OK, we search the text within the text that the editor has loaded in the func-
tion DoSearch.

How will our function CallDialog look like?
Hereitis:

int Call D alog(int id, DLGPRCC proc, LPARAM par anet er)

{
int r = D al ogBoxParan(hl nst, MAKEI NTRESOURCE(i d),

hwndMai n, proc, paraneter);
return r;

}

We could have returned the value of the DialogBoxParam API immediately but | like storing
function return values in local variables. You never know what can happen, and those values
are easly read in the debugger.

We have to write a dialog function, much like the one we wrote for our string DLL above. We
write arough skeleton, and leave the details for later:

BOOL CALLBACK SearchDi gProc(HWAD hwnd, Ul NT nsg, WPARAM wParam LPARAM
| Par am

{
switch (msg) {
case WM I NI TDI ALOG:
return TRUE;
case WM CLOSE:
EndDi al og(hwnd, 0) ;
br eak;

}
return FALSE;

}

This does nothing, it doesn’t even put the text in the received parameter, but what we are inter-
ested in here, is to first ensure the dialog box shows itself. Later we will refineit. | develop
software like this, as you may have noticed: | try to get aworking model first, afirst approxi-
mation. Then | add more things to the basic design. Here we aren’t so concerned about design
anyway, since all this procedures are very similar to each other.

The other procedure that we need, DoSearchText, is handled similarly:

i nt DoSearchText (char *txt)

{
MessageBox(NULL, "Text to search:",txt, MB OK);

return 1;

}
We just show the text to search. Not very interesting but...

244 Windows programming with lcc-win32

We compile, link, the main application window appears, we select the “ Search” menu, and...
we see:

ZZOpEZ M EE N ZE WEZZ UWZZ Y EZ GWEE W EZ P EE NN EZMWEZ WP ZZ P Z MY EZ M EZ W EE U E P EZ Y EZ W LGP ZENEE MY EZ P ZZ OPZZNY. ..

Text to searc s

WEell, we have inverted the parameters to the MessageBox procedure, but that’s surely not
the point. Why is the dammed dialog box not showing?

117
WEell, here we need adebugger. We need to know what is happening when we call the dia-
log box. We press F5, and we start a debugging session. The debugger stops at WinMain.

[wedit-winexample - [winexample.c] =] E3
fZ File Edt Search Project Besources Debug bz Modules ‘Window Help —|A ﬂ
case WH _DESTROY ﬂ
PoztOuitMes=sage(0)
brealk:
default :

return DefWindowProc{hwnd. m=g.wParam, l1Param) ;

I
S ¢ — e
return 0;

b
R < —iie
BE 14

int WIHAPT WinMain{HINSTAHCE hlnstance, HIHSTAHCE hPrevInstJ}
L

HSG m=g;
HAHDLE hAccelTable:

hin=t = hlnstance:

if (| InitApplicationi])
return 0

hiccelTable = LoadiAccelerators=(hlnst MAKEIHTRESOURCE(ID

if {({hwndMain = CreatevinexampleWndClas=sWnd()) == (HWHD
return 0;

CreateSBar(hwndMain, "Feadwv" .13

ShowWindow(hwndMain, SW_SHOW) ; :j

hinstance = woid * 0xl
hPrevInstance = void = Oxld4d4led
lpCndLine = 0xl43aa0 " :~20"
nCmdShow = 4210720

hin=t = woid = 0=z0

B auto locals stack events search Stopped tainwndProc 254:2

Now, wait a minute, our window procedure that receives the message from the system is
called indirectly from Windows, we can’t just follow the program blindly. If we did that, we
would end up in the main loop, wasting our time.

117.Why didn’'t we usethe DLL to ask for the string to search? Mostly because | wanted to give you an
overview of the whole process. A good exercise would be to change the program to usethe DLL.
Which changes would be necessary? How would you link?

Filling the blanks 245

No, we have to set a breakpoint there. We set a breakpoint when we call the dialog using the
F2 accelerator key. We see that Wedit sets asign at the left to indicate us that there is a break-
point there. Then we press F5 again to start running the program.

[} wedit-winexample - [winexample._c] _ O] =]

(@ Fil= Edt Search Project Besources Debug Utl: Modules ‘Window Help = ﬂ

return FALSE; x|
h
int DoSearchText (char *txt)
{

bMeszageBox(HULL, txt, "Text to search is:".HMB OK);
return 1:

i
SR L —DDwe

S
#% —— The followving code comes from h:\lcc\lih\wizard\def04%
vold MainWndProc OnCommand (HWHD hwnd, int id. HWHD hwndCtl,

syitchiid) {
& ——=TOD0——— Add new menu commands here
ca=ze IDM SEARCH:

1
char text[1024]:
m 1f (CallDialogiIDD SEARCH.SearchDlgProc. (LFP
DoSearchText i text)
L

breal::
ca=ze IDM_EXIT:
PoztHes=sage{hwnd . WH_CLOSE, 0,0} ;
brealk ; ﬂ

hinstance = woid * 0=l
hPFrevInstance = wvoid * (Oxld441=8
lpCmdLine = 0O=xld3aab " ;~20"
nCndShow = 4210720

hin=t = woid = 0=x0

B auto locals stack events search Stopped DioSearchTest 208:5

Our program starts running, we go to the menu, select the search item, and Wedit springs into
view. We hit the breakpoint. Well that means at least that we have correctly done things until
here: the message is being received. We enter into the CallDialog procedure using the F8
accelerator. We step, and after going through the Dial ogBoxParam procedure we see no dialog
and the return result is—1. The debugger display looks like this:

We see the current line highlighted in yellow, and in the lower part we see the values of some
variables. Some are relevant some are not. Luckily the debugger picks up r as the first one. Its
valueis—1.

246 Windows programming with lcc-win32

Why —1?

[wedit-winexample - [winexample.c] =] E3

fZ File Edt Search Project Besources Debug bz Modules ‘Window Help —|A ﬂ

HWUHD CreatewinezamnplelindClasslnd(void) :J
1

return Createlindowi "winegamplellindClass". "wineganple".
WS _MINIMIZEBOX |WS_VISIELE|WS CLIPSIBLINGS|WS CLIPCHI]
CW_USEDEFAULT. 0. CW_USEDEFAULT. 0.

HULL,

HULL,

hlins=t.

HULL) ;
h
int Calllialogiint id,DLGFEOC proc, LPARAM parameter)
1

int ¥ = DialogBoxFParbEm(hInst, HAKEINTEESOURCE(id). hwnddd |
L return r:

I
=ztatic BOOL CALLBACKE SearchDlgProc{HWHD hwnd, UIHT m=g. HPAH]_J

switch (m=g) {
caze WM _INITDIATLOG:
return TRUE:
ca=zs WH_CLOSE:
EndDialogihwnd. 0} ;
breal::

¥]

r = -1

hIn=t = woid * 0=x400000

id = 400

hwndMain = wvoid = 0x904a3

#* function proc = _SearchDlgProc@le()
parameter = 1243860

B auto locals stack events search Stopped CallDialag 191:25

A quick look at the doc of Di al ogBoxPar amtellsus “If the function fails, the return value
is-1.”

Ahh, how clear. Yes of coursg, it failed. But why?

Mystery. There are no error codes other than just general failure. What could be wrong?

Normally, this —1 means that the resource indicated by the integer code could not be found. |
have learned that the hard way, and | am writing this tutorial for you so that you learn it the
easy way. The most common cause of thisisthat you forgot to correctly give a symbolic name
to your dialog.

We close the debugger, and return to the resource editor. There we open the dialog box proper-

ties dialog box (by double clicking in the dialog box title bar) and we see... that we forgot to
change the name of the dialog to | DM_SEARCH!!! We correct that and we try again.

Filling the blanks 247

OK, thislooks better. The dialog is showing.

I winexample - |0] x|
File Edit Help

Text Search

] | Cancel |

o

Therest isquitetrivial most of the wok was done when building the DLL. Actually, the dialog
box is exactly the same 118

118. Newer versions of Wedit check for this. Older ones aren’t so sophisticated so please take care.

248 Windows programming with lcc-win32

2.13 Using the graphical code generator

Aswe saw before, writing al that code for a simple dialog is quite a lot of work. It is impor-
tant that you know what is going on, however. But now we can see how we can make Wedit

generate the code for us.

The code generator is not enabled by default. You have to do it by choosing the “ Output” item
in the resources menu. This leadsto an impressing looking box like this:

Filez to be generated

Framewark: file [.c]
W alidate
| ™ Generate
LCancel
Definitionz and prototypes k) Hel
elp
|h:'\wine:-cample'xwine:-:ampleres.h W Generate
Binamy resources [.res)
|h:"awine:-cample'\wine:-:ample.res W Generate
RC &5CH resource file [o)
|h:"xwine:-cample"'.wine:-:ample.r|: IV Generate
Dialogs anly azcii rezournce file [.dig)
| [Generate
Framewark binary file [wed]

| [Generate

Ilzer callbacks file

|h:Hwine:-cample"'.wine:-:ample_cl:uk.l:

Additional include flez

Diictionany [for automatic language tranzlation]

Ihzlude path far bitraps and other baggage files

|h:"~||:n:"-.include

This dialog shows you the files that will be generated or used by Wedit. Those that will be
generated have a box at the right, to enable or disable their generation. The others are used if
available, but only for reading. The last item is an additional path to look for bitmaps, icons
and other stuff that goes into resources.

You notice that the first item is disabled. You enable it, and type the full path of afile where
you want Wedit to write the dialog procedures. Notice that by default, the name of thisfileis
<name of the project>.c. This could provoke that your winexample.c that we worked so hard

to write, could be overwritten.11° Choose another name like “dialogs.c” for instance.

119. Look in the weditreslib folder. The file commmsg.c contains the default procedure and all the
machinery necessary for the run time of the framework.

Using the graphical code generator 249

Now, when you save your work, all the dialog procedures will be written for you. But before,
we have to tell the framework several things.

The first will be the prefix to use for all the procedures that will be used in this dialog box. We
define thisin the main properties dialog box obtained when you double click in the dialog title.

“DIg400” is an automatic generated name, not very convincing. We can put in there a more
meaningful name like “DIlgSearch” for instance. We will see shortly where this name is used.

What we want to do now is to specify to the editor where are the events that interest us. For
each of those events we will specify a callback procedure that the code generated by the editor
will call when the event arrives. Basically al frameworks, no matter how sophisticated, boil
down to that: a quick way of specifying where are the events that you want to attach some
code to.

The events we can choose from are in the properties dialog boxes, associated with each ele-
ment of the dialog box. You have the general settingsin the properties window associated with
the dialog box (that appears when you double click in thetitle), and you have the buttons prop-
erties that appear when you right click in a button.

Those dialog boxes have generally a standard or «Properties» part that allows you to change
things like the element’s text, or other simple properties, and a part that is visible only when
you have selected the C code generation. That part is normally labeled “events’ and appears at
theright. That label tells us which kind of events the framework supports. window messages.
There are many events that can possibly happen of course, but the framework handles only
those.

Pushbutton1 £
Froperties | Events
Prefis for handlers LoginDlagIdolk
Fort MS Sans Serif
Fort size 8
Clicked v DR

We see at the right tab a typical “messages’ part: We have some buttons to choose the mes-
sages we want to handle, the function name prefix we want for all callback procedures for this
element, and other things like the font we want to use when the elements are displayed.

We see again that “DIg400”... but this allows us to explain how those names are generated
actually. The names of the generated functions are built from the prefix of the dialog box, then
the prefix for the element, and then a fixed part that corresponds to the event name. We edit
the prefix again, following this convention.

Properties | Eventz
Frefis for handlers LoginDlgldok
Font M5 Sans Serif
Fant size 8
Clicked v O

The “ Selected” message is on, so the framework will generate acall to afunction called DI g-
Sear chOnCkSeel ect ed() . Happily for us, we do not have to type those names our-
selves.

Without changing anything else we close the button properties and save our work. We open
the ¢ source file generated by the editor.

250 Windows programming with lcc-win32

We obtain the following text:

/* Wedit Res Info */

#i fndef __ wi ndows_h

#i ncl ude <wi ndows. h>
#endi f

#i ncl ude "wi nexanpl eres. h"

BOOL API ENTRY DI gSear ch(HWAD hwnd, Ul NT nsg, WPARAM wPar am LPARAM | Par am

{
static WVED TDLGPARAMS Wedi t DI gPar ans;

swi tch(nsg)

case WM | NI TDI ALOG
Set W ndowLong(hwnd, DW._ USER,
(DWORD) &Wedi t DI gPar ans) ;
Dl gSear chl ni t (hwnd, wPar am | Par anm ;
/* store the input argunents if any */
Set Prop(hwnd, "I nput Argunent ", (HANDLE) | Par anm ;
br eak;
case WV _COVIVAND:
swi tch (LOANORD(wPar anj)

{
case | DOK:
Dl gSear chOnOKSel ect ed(hwnd) ;
br eak;
}
br eak;

}
r et ur n(Handl eDef aul t Messages(hwnd, nsg, wPar am | Paramn) ;

}

We have here a normal callback procedure for our dialog. It handles two messages:
VWM | NI TDI ALOG and WM_COWMVAND. The callback procedures are in bold type. There are
two of them: The initialization callback called “ Dl gSearchlnit”, and the one we
attached to the OK button above, “ DI gSear chOnOkSel ect ed” .

There are more things in there, but for the time being we are interested in just those ones,
because they have to be written by you!

What you want to do when the dialog box has been created but it is not yet visible?

This is the purpose of the first callback. In our text search dialog we could write in the edit
field the last searched word, for instance, to avoid retyping. Or we could fill acombo box with
all the words the user has searched since the application started, or whatever. Important is that
you remember that in that function all initidizations for this dialog box should be done,
including memory allocation, populating list boxes, checking check buttons or other chores.

The second callback will be called when the user presses the OK button. What do you want to
do when this event happens? In our example we would of course start the search, or setup a set
of results so that the procedure that called us will know the text to search for, and possibly
other data.

Different controls will react to different events. You may want to handle some of them. For
instance you may want to handle the event when the user presses a key in an edit field, to
check input. You can use the framework to generate the code that will trap that event for you,
and concentrate in a procedure that handles that event.

How would you do this?

Using the graphical code generator 251

You open the properties dialog of the edit control and check the “Update” message. This will
prompt the editor to generate a call to a function of yours that will handle the event. The
details are described in the documentation of the resource editor and will not be repeated here.
What is important to retain are the general principles at work here. Therest isamatter of read-
ing the docs, to find out which events you can handle for each object in the dialog, and writing
the called functions with the help of the windows documentation.

But what happens if there is an event that is not foreseen by the framework? With most frame-
works this is quite a problem, happily not here. You have just to check the button “All” in the
dialog properties and the framework will generate a call to a default procedure (named <pre-
fix>Default) at each message. There you can handle al eventsthat the operating system sends.
| have tried to keep the framework open so that unforeseen events can be still treated correctly.

Another way to customize the framework is to modify the default procedure provided in the
library weditres.lib. The source of that procedure is distributed in the source distributions of

lcc-win32'%° and is rel atively easy to modify.

120. To find that easily just press F12 and click in its name in the function list.

252 Windows programming with lcc-win32

2.14 Customizing controls

Under windows you have a set of building blocks at your disposal that is, even it is quite rich,
fixed. A plain listbox will look like a listbox and there is no obvious way to modify the
appearence of it, not even for doing such simple things like writing the text in red, or painting
the background in brown.

The reason for thisis simple: there are infinitely many ways of customizing a control, and if
Windows would provide an API for each one, the windows APl would not fit in acomputer no
matter what.

The solution provided by the system is a genera interface that gives you enough elements to
be able to do whatever you want to do. You can:

1) customize the appearance of a control by making some of its parts “owner draw”, i.e.
drawed by yourself.

2) Process some special windows messages that allow you to change the font, the background
color, and other characteristics by modifying the settings of a passed device context (HDC).

In both cases the interface is quite smple: Windows sends a message to the procedure of the
parent window of the control, to ask it to draw a specific part of the control. Some (or all) of
the control behavior isretained, but the appearance can be changed as you like.

2.14.1 Processing the WM_CTLCOLORXXX message

We can start with a simple example that draws a listbox in a special way. Let’s use the second
method first, since it is easier.

Suppose we want to display the text in a listbox in red color. In the dialog procedure which
owns the list box (or in the windows procedure if it is alist box created independently) you
receive the WM_CTLCOLORLISTBOX message. In the wparam parameter you receive an
HDC that you can customize using SetTextColor to draw the text with the color you wish. To
inform windows that you have processed this message, you should return a handle to a brush
that will be used to paint the background of the listbox. Notice that windows does not destroy
this object. You should destroy it when the dialog box finishes.

Creating and destroying the brush that you should return is cumbersome. If you are not inter-
ested in modifying the background, you can use the APl GetStockObject() returning the han-
dle of the white brush like this:

return Get St ockObj ect (WH TE_BRUSH) ;

Objects created with GetStockObejct do not need to be destroyed, so you spare yourself the
job of creating and destroying the brush. The code would look like this:

BOOL W NAPI MyDl gProc(HWND hwnd, Ul NT nsg, WPARAM wPar am LPARAM | Par am
{

HDC hDC;

CCOLORREF ol dcol or;

switch (nsg) {

case WM CTLCOLORLI STBOX:
hDC = (HDC) wPar am
color = RGB(192,0,0); // red color
Set Text Col or (hDC, col or);
return Cet St ockObj ect (WHI TE_BRUSH) ;

Customizing controls 253

If you want to return another brush than white, you should handle the WM _INITDIALOG
message to create the brush, and the WM_NCDESTROY message to destroy the brush you
created to avoid memory leaks. In this case, the above example should be augmented with:

BOOL W NAPI MyDl gProc(HWND hwnd, Ul NT nmsg, WPARAM wPar am LPARAM | Par am)
{
HDC hDC,
CCLORREF ol dcol or;
static HBRUSH hBrush;
switch (msg) {
case WM I NI TDI ALOG:
hBrush = CreateSolidBrush(BK COLOR);
/1 other initializations go here

case WM CTLCOLORLI STBOX:
hDC = (HDC) wPar am
color = RGB(192,0,0); // red color
Set Text Col or (hDC, col or);
return hBrush;

case WM NCDESTROY:
Del et enj ect (hBrush);
br eak;

}
}

We create the brush at the initidization of the list box, we use it when we receive the
WM_CTLCOLORLISTBOX message, and we destroy it when we recelve the
WM_NCDESTROY message.

This technigue can be used not only with list boxes but with many other controls. We have:

Message Control
WM_CTLCOLORBTN Button
WM_CTLCOLOREDIT Edit field
WM_CTLCOLORDLG Diaog box
WM_CTLCOLORLISTBOX List box
WM_CTLCOLORSCROLLBAR Scroll bar
WM _CTLCOLORSTATIC Static controls (text, etc.)
WM_CTLCOLORLISTBOX + A combo box sends both messages
WM_CTLCOLOREDIT to the parent window

All this messages have the same parameters as in the list box example and the procedure is
exactly the same.

The WM_CTLCOLORSTATIC isinteresting because it allows you to add text in any font and
color combination to a window or dialog by just calling SelectObject with a special font or
font size using the passed HDC of this message.

254 Windows programming with lcc-win32

2.14.2 Using the WM_DRAWITEM message

Suppose we want to draw alist box that draws an image at the left side of the text in each line.
In this case, just setting some properties of the HDC we receive with
WM_CTLCOLORLISTBOX will not cut it. We need to do the entire drawing of each line of
the list box.

We can do this by setting the style of the list box to owner draw (the resource editor will do
this for you) and we need to process the WM_DRAWITEM message. Windows sends us a
pointer to aDRAWITEMSTRUCT that contains all the necessary information to do the draw-
ing in the LPARAM parameter. This structure is defined as follows:

Member Description

unsi gned int Cl Type This member can be one of the following values.
ODT_BUTTON button

ODT_COMBOBOX combo box
ODT_LISTBOX list box

ODT_LISTVIEW List-view control
ODT_MENU Owner-drawn menu item

ODT _STATIC static control

ODT_TAB Tab control

unsigned int ClID Specifies the identifier of the combo box, list box, button, or static con-
trol. This member is not used for amenu item.

unsigned int item D Specifies the menu item identifier for amenu item or the index of the
itemin alist box or combo box. For an empty list box or combo box,
this member can be-1. This allows the application to draw only the
focus rectangle at the coordinates specified by the rcltem member even
though there are no itemsin the control

unsi gned int itemAction | Specifiesthe drawing action that windows expect usto perform. This
action isindicated with the following flags:

ODA_DRAWENTIRE The entire control needs to be drawn.
ODA_FOCUS The control has lost or gained the keyboard focus. The
itemState member should be checked to determine whether the control
has the focus.

ODA_SELECT The selection status has changed. The itemState mem-
ber should be checked to determine the new selection state.

HAMD hwndl t em Window handle of the control

RECT rcltem Rectangle where we should do our drawing

unsi gned long *itenData | Specifiesthe application-defined value associated with the menu item.

Customizing controls 255

Member Description

unsigned int itenState State of the item after the current drawing action takes place. This can

be a combination of the following values:

ODS CHECKED Thishit isused only in amenu.

ODS COMBOBOXEDIT The drawing takes place in the edit control
of an owner-drawn combo box.

ODS DEFAULT Theitem isthe default item.

ODS DISABLED Theitem isto be drawn as disabled.

ODS FOCUS The item has the keyboard focus.

ODS GRAYED Thishit isused only in amenu.

ODS HOTLIGHT Theitem is being hot-tracked, that is, the item will
be highlighted when the mouse is on the item.

ODS INACTIVE Theitem isinactive and the window associated with
the menu isinactive.

ODS NOACCEL The control is drawn without the keyboard accelera-
tor cues.

ODS _NOFOCUSRECT The contral is drawn without focus indicator
Cues.

ODS SELECTED The menu item's status is selected.

With all thisinformation, we can do whatever we want inside the rcltem rectangle. Here isthe
example for our problem of drawing a bitmap in each line of the combo box.

First, in our dialog procedure we handle the message WM_DRAWITEM, of course:
BOOL W NAPI MyDl gProc(HWND hwnd, Ul NT nsg, WPARAM wPar am LPARAM | Par am

{

}

HDC hDC;
COLORREF ol dcol or;
switch (nmsg) {
case WM | NI TDI ALOG
LoadLi st boxBi t maps(hwnd) ;
/] other initializations can follow

case WM DRAW TEM
Dr awLi st boxLi ne(hwnd, (LPDRAW TEMSTRUCT) | Par am) ;
return 1; // W processed this nessage

case WM NCDESTROY:
Dest r oyLi st boxBi t maps(hwnd) ;
/1 other cleanup tasks can go here

Our procedure to draw each line of the dialog box can look like this:
| ong Drawli st boxLi ne(HWND hwndDl g, LPDRAW TEMSTRUCT | pdi s)

{

HBI TMAP hbnpPi ct ur e, hbnmpd d;
int y,state;

HDC hdcMem

TEXTMETRIC t m

RECT rcBit map;

COLORREF ol dcol or;

char tchBuffer[200];

/1 If there areno list box items, skip this message.
if (Ipdis->item D == -1) return O;

256 Windows programming with lcc-win32

switch (I pdis->itemAction) {
case ODA SELECT:
case ODA DRAVENTI RE:
/1 Windows DOES NOT erase the background of owner draw list boxes.
/I Erase the background to start with a coherent state.
Fil Il Rect (I pdi s->hDC, & pdis->rcltem
Get St ockObj ect (WH TE_BRUSH));

/I We get the handle of the bitmap to draw from the item-data slot in each
/1'list box line. The initialization procedure sets this

hbnpPi ct ure =(HBI TMAP) SendMessage(| pdi s->hwndltem
LB GETI TEVMDATA, | pdis->item D, (LPARAM 0);

/I We select the image in amemory DC, then we select it. Thisisa
/1 standard technique for copying a bitmap into the screen
hdcMem = Creat eConpati bl eDC(| pdi s->hDC) ;
hbnmpd d = Sel ect Obj ect (hdcMem hbnpPi cture);
Bit Bl t (I pdi s->hDC,
| pdis->rcltemleft, |pdis->rcltemtop,
| pdis->rcltemright - Ipdis->rcltemleft,
| pdis->rcltembottom- | pdis->rcltemtop,
hdcMem 0, 0, SRCCOPY);

/I We are done with our memory DC. Clean up.
Sel ect Obj ect (hdcMem hbnmpd d) ;
Del et eDC(hdchMem) ;

/I Now, we retrieve the text for thisline.
SendMessage(| pdi s->hwndl tem LB _GETTEXT,
| pdis->item D, (LPARAM tchBuffer);

/I How big is the text of thisitem?
Get Text Metrics(l pdi s->hDC, & m;

/I Vertically center the text
y = (I pdis->rcltem bottomtl pdi s->rcltemtop-tmtnHeight)/2;

/1 Send the text to the screen 6 pixels after the bitmap
Text Qut (| pdi s- >hDC, XBI TMAP+6, y, t chBuf fer, strlen(tchBuffer));

/I'ls the item selected?
if (Ipdis->itenState & ODS _SELECTED) ({
/I1'Yes. Invert the whole rectangle (imagettext) to signal the selection
Bi t Bl t (| pdi s->hDC,
| pdis->rcltemleft, |pdis->rcltemtop,
| pdis->rcltemright - Ipdis->rcltemleft,
| pdis->rcltembottom- | pdis->rcltemtop,
| pdi s->hDC, 0, 0, PATI NVERT);
}
br eak;
/1 Do nothing if we gain or lose the focus. Thisisalaxist view but... it works!
case ODA FOCUS:
br eak;

}
return TRUE;

}
And after all thiswork, hereitis:

Building custom controls 257

x]
e Crayon
e fork.
% mnarker
=l

2.15 Building custom controls

In many casesit isagood ideato develop aclass of windows that can be used in several appli-
cations with the same interface. The ideais to encapsulate into a dll module or just in a static
library, a specialized window that will do one kind of thing: a grid for a database application,
or, for using asimpler example, an lcd simulation display.

2.15.1 An lcd display

The objective is to build a ssimple display window that ssmulates a small “lcd” display that
shows afew lines of text. To build this application we follow the usual procedure: we generate
an application with the wizard, and we change the display of the window: instead of drawing a
blank window we add a handler for the WM _PAINT message like this:

LRESULT CALLBACK Mai nWhdPr oc(HVND hwnd, Ul NT msg, WPARAM wPar am LPARAM

| Par am

{
switch (msg) {

case WM _PAI NT:
DoPai nt (hwnd) ;
br eak;

case WM DESTROY:

}

return O;

}

In our “DoPaint” procedure we will do just that: paint the Icd window. We need first to draw a
simple character set, from which we will copy the characters into the display. Hereisasimple
one. In this bitmap we use three colors: alight blue for drawing the body of the characters, a

258 Windows programming with lcc-win32

darker blue for drawing the background of the characters, and black, to draw the space

between each character.'?! Our drawing procedure “DoPaint” will make a mapping between
the bitmap colors and the color we want to give to our simulated display.

To draw the characters, we will make a memory display context, where we will store the bit-
map of characters. When we want to draw one char, we will copy from the memory bitmap to
the display window the portion of the bitmap that contains our character, trandlating the colors
as we go. We have to take care of scrolling if necessary, and many other things. The purpose
here is not to show you how you implement the best ever Icd display in a PC, but to show the
interfaces of a custom control so we will keep the logic to the bare minimum.

Let's see our DoPaint procedure:

static void DoPai nt (HWND hwnd)

{

1 PAI NTSTRUCT ps;

2 HDC hDC = Begi nPai nt (hwnd, &ps) ;
3 int len = strlen(Text);
4 HBI TMAP bnp, ol dBi t map;
5 HDC dcMenory;

6 COLORMAP Col or Map[4] ;

7 i nt charcount = 0;

8 int linecount = 1;

9 RECT mrect,rc;

10 int x,y;

12 Col orMap[0].from = SEGM COLORS[0] ;

13 ColorMap[0].to = Pixel OnCol or;

14 Col orMap[1].from = SEGM COLCRS[1] ;

15 ColorMap[l].to = Pixel OfColor;

16 Col orMap[2].from = SEGM COLCRS[2] ;

17 ColorMap[2].to = Pixel BackCol or;

18 bnp = Creat eMappedBi t map(hl nst, Resourceld, 0, Col orMap, 3);
19 dcMenory = CreateConpati bl eDC(hDC) ;

20 ol dBitmap = Sel ect Obj ect (dcMenory, bnp) ;

21 HBRUSH hbBkBrush = CreateSolidBrush(Pi xel BackCol or) ;
22 CGetdientRect(hwnd, &mrect);

23 FillRect(hDC, &mrect, hbBkBrush);

24 x =y =0;

25 for (int ix =0; ix <len; ix++){

26 Get Char BmpOf f set (& c, (char) Text[ix], CharacterWdt h,

27 Char act er XSpaci ng, Char act er Hei ght, Char act er YSpaci ng) ;
28 BitBlt (hDC, x, y, (CharacterWdth + Character XSpaci ng),

29 (Char act er Hei ght +Char act er YSpaci ng), dcMenory, rc.left,
30 rc.top, SRCCOPY);

31 X += CharacterWdth + Charact er XSpaci ng;

32 char count ++;

33 i f ((charcount == MaxXCharacters) && MaxYCharacters == 1)
34 br eak;

35 el se if ((charcount == MaxXCharacters) && MaxYCharacters > 1)
36 {

37 if (linecount == MaxYChar acters)

38 br eak;

39 x = charcount = 0;

40 y += CharacterHei ght + CharacterYSpaci ng;

121.The exact values are: RGB(63,181,255), RGB(23,64,103), and RGB(0,0,0).

Building custom controls 259

41 | i necount ++;

42 }

43 }

44 EndPai nt (hwnd, &ps) ;

45 Sel ect Obj ect (dcMenory, ol dBi t map) ;
46 Del et eDC(dcMenory);

47 Del et eObj ect (bnp);

48 Del et eObj ect (hbBkBr ush) ;

}

The first thing our procedure doesis to obtain a device context from Windows (2). This device
context is already clipped to the area we should draw. We suppose that the text of the lcd is
stored in the variable “ Text”, and we get its length (3).

To make the trandation from the colors in the bitmap to the colors of our Icd window we use
the primitive CreateMappedBitmap, that translates a bitmap with a set of source colorsinto a
bitmap with the colors tranglated according to atrandation table. Thistableis prepared in lines
12 to 17, then passed as argument to the API.

Now we have to create our memory device context. We make a compatible context in line 19,
and then select into it the bitmap we have just obtained, after color transation. We will use this
memory bitmap to copy bits into our display.

Before that, however, we make a solid brush and fill the whole window with the background
color (lines 21-23).

For each character in our text, we do:

1 Calculate a rectangle with the position in our memory bitmap of the bits of the given
character. Since we assume that all characters have the same width, it is a simple
multiplication of a known constant by the width of the characters. We leave that calculation
to the GetCharBmpOffset function (lines 26-27).

2 Using that rectangle, we copy the bits from our memory bitmap to the display using the
BitBIt API (lines 28-30).

3 Therest of the lines in the loop updates the position of the destination, and take care of
advancing to the next line.

4 Lines 44-48 concern the cleanup. We tell windows that we are finished with drawing
using the EndPaint APl (line 44). We deselect our bitmap from the memory device context
(line 45), then we delete the memory DC. Note that we must do thingsin that order, since a
bitmap can't be deleted if it is selected in aDC. Then, we delete the background brush we
created.

260 Windows programming with lcc-win32

2.16 The Registry

Theregistry stores datain a hierarchically structured tree. Each node in the tree is called a key.
Each key can contain both sub keys and values. Sometimes, the presence of a key is al the
data that an application requires; other times, an application opens a key and uses the values
associated with the key. A key can have any number of values, and the values can be in any
form. Registry values can be any of the following types:

e Binary data

* 32 bit numbers

* Null terminated strings

» Arraysof null terminated strings. The array ends with two null bytes.

» Expandable null terminated strings. These strings contain variables like %°ATHY or
%M ndi r %that are expanded when accessed.

2.16.1 The structure of the registry

To view and edit the registry you can use the system tool “regedit”. When it starts, it showsthe
basic structure of the root trees:

&' Registry Editor =g =|
File Edit W%iew Fawvorites Help
= B My Computer MName Type Data
#--i3 HEEY_CLASSES_ROOT [Bf{Default) i REG_SZ (value not set)

%20 HKEY_CURRENT_USER
[HKEY_LOCAL_MACHINE
[HKEY_USERS

[HKEY_CURRENT _COMFIG

Saael: T~

< N

My Computer|HKEY _CLASSES_ROOT

1 HKEY_CLASSES ROOT. Registry entries under this key define types (or classes) of
documents and the properties associated with those types. Shell and COM applications use
the information stored under this key. File viewers and user interface extensions store their
OLE class identifiers in HKEY_CLASSES_ROOT, and in-process servers are registered in this
key. To change the settings for the interactive user, store the changes under
HKEY_CURRENT _USER\ Sof t war e\ O asses rather than HKEY_CLASSES ROOT.

2 HKEY_CURRENT_USER. Registry entries under this key define the preferences of the
current user. These preferences include the settings of environment variables, data about
program groups, colors, printers, network connections, and application preferences. This
key makesit easier to establish the current user's settings; the key mapsto the current user's
branch in HKEY_USERS. In HKEY_CURRENT USER, software vendors store the current user-
specific preferences to be used within their applications. Lcc-win32, for example, creates
the HKEY_CURRENT_USER\ Sof twar e\ | cc key for its applications to use, with each
application creating its own subkey under the Icc key.

3 HKEY_LOCAL_MACHI NE. Registry entries under this key define the physical state of
the computer, including data about the bus type, system memory, and installed hardware
and software. It contains subkeys that hold current configuration data, including Plug and
Play information (the Enum branch, which includes a complete list of all hardware that has
ever been on the system), network logon preferences, network security information,

The Registry 261

software-related information (such as server names and the location of the server), and
other system information. Note that you must be the administrator user to be able to modify
thistree.

4 HKEY_USERS. Registry entries subordinate to this key define the default user
configuration for new users on the local computer and the user configuration for the current
user.

5 HKEY_CURRENT_CONFI G Contains information about the current hardware profile of
the local computer system. The information under HKEY_CURRENT_CONFI G describes only
the differences between the current hardware configuration and the standard configuration.
Information about the standard hardware configuration is stored under the Software and
System keys of HKEY_LOCAL_MACHI NE. Actudly, this key is an alias for
HKEY LOCAL_MACHI NE\ Syst eml Curr ent Cont rol Set\ Har dware Profil es\Current.

This keys provide you with an entry point into the registry. To open a key, you must supply a
handle to another key in the registry that is already open. The system defines predefined keys
that are always open. Those keys help you navigate in the registry and make it possible to
develop tools that alow a system administrator to manipulate categories of data. Applications
that add data to the registry should always work within the framework of predefined keys, so
administrative tools can find and use the new data.

2.16.2 Enumerating registry subkeys

The following example demonstrates the use of the RegQuerylnfoK ey, RegEnumKeyEx, and
RegEnumValue functions. The hKey parameter passed to each function is a handle to an open
key. This key must be opened before the function call and closed afterward.

/I QueryKey - Enumerates the subkeys of key, and the associated
/I values, then copies the information about the keys and values
/I into a pair of edit controls and list boxes.

/I hDlg - Dialog box that contains the edit controls and list boxes.
Il hKey - Key whose subkeys and values are to be enumerated.
voi d QueryKey(HWND hDl g, HANDLE hKey)

{
CHAR achKey[MAX_PATH] ;
CHAR achd ass[MAX PATH = ""; [/ buffer for class nane
DWORD cchd assName = MAX PATH, // size of class string
DWORD cSubKeys; /1 nunber of subkeys
DWORD cbMaxSubKey; /1 |l ongest subkey size
DWORD cchMaxd ass; /1 longest class string
DWORD cVal ues; /1 nunmber of values for key
DWORD cchMaxVal ue; /1 longest val ue nane
DWORD cbMaxVal ueDat a; /1 longest value data
DWORD cbSecurityDescriptor; // size of security descriptor
FILETIME ftLastWiteTime; /1 last wite tine
DWORD i, j;

DWORD r et Code, ret Val ue;

CHAR achVal ue[MAX_VALUE NAME] ;
DWORD cchVal ue = MAX VALUE NAME;
CHAR achBuff[80];

// Get the class nane and the val ue count.

RegQuer yl nf oKey(hKey, /'l key handl e
achd ass, /1 buffer for class name
&cchd assNane, /1 size of class string

NULL, /1l reserved

262 Windows programming with lcc-win32

&cSubKeys, /1 nunber of subkeys
&cbMaxSubKey, /1 |l ongest subkey size

&cchMaxd ass, /1 longest class string

&cVal ues, /1l nunmber of values for this key
&cchMaxVal ue, /1 longest val ue nane

&cbMaxVal uebDat a, /1 longest value data

&cbSecuri tyDescri ptor, /1 security descriptor

& tLast WiteTinme); /1 last wite tine

Set DIl gl t enTText (hDl g, | DE_CLASS, achd ass);
SetDigltem nt (hDl g, | DE_CVALUES, cVal ues, FALSE);

SendMessage(Get Dl gltem(hDl g, |DL_LI STBOX),
LB_ADDSTRING 0, (LONG "..");

/1 Enunmerate the child keys, until RegEnunKeyEx fails. Then
/1 get the nane of each child key and copy it into the |ist box.

Set Cur sor (LoadCur sor (NULL, IDC WAIT));
for (i = 0, retCode = ERROR_SUCCESS;
ret Code == ERROR SUCCESS; i ++)

{
r et Code = RegEnunKeyEx(hKey,
I,
achKey,
MAX_PATH,
NULL,
NULL,
NULL,
& tLast WiteTine);
if (retCode == (DWORD) ERROR_SUCCESS)
{
SendMessage(Get Dl gltem(hDl g, | DL_LI STBOX),
LB _ADDSTRI NG, 0, (LONG achKey);
}
}

Set Cur sor (LoadCursor (NULL, |1DC _ARROW);

/l Enumerate the key values.
Set Cur sor (LoadCur sor (NULL, IDC WAIT));

i f (cVal ues)

{
for (j = 0, retValue = ERROR _SUCCESS;

j < cVal ues; | ++)
{

cchVal ue = MAX VALUE NAME;
achval ue[0] = '"\0';

ret Val ue = RegEnunmval ue(hKey, j, achVval ue,
&cchVal ue,
NULL,
NULL, /'l &wType,
NULL, /] &bDat a,

NULL) ; /1 &bcDat a
if (retvalue == (DWORD) ERROR SUCCESS)
{

achBuff[0] = "'\0";

// Add each value to a |list box.

The Registry 263

if (!lIstrlen(achVal ue))
| strcpy(achVal ue, "<NO NAME>");
wsprintf(achBuff, "%) % ", j, achVal ue);
SendMessage(Get Dl gltem(hDl g, | DL_LI STBOX2) ,
LB _ADDSTRI NG, 0, (LONG achBuff);

}

Set Cur sor (LoadCur sor (NULL, | DC_ARROW) ;
}

2.16.3 Rules for using the registry

Although there are few technical limits to the type and size of data an application can storein
the registry, certain practical guidelines exist to promote system efficiency. An application
should store configuration and initialization data in the registry, and store other kinds of data
elsewhere.

Generally, data consisting of more than one or two kilobytes (K) should be stored as afile and
referred to by using a key in the registry rather than being stored as a value. Instead of dupli-
cating large pieces of datain the registry, an application should save the data as afile and refer
to the file. Executable binary code should never be stored in the registry. For instance, Icc-
win32 stores just the name of the path to the Icc installation directory in the registry, and all
other datais stored in filesin the \lcc\lib directory. This saves registry space.

A value entry uses much less registry space than a key. To save space, an application should
group similar data together as a structure and store the structure as a value rather than storing
each of the structure members as a separate key. (Storing the data in binary form alows an
application to store datain one value that would otherwise be made up of several incompatible

types.)

264 Windows programming with lcc-win32

2.16.4 Interesting keys

Theregistry isan endless source of “useful tips’. Thereisfor instance, anice site that provides

Functionality Key

Change the Location of Systemand | HKEY_CURRENT_USER\Software\ Microsoft \Win-
Specia Folders dows\CurrentVersion \Explorer \User Shell Folders

Configure CoolSwitch Application | HKEY _CURRENT_USER\Control Panel\Desktop
Swapping Value Name: Cool Switch, Cool SwitchColumns,
Cool Switch isafeature available Cool SwitchRows

within Windows to quickly switch
between tasks and programs by _
us'ng the Alt + TAB keys Value Data: (0=d|§abled, 1=enab|ed)

Modify the value named "Cool Switch" and set it to "0" to
disable task switching or "1" to enableit.

To change the size of the Cool Switch popup modify the val-
ues named " Cool SwitchColumns* and "Cool SwitchRows".

Logoff or restart Windows for the changes to take effect.

Change the Registered Owner and | Windows 95/98

Organization HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Win-
dows\CurrentVersion

Windows NT/2000/XP
HKEY_LOCAL_MACHINE\SOFTWARE\ Microsoft\Win-
dows NT\CurrentVersion

Changetheversion of thelcc-win32 | HKEY_CURRENT_USER\softwarellcc
compiler to anew location (or to an
older/newer version)

Data Type: REG_SZ (String Value)

Disabli ng toolti ps Although Tool Tips may be helpful, you might find it annoy-
ing. To disable it, go to HKEY_USERS\.DEFAULT\Control
Panel\Desktop. On the right pane, double-click UserPrefer-
encemask and change the value to 3E 00 00 00. To enable it
again, change the value back to BE 00 00 00.

a “Windows registry guide’: http://www.winguides.com/registry, where | took some of the
examples above. They distribute (for free) avery interesting guide in windows help format full
of tips like that. Another similar site is http://www.activewin.com/tips/reg/index.shtml.

2.17 Etc.

Etc. 265

At last count, there was around 17000 APIs in the file \Icc\lib\apilist.txt. This file is used by
the linker to figure out in which library a given API is found. You can look at it to get an
impression of the richness of the windows API. There are functions for many kinds of stuff,
and here | will just try to give a very superficial overview of al that. You are invited to down-
load the SDK documentation (for free) from the Microsoft MSDN site.

Lcc-win32 gives you access to al this:

Clipboard

Just that. A common repository for shared data. Quite afew
formats are available, for images, sound, text, etc.

Communications

Read and write from COM ports.

Consoles and text

The “msdos’ window improved.

mode support

Debug Help Why not? Write a debugger. Any one can do it. It is quite
Interesting as a program.

Devicel/O Manage all kind of cards with Devicel OControl.

Dynamically linked
libraries (DLLS)

Yes, | know. Itishotin DLL Hell. But at least you get separate
modules, using binary interfaces that can be replaced one by one.
This can lead to confusion, but it is inherent in the method.

Files The disk is spinning anyway. Use it!
File Systems Journaling file systems, NTFS, FAT32. Asyou likeit.
Graphics Windows are graphical objects. The GDI machinery allowsyou to

draw simple objects with lines or regions, but you can go to higher
dimensions with DirectX or OpenGl.

Handles and Objects

Objects that the system manages (windows, files, threads, and
many others) are described by a numerical identifier. A handleto
the object.

Hooks

Install yourself in the middle of the message queue, and hear what
is being passed around: you receive the messages before any other
window receives them.

I nter-Process Com-

Client/Server, and many other forms of organizing applications are

munications available. You have al the primitives to do any kind of

architecture. Synchronization, pipes, mailsots, you nameit.
Mail Send/receive mail messages using the Messaging API.
Multimedia

Sound, video, input devices.

266 Windows programming with lcc-win32

Network Yes, TCP/IP. Send data through the wire; develop your own
protocol on top of the basic stuff. You have all the toolsin here.

Virtual memory Use those megabytes. They are there anyway. Build huge tables of
data. Use virtual memory, reserve contiguous address space, €tc.

Registry. A global database for configuration options.t

Services Run processes in the background, without being bothered by a

console, window, or any other visible interface.

Shell programming | Manage files, folders, shortcuts, and the desktop.

Terminal services Terminal Services provides functionality similar to aterminal-
based, centralized host, or mainframe, environment in which
multiple terminals connect to a host computer. A user can log on at
aterminal, and then run applications on the host compuiter,
accessing files, databases, network resources, and so on. Each
terminal session isindependent, with the host operating system
managing conflicts between multiple users contending for shared
resources

Windows Yes, Windows is about windows. You get a huge variety of
graphical objects, from the simple check box to sophisticated, tree-
displaying stuff. An enormous variety of things that wait for you,
ready to be used.

1. MediaControl | nterface

2.17.1 Clipboard

The datain the clipboard is tagged with a specific format code. To initiate the data transfer to
or from the clipboard you use OQpend i pboar d, Get Cl i pboar dDat a allows you to read
it, Set Cl i pboar dDat a to write it, etc. You implement this way the famous Cut, Copy and
Paste commands that are ubiquitous in most windows applications. Predefined data formats
exist for images (CF_BI TMAP, CF_METAFI LEPI CT, CF_TI FF), sound (CF_WAVE,
CF_RI FF), text (CF_TEXT), pen data (CF_PENDATA), alist of files (CF_HDROP) and sev-
eral others.

When you pass a block of data to the clipboard, that memory should be allocated, since win-
dows expects that it can free it when it is no longer used. Since it is the clipboard that should
free the allocated memory, you can’'t use the standard allocation functions, you should use the
GlobalAlloc API to get memory to be used by the clipboard.

To transfer a character string to the clipboard then, we could use the following function:

i nt CopyTod i pboard(char *str, HAND hwnd)
{

int len = strlen(str)+1;
HANDLE h;

h = d obal Al | oc(GIND| GVEM DDESHARE, | en) ;
if (h == (HANDLE) 0)

Etc. 267

return O;
txt = d obal Lock(h);
strepy(txt,str);
if (Opendipboard(hwnd)) {
Enpt yd i pboard();
Set d i pboar dDat a(CF_TEXT, h) ;
d osed i pboard();
return TRUE;

}
return FALSE;

}

We allocate space for our character string, then obtain a pointer from the given handle. We can
then copy the data into this memory block.

We obtain access to the clipboard by opening it giving it the handle of awindow that will own
the clipboard. If the operation succeeds, we clear the previous contents, set our dataand we are
done.

2.17.2 Serial communications.

You use the same primitives that you use for files to open a communications port. Here is the
code to open COM 1 for instance:

HANDLE hComm
char *gszPort = “COWL";
hComm = CreateFil e(gszPort,
GENERI C_READ | GENERI C_WRI TE,
0,
0,
OPEN_EXI STI NG,
FI LE_FLAG_OVERLAPPED,
0);
You use that handle to call ReadFi | e and Wi t eFi | e APIs. Communications events are
handled by SetCommMask, that defines the events that you want to be informed about (break,
clear-to-send, ring, rxchar, and others). You can change the baud rate managing the device
control block (Set Commt at e), etc. As with network interfaces, serial line programming is
ablack art.

2.17.3 Files

Besides the classical functions we have discussed in the examples, Windows offers you more
detailed file control for accessing file properties, using asynchronous file input or output, for
managing directories, controlling file access, locking, etc. In a nutshell, you open a file with
CreateFile, read from it with ReadFile, write to it with WriteFile, close the connection to it
with CloseHandle, and access its properties with GetFileAttributes. Compared with the smple
functions of the standard library those functions are more difficult to use, since they require
more parameters, but they allow you a much finer control. Hereisavery small list of some of
the file functions provided. For more information read the associated documentation for the
functions given here.

268 Windows programming with lcc-win32

One thing you will wonder is how do you get a HANDLE starting with a FILE pointer. We

Function name

Description

CreateFile Opens or creates afile. It can open a COM port (serial communica-
tions) or a pipe.
CloseHandle Useit to close afile.

ReadFile or ReadFi-
|eEx

Reads data from afile, starting at the current file pointer. Both syn-
chronous and asynchronous versions exist.

WriteFile or Write-
FileEx

Writes datato afile, starting at the current file pointer. Both syn-
chronous and asynchronous versions exist.

CopyFile or CopyFi-
leEx

Copy onefile to another.

MoveFile or Move- Moves afile.
FileEx
DeleteFile Deletesafile.

GetFileAttributes or
GetFileAttributesEx

SetFileAttributes or
SetFileATtributesEx

Reads the file attributes like if its read only, hidden, system, etc.

Sets the fil e attributes

GetFileSize Returns the size of afile.
FindFirstFile and Searches for afile matching a certain wildcard.
FindNextFile

discussed above files and used always a FILE structure as specified in <stdio.h>. To obtain a
HANDLE that can be used with the windows file functions you write:

#i ncl ude <w ndows. h>

#i ncl ude <stdio. h>

FILE *fptr;

HANDLE h = (HANDLE) get osfhandl e(_fileno(fptr));

2.17.4 File systems

These days files are taken for granted. File systems not. Modern windows file systems allow
you to track file operations and access their journal data. You can encrypt data, and at last
under windows 2000 Unix’s mount operation is recognized. You can establish symbolic links
for files, i.e, consider afile as a pointer to another one. This pointer is dereferenced by thefile
system when accessing the link.

Windows supports several file systems:

1) NTFESNTFS is the preferred file system on Windows. It was designed to address the
requirements of high-performance file servers and server networks as well as desktop
computers, and in doing so, address many of the limitations of the earlier FAT16 and
FAT32 file systems.

Etc. 269

2) FAT32 The File Allocation Table (FAT) file system organizes data on fixed disks and
floppy disks. The main advantage of FAT volumes s that they are accessible by MS-DOS,
Windows, and OS/2 systems. FAT is the only file system currently supported for floppy
disks and other removable media. FAT32 is the most recently defined FAT-based file
system format, and it's included with Windows 95 OSR2, Windows 98, and Windows
Millennium Edition. FAT32 uses 32-hit cluster identifiers but reserves the high 4 bits, soin
effect it has 28-bit cluster identifiers.

3) UDF file system. The implementation is compliant with 1SO 13346 and supports UDF
versions 1.02 and 1.5. OSTA (Optical Storage Technology Association) defined UDF in
1995 as aformat to replace CDFS for magneto-optical storage media, mainly DVD-ROM.
UDF isincluded in the DVD specification and is more flexible than CDFS.

2.17.5 Graphics

GDI isthe lowest level, the basic machinery for drawing. It provides you:
» Bitmap support
» Brush support for painting polygons.

» Clipping that allows you to draw within the context of your window without worrying
that you could overwrite something in your neighbor’s window. Filled shapes, polygons
ellipses, pie rectangle, lines and curves.

» Color management, palettes etc.

e Coordinate spaces, and transforms.

» Text primitives for text layout, fonts, captions and others.
* Printing

But higher levels in such a vast field like graphics are surely possible. Lcc-win32 offers the
standard jpeg library of Intel Corp to read/write and display jpeg files. Under windows you
can do OpenGl, an imaging system by Silicon Graphics, or use DirectX, developed by
Microsoft.

2.17.6 Handles and Objects

An object isimplemented by the system with a standard header and object-specific attributes.
Since al objects have the same structure, there is a single object manager that maintains all
objects. Object attributes include the name (so that objects can be referenced by name), secu-
rity descriptors to rule access to the information stored in those objects, and others, for
instance properties that allow the system to enforce quotas. The system object manager alows
mapping of handles from one process to another (the Dupl i cat eHandl e function) and is
responsible for cleanup when the object handle is closed.

2.17.7 Inter-Process Communications
You can use the following primitives:

« Atoms. An atom table is a system-defined table that stores strings and corresponding
identifiers. An application places a string in an atom table and receives a 16-bit integer,
called an atom that can be used to access the string. The system maintains a global atom

270 Windows programming with lcc-win32

table that can be used to send information to/from one process to another: instead of
sending a string, the processes send the atom id.

* Clipboard. Thisis the natural way to do inter-process communications under windows:
Copy and Paste.

« Maildots. A maildlot is a pseudofile; it resides in memory, and you use standard Win32
file functions to access it. Unlike disk files, however, maildots are temporary. When all
handles to a mailslot are closed, the mailslot and all the data it contains are deleted. A
mailslot server is a process that creates and owns a mailslot. A mailslot client is a
process that writes a message to a mailslot. Any process that has the name of a mailslot
can put a message there. Maildlots can broadcast messages within a domain. If severd
processes in a domain each create a mailslot using the same name, the participating
processes receive every message that is addressed to that mailslot and sent to the
domain. Because one process can control both a server mailslot handle and the client
handle retrieved when the mailslot is opened for a write operation, applications can
easily implement a simple message-passing facility within a domain.

» Pipes. Conceptualy, a pipe has two ends. A one-way pipe allows the process at one end
to write to the pipe, and allows the process at the other end to read from the pipe. A two-
way (or duplex) pipe allows a process to read and write from its end of the pipe.

* Memory mapped files can be used as a global shared memory buffer.

2.17.8 Mail

The Messaging API (MAPI) allows you to program your messaging application or to include
this functionality into your application in a vendor-independent way so that you can change
the underlying message system without changing your program.

2.17.9 Multimedia

Audio. You can use Mixers, MIDI, and waveform audio using MCI.DirectSound offers amore
advanced sound interface.

Input devices. You can use the joystick, precise timers, and multimedia file input/output.

Video. Use AVI filesto store video sequences, or to capture video information using a simple,
message-based interface.

2.17.10 Network

Windows Sockets provides you will all necessary functions to establish connections over a
TCP/IP network. The TCPIP subsystem even supports other protocols than TCPIP itself. But
whole books have been written about this, so here | will only point you to the one | used when
writing network programs. Ralph Davis “Windows NT Network programming”, from Addi-
son Wesley.

For an example of network functions see “ Retrieving afile from the internet” page 279.

2.17.11 Hooks

A hook is a mechanism by which a function can intercept events (messages, mouse actions,
keystrokes) before they reach an application. The function can act on events and, in some
cases, modify or discard them. This filter functions receive events, for example, a filter func-
tion might want to receive all keyboard or mouse events. For Windowsto call afilter function,

Etc. 271

the filter function must be installed—that is, attached—to an entry point into the operating
system, ahook (for example, to a keyboard hook). If a hook has more than one filter function
attached, Windows maintains a chain of those, so several applications can maintain several
hooks simultaneously, each passing (or not) its result to the othersin the chain.

2.17.12 Shell Programming

Windows provides users with access to awide variety of objects necessary for running appli-
cations and managing the operating system. The most numerous and familiar of these objects
are the folders and files, but there are also a number of virtual objects that allow the user to do
tasks such as sending files to remote printers or accessing the Recycle Bin. The shell organizes
these objects into a hierarchical name space, and provides users and applications with a con-
sistent and efficient way to access and manage objects.

2.17.13 Services

A service application conforms to the interface rules of the Service Control Manager (SCM).
A user through the Services control panel applet can start it automatically at system boot, or by
an application that uses the service functions. Services can execute even when no user is
logged on to the system

2.17.14 Terminal Services

When auser logs on to a Terminal Services-enabled computer, a session is started for the user.
Each session isidentified by a unique session ID. Because each logon to a Terminal Services
client receives a separate session 1D, the user-experience is similar to being logged on to mul-
tiple computers at the same time; for example, an office computer and a home computer. The
console session on the Terminal Server is assigned the session ID 0.

The Remote Desktop Protocol (RDP) provides remote display and input capabilities over net-
work connections for Windows-based applications running on a server. RDP is designed to
support different types of network topologies and multiple LAN protocols.

On the server, RDP uses its own video driver to render display output by constructing the ren-
dering information into network packets using RDP protocol and sending them over the net-
work to the client. On the client, RDP receives rendering data and interprets the packets into
corresponding graphics device interface API calls. For the input path, client mouse and key-
board events are redirected from the client to the server. On the server, RDP uses its own vir-
tual keyboard and mouse driver to receive these keyboard and mouse events.

To optimize performance, it is good practice for applications to detect whether they are run-
ning in a Terminal Services client session. For example, when an application is running on a
remote session, it should eliminate unnecessary graphic effects like:

1) Splash screens. Transmitting a splash screen to a Terminal Services client consumes extra
network bandwidth and forces the user to wait before accessing the application.

2) Animations which consume CPU and network bandwidth

3) Direct input or output to the video display.

You can detect if you are running in aremote session by using the following code:

BOOL | sRenot eSessi on(voi d)
{

}

return Get Systemvetrics(SM REMOTESESSI ON) ;

272 Windows programming with lcc-win32

2.17.15 Windows

Hereis ashort overview of the types of controls available to you.

Control Description
Edit Single or multi line text editor.
Checkbox For a set of multiple choices
Listbox For displaying lists
Combobox A list + an edit control

Group boxes, static text, filled rectangles. Used for labels,

Static grouping and separation.

Push buttons Used to start an action

Radio buttons Used for choosing one among several possible choices.
Scroll bars Used for scrolling a view.

Animation Display AV files

Date and Time Used to input dates

Headers Allow the user to resize a column in atable

List view Used to display images and text.

Used to make a scrollable region that contains other controls.

Pager You scroll the controls into view with the pager.

Used in lengthy operations to give a graphic idea of how much

Progress bar time is still needed to finish the operation.

Used to pack several dialog boxesinto the same place, avoiding

Property Sheets user confusion by displaying fewer items at the same time.

Allows editing text with different typefaces (bold, italic) with
Richedit different fonts, in different colors... The basic building block to
build a text processor.

Status bars Used to display statusinformation at the bottom of a window

Tab controls The building block to make property sheets.

Toolbar controls | A series of buttons to accelerate application tasks.

Show explanations about an item currently under the mousein a

Tooltips .
pop-up window.

Trackbars Analogical volume controls, for instance.

Advanced windows techniques 273

Tree view Displays hierarchical trees.

2.18 Advanced windows techniques

Windows is not only drawing of course. It has come along way since windows 3.0, and is now
a sophisticated operating system. You can do things like memory-mapped files for instance,
that formerly were possible only under UNIX. Yes, “mmap” exists now under windows, and it
isvery useful.

2.18.1 Memory mapped files

Memory mapped files allow you to see a disk file as a section of RAM. The difference
between the disk and the RAM disappears. You can just seek to a desired position by incre-
menting a pointer, as you would do if you had read the whole file into RAM, but more effi-
ciently. It isthe operating system that takes care of accessing the disk when needed. When you
close the connection, the operating system handles the clean up.

Here is a small utility that copies a source disk file to a destination using memory-mapped
files.

int main (int argc, char **argv)
{
i nt fResult = FAI LURE;
ULARGE_| NTEGER |i SrcFil eSize, // Seel??
| i Byt esRenmi ni ng,
i MapSi ze,
i Offset;

HANDLE hSrcFil e I NVALI D_HANDLE_VALUE,

hDst Fi |l e = | NVALI D_HANDLE_VALUE,
hSr cMap = 0,
hDst Map = 0;
BYTE * pSrc = 0,
* pbst = 0;
char * pszSrcFil eName = 0,
* pszDstFil eNane = O;
if (argc '=3) // test if two argunments are given in the command |ine
{
printf("usage: copyfile <srcfile> <dstfile>\n");
return (FAI LURE);
}
pszSrcFil eNane = argv[argc-2]; // Src is second to |ast argunent

122. ULARGE_INTEGER is defined in the windows headers like this:
typedef union _ULARGE | NTEGER ({
struct {DWORD LowPart; DWORD Hi ghPart;};
| ong | ong QuadPart;
} ULARGE | NTEGER, * PULARGE | NTEGER;

The union has two members: a anonymous one with two 32 bit integers, and another with a long long
integer, i.e. 64 bits. We can access the 64-bit integer’s low and high part as 32 bit numbers. Thisis useful for
functions returning two resultsin a 64 bit number.

274 Windows programming with lcc-win32

pszDstFil eNane = argv[argc-1]; // Dst is the |last argunent
[* We open the source file for reading only, and make it available for other processes
even if we are copying it. We demand to the operating system to ensure that the file
exists already */
hSrcFile = CreateFile (pszSrcFil eNane,
GENERI C READ, //Source file is opened for reading only
FI LE_SHARE READ, // Shareabl e
0, OPEN_EXISTING, 0, 0);
i f (1 NVALI D_HANDLE VALUE == hSrcFil e)
{
printf("couldn't open %\n", pszSrcFil eNane);
got o DONE;

/* We open the destination file for reading and writing with no other access allowed.
We demand the operating system to create the file if it doesn’t exist.
*/
hDstFile = CreateFil e (pszDstFil eNane,
GENERI C_READ| GENERI C_ WRI TE, O,
0, CREATE_ALWAYS, 0, 0);
i f (1 NVALI D_HANDLE VALUE == hDstFil e)
{
printf("couldn't create %\n", pszSrcFil eNane);
got o DONE;
}
/*
We need to query the OS for the size of this file. We will need this information later when we
create the file-mapping object. Note that we receive a 64 bit number splitted in two. We receive a
32-bit integer containing the result’s lower 32 bits, and we pass to the function the address
where it should put the remaining bits! Well, if you find this interface strange (why not return a 64
bit integer?) please do not complain to me. Note too the strange form of the error checking
afterwards: we check for a return value of all bits set to one, and check the result of the
GetLastError() API.
*/
Set Last Error (0);
liSrcFileSize. LowPart = GetFil eSize(hSrcFil e,
&l i SrcFileSize. H ghPart)
i f (OXFFFFFFFF == |i SrcFil eSi ze. LowPart &&
Get LastError() != NO ERROR){
printf("couldn't get size of source file\n");
got o DONE;
}
/*
Special case: If the source file is zero bytes, we don't map it because there's no need to and
anyway CreateFileMapping cannot map a zero-length file. But since we've created the
destination, we've successfully "copied" the source.

*/
if (0O ==1iSrcFileSize. QadPart)
{
f Result = SUCCESS;
got o DONE;
}
/*

Map the source file into memory. We receive from the OS a HANDLE that corresponds to the
opened mapping object.
*/

hSrcMap = CreateFi |l eMapping (hSrcFil e,

0, PACGE_READONLY, 0, 0, 0);
if (!'hSrcMap){
printf("couldn't map source file\n");
got o DONE;

Advanced windows techniques 275

}
/*
Now we create a file mapping for the destination file using the size parameters we got above.
*/
hDst Map = CreateFi | eMapping (hDstFile, O,
PAGE_READVRI TE,
IiSrcFileSize. H ghPart,
liSrcFileSize. LowPart, 0);

i f (!hDst Map)

{
DEBUG PRI NT("coul dn't map destination file\n");
got o DONE;

}

/*
Now that we have the source and destination mapping objects, we build two map views of the
source and destination files, and do the file copy.
To minimize the amount of memory consumed for large files and make it possible to copy files
that couldn't be mapped into our virtual address space entirely (those over 2GB), we limit the
source and destination views to the smaller of the file size or a specified maximum view size
(MAX_VIEW_SIZE--which is 96K).
If the size of file is smaller than the max view size, we'll just map and copy it. Otherwise, we'll
map a portion of the file, copy it, then map the next portion, copy it, etc. until the entire file is
copied.
MAP_SIZE is 32 bits because MapViewOfFile requires a 32-bit value for the size of the view.
This makes sense because a Win32 process's address space is 4GB, of which only 2GB (2731)
bytes may be used by the process. However, for the sake of making 64-bit arithmetic work below
for file offsets, we need to make sure that all 64 bits of limpest are initialized correctly.
*/
| i Byt esRemai ni ng. QuadPart = |i SrcFil eSi ze. QuadPart ;
/* This assignnment sets all 64 bits to this value */
i MapSi ze. QuadPart = MAX VI EW SI ZE;

do {
/* Now we start our copying loop. The “min” macro returns the smaller of two numbers. */
i MapSi ze. QuadPart = nmin(li Byt esRenai ni ng. QuadPart,
i MapSi ze. QuadPart)

liOffset.QuadPart = |i SrcFil eSi ze. QuadPart -
| i Byt esRemai ni ng. QuadPart ;

pSrc = (BYTE *) MapVi ewOX Fi | e(hSrcMap, FI LE_MAP_READ,
| i Offset. HighPart,
liOFfset. LowPart, |iMapSize. LowPart);
pDst = (BYTE *)MapVi ewX Fi | e(hDst Map, FI LE_MAP_WRI TE,
| i Offset. HighPart,
liOFfset. LowPart, |iMapSize. LowPart);
/* We use nenctpy to do the actual copying */
mencpy(pDst, pSrc, |iMapSize. LowPart);

UnmapViewdf Fil e (pSrc);
UnmapVi ewOf Fil e (pDst);

| i Byt esRemai ni ng. QuadPart -= |i MapSi ze. QuadPart ;

}
whil e (liBytesRenai ni ng. QuadPart > 0);

f Result = SUCCESS;
DONE:
[* We are done, Note the error treatment of this function. We use gotos to reach the end of the
function, and here we cleanup everything. */

276 Windows programming with lcc-win32

if (hDst Map) Cl oseHandl e (hDst Map);
i f(hDstFile!=INVALI D HANDLE VALUE) C oseHandl e(hDstFile);
if (hSrcMap) C oseHandl e(hSrcMap);

if (hSrcFile !'= I NVALI D_HANDLE VALUE)
O oseHandl e (hSrcFile);

if (fResult != SUCCESS)

{
printf("copying % to % failed.\n",
pszSrcFil eNane, pszDstFil eNane);
Del eteFil e (pszDstFil eNane);

}

return (fResult);

}

Summary: To get a pointer to a memory mapped file do the following:
e Openthefile with CreateFile

» Create a mapping object with CreateFileMapping using the handle you receive from
CreateFile.

* Map aportion (or all) of the file contents, i.e. create aview of it, with MapViewOfFile.

2.18.2 Letting the user browse for a folder: using the shell

A common task in many programming situations is to let the user find a folder (directory) in
the file system hierarchy. When you want to search for certain item, for instance, or when you
need to allow the user to change the current directory of your application. The windows shell
offers a ready-made set of functions for you, and the resulting function is quite short. Let's
first seeits specification, i.e. what do we want as an interface to this function.

Required is a character string where the result will be written to, and atitle for the user inter-
face element. The result should be 1 if the path contains a valid directory, O if there was any
error, the user cancelled, whatever.

To be clear about the specifications let’s ook at this example:

int mai n(void)

{
char pat h[MAX_PATH] ;
if (BrowseDir("Choose a directory", path)) {
printf("You have choosen %s\n", path);
}
el se printf("action cancelled\n");
return O;
}

How do we write “BrowseDir” in windows?
Hereitis:

#i ncl ude <shl obj. h>
#i ncl ude <stdi o. h>

i nt BrowseDir(unsigned char *Title,char *result)
{

LPMALLOC pMal | oc; (1)

BROWSEI NFO br owsel nf o; (2)

LPI TEM DLI ST |tem DLi st; (3)

Advanced windows techniques 277

int r =0; (4)

if (S_OK !'= SHGet Mal | oc(&pMal | oc)) (5)
return O;
menset (&r owsel nf o, 0, si zeof (BROABEI NFO)) ; (6)
br owsel nf 0. hwndOmer = Get Acti veW ndow(); (7)
br owsel nf o. pszDi spl ayNane = result; (8)
browsel nfo.lpszTitle = Title; (9)
browsel nfo. ul Fl ags = Bl F_NEWI ALOGSTYLE; (10)
Item DLi st = SHBrowseFor Fol der (&browsel nfo); (11)
if (ltem DList !'= NULL) {
*result = 0;
i f (SHGet Pat hFrom DLi st(ltem DList,result))(12)
{
if (result[0]) r = 1;(13)
pMal | oc- >l pVt bl - >Free(pMal | oc, | tem DLi st); (14)
}
}
pMal | oc->| pVt bl - >Rel ease(pMal | oc); (15)
return r;

}
Small isn'tit?
Let’s seethe gory details.

We need a local variable that will hold a pointer to a shell defined function that will allocate
and release memory. The shell returns us a result that needs memory to exist. We need to free
that memory, and we have to take care of using the same function that the shell usesto allocate
memory. This pointer to an interface (the malloc interface) will bein our local variable pMal-
loc.

The shell needs information about the environment, and some pointers to put the results of the
interaction with the user. We will see more of this when we fill this structure below.

The shell uses alot of stuff, and we have to take care to avoid filling our brain with unending
details. What is an ITEMLIST? Actualy | haven't even bothered to read the docs about it,
since the only use | found isto passit around to other shell functions.

The result of the function isinitialized to zero, i.e. we will set thisresult to 1 only and only if
thereisavalid path in the buffer.

OK. Here we start. The first thing to do then, isto get the pointer to the shell alocator. If any-
thing goes wrong there, there is absolutely nothing we can do and the best thing is to return
immediately with a FAL SE result.

We have to clean up the structure (note that thisis alocal variable, so its contents are as yet
undefined). We use the primitive memset and set all members of the structure to zero. Thisisa
common idiom in C: clear all memory before using and assign to it a known value. Since the
default value of many structure members is zero, this easies the initialization of the structure
since we do not have to explicitly set them to NULL or zero.

We start the filling of the relevant members. We need to put the owner window handle in the
hwndOaner member. We get the handle of the current active window using a call to a win-
dows API.

The shell needs place to store the display name of the chosen path. Note that this is not what
we want (the full path) but just the last item in the path, i.e. the last directory. Why thisis so?
Because the user could choose a path like “My documents’, and in this case we could detect
that the user has chosen a “ standard well known name” for the directory. But we do not use

278 Windows programming with lcc-win32

thisfeature, and just give the shell some placein our... result variable. Since we overwrite this
data later, thisis harmless and avoids a new variable.1?3

We set the IpszTitle member to the value we passed in. Thisis atext that will be displayed at
the top of the user interface window that appears, and should remain the user what kind of
folder he/sheislooking for.

Asflags we just pass BFI D_USENEWJI , meaning that we want the shell to use the improved
user interface, with drag and drop, new folder, the possibility of deleting folders, whatever.

And we are done with the filling of the structure! We just have to call our famous
SHBr owseFor Fol der, and assign the result to ItemldList. Here is an image of the user
interface display that appearsin awindows 2000 machine; in other versions of windowsit will
look different. The user interface is quite sophisticated, and it is al at our disposal without
writing any code (well almost!). What is better; even if we had spent some months developing
a similar thing, we would have to maintain it, test it, etc. Note that you can transparently
browse the network, give a symbolic path like “My computer” or other goodies.

Browse For Folde gl 1|

Choose a direckary

:gj Ceskkop =
b E-_-], My Computer
+ L‘_S' 314 Floppy (A5
+-{=20 Local Disk [T
=== Lacal Disk (D)
+-{_] acrobat3
;I ankia
1 baip
| controlspy
;I cpatron
1 demo
| depends
1 detours

_| diff o
o4 | Cancel | Hew Falder |

If the call worked, i.e. if the user interface returns a valid pointer and not NULL, we should
trandate the meaningless stuff we receive into a real path, so we call SHGet Pat hFr o-

m DLi st , to do exactly that. We pass it a pointer to the result character string that we receive
as second argument.

I R O O O

+

+

If that function returns OK, we verify that the returned path is not empty, and if it is, we set the
result of thisfunction to TRUE.

Now we have to clean-up. We use the COM interface pointer we received from SHGet Mal -
| oc, and useits only member (IpVtbl) to get into the Free function pointer member. There are
other function pointersin that structure for sure, but we do not use them in this application. We
pass to that Free function a pointer to the interface it gave to us, and then the object to free.

123.Passing NULL works too.

Advanced windows techniques 279

When we are done with a COM interface we have to remember to call afunction to release it,
passing it again a pointer to the returned object. We are done now, we return the result and
exit.

How can this program fail?

There are only three API cals here, and all of them are tested for failure. In principle there is
no way this can fail, although it could fail for other reasons: it could provoke a memory leak
(for instance if we had forgotten the call to the Rel ease method at the end), or it could use
resources that are never released (the list of identifiers that we obtain from the system, etc.

2.18.3 Retrieving afile from the internet

The basic way of receiving/sending data in the internet is TCP/IP, a protocol originally devel-
oped for Unix systems, and adapted later to windows by Microsoft under the name of “win-
sock” for window sockets.

Thefirst versions of TCP/IP for windows were very difficult to use, and required a good deal
of network programming knowledge: the code for establishing an FTP connection under win-
dows 3.1 was several thousand lines, and required watching each transaction and following
each possible error.

This has changed a lot since the “internet wave’ required that each coffee machine in the
world should have an internet connection. Higher level interfaces were developed and added
to the standard windows API. Hereis an example of aworking program that will download the
“README” file from the Icc-win32 home “ g-software-solutions’ and write it to the disk of
your machine in the current directory.

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <w ndows. h>
#i ncl ude <direct. h>
#i ncl ude <w ni net. h>

static void ErrorQut(char *where)

{
int err = GetLastError();

printf("Error % (0x%) when calling %\n",err,err,where);
}

int mai n(void)
{
DWORD dwType = FTP_TRANSFER TYPE BI NARY;
HANDLE hConnect, hQpen;
char *szUser, *szPass, *szHost, *szFi | el, *szFi | e2;

hQpen = InternetQpen ("FTPGET", LOCAL_| NTERNET_ ACCESS ,

NULL, 0, 0);

if (!hOpen) {

ErrorQut ("I nternet Open");

return 1,
}
szHost = "www. g- sof t war e- sol uti ons. cont
szUser = "anonynous";
szPass = "foo@ oo. cont';
hConnect = | nternet Connect (hOpen, szHost ,

| NTERNET_| NVALI D_PORT_NUMBER, szUser ,

szPass, | NTERNET_SERVI CE_FTP, | NTERNET_FLAG PASSI VE , 0);
i f (hConnect) {

szFilel = "/pub/l cc/ READVE";

280 Windows programming with lcc-win32

szFil e2 = "READVE";

if (!FtpGetFile (hConnect,szFilel, szFile2,
FALSE, | NTERNET_FLAG RELQAD, dwType, 0)) {
ErrorQut ("FtpGetFile");

}

else printf("Renote file % --> local file %",
szFilel, szFil e2);

if (!lInternetC oseHandl e (hConnect)) {
ErrorQut ("InternetC oseHandl e");

}

}

el se {
ErrorQut ("I nternet Connect");
}

I nt er net G oseHandl e(hOpen) ;
return O;

}

This program is about 400 bytes of code and 200 bytes of data for character strings. When
linked it isonly 4K long.

The whole hard part of networking is hidden behind the windows interface, provided by the
“wininet.lib” library, and the “wininet.n” header file.

Basically, to get afile from aremote machine using the FTP (File Transfer Protocol) you need
to open a connection to the remote server, send it the path of the file to retrieve, and that isiit.
Therest issomelogic for opening and initializing the wininet library, and taking care of possi-
ble errors.

Please be aware that all this supposes that you have aworking TCP/IP network connection and
that the lower layers of the network are working. Besides, note that the paths given here may
change, etc etc. Network programming is a huge subject, impossible to cover here.

2.19 Error handling under windows

The windows API is an ancient software construct. Pieces of the original design started with
windows 2.x under MSDOS with the 64K limitations of real mode are still buried within it.
Pieces of the Windows 3.1 (16 bit protected mode) software are still very much in evidence,
and the Win32 API is aready 8 years old and counting.

Because those historical reasons, there exists a bewildering set of failure results. We have
actually all possibilities:1?*

1 The boolean convention. Returning TRUE for success, FALSE for falure. Thisis a
simple minded approach that is used in many APIs. You code then:
if (!DoSonething()) {
/1 failure handling
}

The drawback of this convention is that with only two different values there is no room for
explaining the failure reasons.

2 The status convention. Returning a status like HRESULT. A HRESULT >= 0, such as
S OK,isasuccess, and aHRESULT < 0, suchasE_FAI L, isafailure.This would be OK
but there is the problem that other API functions return an error code defined in windows.h.

There is the BIG problem that ERROR_SUCCESS!'?® is defined there as zero! In this
schema the value zero is reserved to indicate that everything is OK, and all other values

124.This part has been adapted from an excellent article by Jon Pincus published in MSDN June 2000.

Error handling under windows 281

mean an eror code. Note that the value of zero that in the boolean convention above
indicates failure, means the contrary here.

3 Returning a NULL pointer. This failure indication is used in the standard C library.
malloc, realloc, and many others return NULL for failure. As with the boolean convention,
some other means are necessary to distinguish the different kinds of failures.

4 Returning an “impossible’ value. Sometimes this valueis zero, for instance in the API
GetWindowsDirectory, sometimes is -1 for instance the fgets function in the C library, or
many other values. This convention becomes very difficult to follow (and memorize) when
applied to alarge API like the windows API.

5 Throwing a C++ exception. Thisisvery nice in C++, but it will never work with C or
with COM. It is illegal to throw a C++ exception in COM. Besides, the runtimes of
different compilers handle C++ exceptionsin a different way, so they are incompatible with
each other. Anyway, if you work with lcc-win32 you will be spared this.

6 Using the RaiseException API. This is the normal way of using structured exception
handling in lcc-win32. It has its drawbacks too, since it doesn’t fit very well with COM, for
instance, and it is (maybe) not compatible with some other compilers. It is compatible with
Microsoft compilers, and maybe Borland, since all of them use the same binary approach to
this problem, imposed by the windows API.

7 Using some other mechanism of structured exception handling. Many other libraries
exists for structured exception handling, sometimes using setjmp/longjmp, sometimes
using the signal () mechanism, or some other conventions. If you find yourself working with
some code that does this, either you use it without any modifications or you just drop it.
Trying to fix/modify this kind of code is best |eft to very experienced programmers.

8 Using GetL astError() to get information about the error. This would seem evident but
in their infinite wisdom, the windows API designers decided to provide different error
codes for the same failures in the different versions of the operating system. Under
windows 95/98 the error codes would be different than the error codes for the same failure
under windows NT/2000.

When you mix al those error handling strategies in asingle program, as you have to do to pro-
gram with the AP, the resulting mix can be very entertaining. Consider this:

extern BOOL DoSoret hi ng(void); // Uses the bool ean strategy
BOOL ok = DoSoret hi ng();
i f (FAILEDok)) /] VARONG !'!

return;

The macro FAI LED tests if the HRESULT is less than zero. Here is the definition:
#define FAILED(S) ((HRESULT) ((S)<0))

In the above case the code for failure (0) will not be less than zero, and it will not be detected
asafailure code. Rule:

Do not use the FAI LED or SUCCEEDED macros for anything other than HRESULTS!

Since you know that FALSE is defined as zero, FAI LED(FALSE) is zero, not really an
expected result.

The opposite problem leads to headaches too. Always use the FAI LEDY SUCCEEDED mac-
ros with HRESUL TS and never write things like this:

HRESULT hr;

125.Simply looking at this name: “ERROR_SUCCESS’ implies that thereis a big problem with the peo-
ple that designed that stuff. It isan error code or a success indication?

282 Windows programming with lcc-win32

hr = | Sonet hi ng- >DoSon®et hi ng() ;
if (! hr) /1 \ARONG !'!
return;
Note too that in their infinite wisdom, the designers of this APl decided that S FALSE is a
success code, NOT afailure code, and it isdefined as 1 (one...!!!). This means that

SUCCEEDED(S_FALSE) == TRUE
Niceisn'tit?

2.19.1 Some tips for debugging

2.19.1.1 Check the return status of any API call.

Consider this code:

TCHAR cDri velLetter;

TCHAR szW ndowsDi r [MAX_PATH] ;

Get W ndowsDi rect ory(szW ndowsDi r, MAX PATH);
cDrivelLetter = szW ndowsDir[O0]; /1 VWRONG !!

If the call to GetWindowsDirectory fails, the program will access uninitialized memory. This
means that the drive value will be a random number between 0 and 255. Of course it is quite
difficult to imagine that GetWindowsDirectory fails, or isit?

In windows using Terminal Server, it becomes much more complicated to figure out where is
the windows directory of a particular user. The GetWindowsDirectory API has to do a lot
more stuff, including allocating memory for buffers. And that allocation can fail and the devel-
oper at Microsoft did the right thing and tested if that memory allocation call worked or not,
and if not it returns an error failure.

Besides, that APl will work now, but who knows what the future versions of windows will do?
Why |eave a possible bug in there?

But thisis difficult to do. Checking the return value of ALL API callsis feasible but is very
complex and time-consuming. And as everyone knowsiit is not a matter of the developer only.
How big is the time budget allocated to you for devel oping this application? How much effort
should be spent in making this application 100% bullet proof?

Those questions should be answered but they are not only the responsibility of the developer.

2.19.1.2 Always check allocations

Even in this days of 512MB RAM being common configurations, and with swap files extend-
ing into the gigabyte memory failures can happen. Specialy in the case of infinite loops where
al bets are off and any memory allocation will fail. And here the memory manager of Icc-
win32 will not help since it will return NULL also, it can’t do anything else.

Allocations can fail because of corrupted input data to the memory allocation function. Sup-
pose this code:

int allocsiz;

buffer = GC _nmal |l oc(all ocsi z);

If for any reason allocsiz goes negative, GC_malloc will receive a negative number that will
interpret asasize t, ie. asan unsigned integer. This means that a negative request will be inter-
preted as an allocation request of more than 2GB. Testing the result of an allocation allows a
clean exit, or an exception handling construct, or other solutions that allow you to pinpoint
with greater easy where the failure happened.

Error handling under windows 283

You should be aware of this problem when using flexible arrays. When you write

int fn(int a)

{

}
Here you are allocating “a’ integers in the stack when control reaches the function prologue.
There is no way for you to check if this worked or not, the only failure notification will be a
stack overflow if “a@’ hasthe wrong value.

int array[a];

284 Windows programming with lcc-win32

2.20 Some Coding Tips

Here are some useful receipts for solving specific windows problems.

2.20.1 Determining which version of Windows is running
BOOL I nWnNNT() //test for NT

{

OSVERSI ONI NFO osv;

CGet Ver si onEx(&osv) ;

osv. dwOSVer si onl nf 0Si ze=si zeof (osvV) ;

return osv.dwPl at f orm d==VER_PLATFORM W N32_NT;
}

2.20.2 Translating the value returned by GetLastError() into a
readable string

This utility function uses the system “FormatMessage’ to do the bulk of the work of caring
about locale settings like language setup, etc.

BOOL Get FormattedError (LPTSTR dest,int size)
{
DWORD dwLast Error=Cet Last Error () ;
i f(!dwLastError)
return O;
BYTE wi dt h=0;
DWORD f 1 ags;
flags = FORVAT_MESSAGE MAX W DTH_MASK &wi dt h;
flags | = FORVAT_MESSAGE_FROM SYSTEM
flags | = FORMAT_MESSAGE | GNORE_| NSERTS;
return 0 !'= Fornmat Message(fl ags,
NULL,
dwLast Error,
MAKELANG D(LANG_NEUTRAL, SUBLANG DEFAULT),
dest,
si ze,
NULL) ;

2.20.3 Clearing the screen in text mode

The following code will clear the screen in text mode.

#i ncl ude <wi ndows. h>

[* Standard error macro for reporting API errors */
#defi ne PERR(bSuccess, api){if(!(bSuccess)) \
printf("%:Error % from% \
online %\n", _ FILE , GetLastError(), api, _ LINE);}

voi d cl s(HANDLE hConsol e)
{
COORD coordScreen = { 0, 0 }; [/*Home the cursor here */
BOOL bSuccess;
DWORD cCharsWitten;
CONSOLE_SCREEN BUFFER | NFO cshi ; /*to get buffer info */
DWORD dwConSi ze; /* number of character cells in the current buffer */
[* get the number of character cells in the current buffer */

bSuccess = Get Consol eScreenBufferlnfo(hConsole, &csbhi);

Some Coding Tips 285

PERR(bSuccess, "Get Consol eScreenBufferlnfo");
dwConSi ze = csbhi.dwSi ze. X * csbi.dwSi ze. Y;

[* fill the entire screen with blanks */

bSuccess = Fill Consol eQut put Character(hConsole, (TCHAR) ' ',
dwConSi ze, coordScreen, &CharsWitten);
PERR(bSuccess, "Fill Consol eQut put Character");

[* get the current text attribute */

bSuccess = Get Consol eScreenBufferlnfo(hConsole, &csbhi);
PERR(bSuccess, "Consol eScreenBufferlnfo");

/* now set the buffer's attributes accordingly */

bSuccess = Fill Consol eQut put Attri bute(hConsol e, cshi.wAttributes,
dwConSi ze, coordScreen, &CharsWitten);
PERR(bSuccess, "Fill Consol eQutputAttribute");
[* put the cursor at (0, 0) */

bSuccess = Set Consol eCursorPosition(hConsol e, coordScreen);
PERR(bSuccess, "Set Consol eCursorPosition");
return;

}
Thisfunction can be called like this:
cl s(Get St dHandl e(STD_OQUTPUT_HANDLE)) ;

The library TCCONIO.LIB contains many other functions for text manipulation using the
console interface. The corresponding header file is TCCONIO.H, which is automatically
included when you include conio.h

Thislibrary was contributed by Daniel Guerrero (daguer @geocities.com)

2.20.4 Getting a pointer to the stack

To get apointer to the stack, use the following code:

far MyFunction()

{

int x;

int far *y = &x;

}
NOTE: This pointer will not be valid when the function is exited, since the stack contents will
change.

2.20.5 Disabling the screen saver from a program

Under Windows NT, you can disable the screen saver from your application code. To detect if
the screen saver is enabled, use this:

Syst enPar anet er sl nf o(SPI _ GETSCREENSAVEACTI VE,
01
pvPar am
0

);
On return, the parameter pvParam will point to TRUE if the screen saver setting is enabled in
the system control panel applet and FALSE if the screen saver setting is not enabled.

286 Windows programming with lcc-win32

To disable the screen saver setting, call SystemParametersinfo() with this:

Syst enPar anet er sl nf o(SPI _ SETSCREENSAVEACTI VE,
FALSE,
0,
SPI F_SENDW NI NI CHANGE

)
2.20.6 Drawing a gradient background

You can draw a smooth gradient background using the following code:
voi d DrawBackgroundPatt er n(HWND hWhd)

{
HDC hDC = Get DC(hwid); // Get the DC for the w ndow.
RECT rectFill; /1l Rectangle for filling band.
RECT rectdient; /1l Rectangle for entire client area.
float fStep; /1l How |l arge is each band?

HBRUSH hBr ush;
int iOnBand; // Loop index

/I How large is the area you need to fill?
Get d i ent Rect (hWhd, &rectdient);

/I Determine how large each band should be in order to cover the
/I client with 256 bands (one for every color intensity level).
fStep = (float)rectCient.bottom/ 256. 0f;

/I Start filling bands
for (iOnBand = 0; iOnBand < 256; i OnBand++) {

// Set the |ocation of the current band.
Set Rect (& ectFill,

0, /1 Upper left X
(int)(iOnBand * f Step), [l Upper left Y
rectCient.right+1, /1 Lower right X

(int)((i OnBand+1) * fStep)); // Lower right Y

/I Create a brush with the appropriate color for this band.
hBrush = CreateSol i dBrush(RGB(0, 0, (255 — i OnBand)));

/I Fill the rectangle.
Fill Rect (hDC, &rectFill, hBrush);

/I Get rid of the brush you created.
Del et ebj ect (hBrush);

i

/'l G ve back the DC
Rel easeDC(hwhd, hDC);

2.20.7 Capturing and printing the contents of an entire window

I

/I Return a HDC for the default printer.

I

HDC Get Pri nt er DC(voi d)

{
PRI NTDLG pdl g;

Some Coding Tips

menset (&pdl g, 0, sizeof (PRINTDLG));

pdl g. | Struct Si ze = si zeof (PRINTDLG) ;

pdl g. Fl ags = PD_RETURNDEFAULT | PD_RETURNDC,
Print D g(&pdl g);

return pdlg. hDG;

}
I
/I Create a copy of the current system palette.
I
HPALETTE Get SystenPal ette()
{
HDC hDC;
HPALETTE hPal ;
HANDLE hLogPal ;
LPLOGPALETTE | pLogPal ;

/1l Get a DC for the desktop.
hDC = Get DC(NULL) ;
/I Check to see if you are a running in a palette-based
[/l video mode.
if (!(CetDeviceCaps(hDC, RASTERCAPS) & RC PALETTE)) {
Rel easeDC(NULL, hDC);
return NULL;
}
/I Allocate memory for the palette.
| pLogPal = d obal Al |l oc(GPTR, si zeof (LOGPALETTE) + 256 *
si zeof (PALETTEENTRY)) ;
if (!hLogPal)
return NULL;
/1 Initialize.
| pLogPal - >pal Ver si on = 0x300;
| pLogPal - >pal NunEntri es = 256;
/I Copy the current system palette into the logical palette.
CGet SystenPal etteEntri es(hDC, 0, 256,

287

(LPPALETTEENTRY) (| pLogPal ->pal Pal Entry));

/1l Create the palette.
hPal = CreatePal ette(l pLogPal);
/1 Clean up.
d obal Free(l pLogPal) ;
Rel easeDC(NULL, hDC);
return hPal;
}
I
Il Create a 24-bit-per-pixel surface.
I

HBI TMAP Cr eat e24BPPDI BSecti on(HDC hDC, int iWdth, int iHeight)

{
Bl TMAPI NFO b ;

HBI TMAP hbm

LPBYTE pBits;

/1 Initialize to Os.

Zer oMenory(&ni, sizeof (bni));

/1 Initialize the header.

bm . bni Header . bi Si ze = si zeof (Bl TMAPI NFOHEADER) ;
bni . bm Header. bi Wdth = i Wdth;

bm . bni Header . bi Hei ght = i Hei ght;

bm . bm Header. bi Pl anes = 1;

bmi . bmi Header . bi Bi t Count = 24;

bmi . bni Header . bi Conpressi on = Bl _RGB; /1l Create the surface.

hbm = Creat eDl BSecti on(hDC, & m , DI B RGB COLORS, &oBits, NULL, 0);

return (hbny;

288 Windows programming with lcc-win32

}
I

/l Print the entire contents (including the non-client area) of
I the specified window to the default printer.

BOOL Pri nt W ndowToDC(HWAD hWhd)
{
HBI TMAP hbm
HDC hdcPrinter;
HDC hdcMenor y;
HDC hdcW ndow;
i nt i Wdt h;
i nt i Hei ght ;
DOCl NFO di;
RECT rc;
DI BSECTI ON ds;
HPALETTE hPal ;

// Do we have a valid window?
if (!lsWndow hwd))
return FALSE;
Il Get a HDC for the default printer.
hdcPrinter = GetPrinterDC();
if (!'hdcPrinter)
return FALSE;
/I Get the HDC for the entire window.
hdcW ndow = Get W ndowDC(hwhd) ;
/I Get the rectangle bounding the window.
Get W ndowRect (hWhd, &rc);
/I Adjust coordinates to client area.
O fsetRect(&c, -rc.left, -rc.top);
/I Get the resolution of the printer device.
i Wdth = Get Devi ceCaps(hdcPrinter, HORZRES);
i Hei ght = Get Devi ceCaps(hdcPrinter, VERTRES);
/I Create the intermediate drawing surface at window resolution.
hbm = Cr eat e24BPPDI BSect i on(hdcW ndow, rc.right, rc.botton);
if (!'hbm {
Del et eDC(hdcPrinter);
Rel easeDC(hWwhd, hdcW ndow) ;
return FALSE;
}
/I Prepare the surface for drawing.
hdcMenory = Creat eConpati bl eDC(hdcW ndow) ;
Sel ect Obj ect (hdcMenory, hbm;
Il Get the current system palette.
hPal = GetSystenPalette(); // If a palette was returned.
if (hPal) { /1 Apply the palette to the source DC.
Sel ect Pal ett e(hdcW ndow, hPal, FALSE);
Real i zePal et t e(hdcW ndow) ;
/1 Apply the palette to the destination DC
Sel ect Pal ette(hdcMenory, hPal, FALSE);
Real i zePal ett e(hdcMenory) ;
}
/I Copy the window contents to the memory surface.
BitBl t (hdcMenory, O, O, rc.right, rc.bottom
hdcW ndow, 0, 0, SRCCOPY);
/1 Prepare the DOCI NFO.
Zer oMenory(&di, sizeof(di));
di . cbSi ze = sizeof (di);
di .| pszDocNane = "W ndow Contents"; // Initialize the print job.
if (StartDoc(hdcPrinter, &i) > 0) {// Prepare to send a page.
if (StartPage(hdcPrinter) > 0) {

Some Coding Tips 289

/1 Retrieve the information describing the surface.
Get Obj ect (hbm si zeof (DI BSECTI ON), &ds);
/1 Print the contents of the surface.
StretchD Bits(hdcPrinter,
0, 0, iWdth, iHeight,
0, O, rc.right, rc.bottom ds.dsBmbnBits,
(LPBI TMAPI NFO) & ds. dsBmi h, DI B_RGB_COLCRS,
SRCCOPY) ;
/1l Let the driver know the page is done.
EndPage(hdcPrinter);
}
/1 Let the driver know the document is done.
EndDoc(hdcPrinter);
}
/1 O ean up the objects you created.
Del et eDC(hdcPrinter);
Del et eDC(hdcMenory) ;
Rel easeDC(hwhd, hdcW ndow) ;
Del et evj ect (hbm) ;
if (hPal)
Del et evj ect (hPal) ;

2.20.8 Centering a dialog box in the screen

Use the following code:

{
RECT rc;

Get W ndowRect (hDl g, &rc);
Set W ndowPos(hDl g, NULL,
((Get Systemvetri cs(SM CXSCREEN) - (rc.right - rc.left)) / 2),
((Get Systemvetri cs(SM CYSCREEN) - (rc.bottom- rc.top)) / 2),
0, 0, SWP_NCSIZE | SWP_NOACTI VATE);

2.20.9 Determining the number of visible items in a list box

In alist box, if the number of linesis greater than the number of linesin the list box, some of
them will be hidden. In addition, it could be that the list box isan owner draw list box, making
the height of each line a variable quantity. Here is a code snippet that will handle all cases,
even when all of the items of the list box are visible, and some white space is left at the bot-

tom.

The basic idea is to subtract each line height from the total height of the client area of the list

box.

i nt ntop, nCount, nRectheight, nVisibleltens;

RECT rc, itenrect;

/I First, get the index of the first visible item.

ntop = SendMessage(hwndLi st, LB _GETTOPI NDEX, 0, 0);
/I Then get the number of items in the list box.

nCount = SendMessage(hwndLi st, LB GETCOUNT, 0, 0);
/I Get the list box rectangle.

Get d i ent Rect (hwndLi st, &rc);

/I Get the height of the list box’s client area.

nRect hei ght = rc. bottom — rc.top;

/I This counter will hold the number of visible items.
nVisibleltens = 0;

/I Loop until the bottom of the list box. or the last item has been reached.

290 Windows programming with lcc-win32

while ((nRectheight > 0) & (ntop < nCount))
{

/I Get current line’s rectangle.
SendMessage(hwndLi st, LB _GETI TEMRECT,
nt op, (DWORD) (& tenrect));
/I Subtract the current line height.
nRect hei ght = nRectheight — (itenrect.bottom— itenrect.top);
nVi si bl el t ens++; /1 lncrease item count.
Nt op++; /1 Move to the next line.

}

2.20.10 Starting a non-modal dialog box

Non-modal dialog boxes behave as independent top level windows. They can be started

using the Cr eat eDi al og function.
HWAD Cr eat eDi al og(
HI NSTANCE hl nstance,// handl e to application instance
LPCTSTR | pTenpl ate,// ldentifies dialog box tenplate nane.
HWD hwhdParent,// Handl e to owner w ndow.
DLGPROC | pDi al ogFunc // Pointer to dial og box procedure.

)
Non-modal dialog boxes should be used with care, since they are equivalent to starting another
thread of execution. In addition, you should never forget that the user can restart the same
sequence of events that led to that dialog box, causing a second dialog box to appear.

2.20.11 Propagating environment variables to the parent
environment

Under Windows, there is no ‘export’ directive as in Unix systems. To propagate the value of
an environment variable to the rest of the system, use the following registry key:

HKEY_ CURRENT _USER \
Envi r onment

You can modify system environment variables by editing the following registry key:

HKEY_LOCAL_MACHI NE \

SYSTEM \

Current Control Set \

Control \

Sessi on Manager \

Envi r onment
Note that any environment variable that needs to be expanded (for example, when you use
%SY STEM%) must be stored in the registry asaREG_EXPAND_SZ registry value. Any val-
ues of type REG_SZ will not be expanded when read from the registry.

The problem with this method, however, is that changes will be effective only after the next
logoff, probably not exactly what you want.

To effect these changes without having to log off, broadcast aWM_SETTINGCHANGE mes-
sage to all windows in the system, so that any applicable applications (such as Program Man-
ager, Task Manager, Control Panel, etc.) can perform an update.
SendMessageTi neout (HAND BROADCAST, WM SETTI NGCHANGE, O,

(LPARAM) "Environnment", SMIO_ABORTI FHUNG

5000, &dwRet urnVal ue);
In theory, thiswill work, but there is a problem with Windows 95. Under that system, thereis
no other way to set those variables than rebooting the system!

Some Coding Tips 291

2.20.12 Restarting the shell under program control

In many cases it can be necessary to restart the shell. To do this, find the window of the
Explorer, send it a quit message, and restart it. The following code snippet will work:
HWAD hwndShel | = Fi ndW ndow(" Progman”, NULL);

Post Message(hwndShel |, WM QUI T, 0, OL);
W nExec(" Expl orer. exe", SW SHOW ;

2.20.13 Translating client coordinates to screen coordinates

To determine the screen coordinates for the client area of a window, call the ClientToScreen
function to trandate the client coordinates returned by GetClientRect into screen coordinates.
The following code demonstrates how to use the two functions together:

RECT r MyRect ;

Get d i ent Rect (hwnd, (LPRECT) & MyRect);

dient ToScreen(hwnd, (LPPO NT) & MyRect.left);
dient ToScreen(hwnd, (LPPO NT) & MyRect.right);

2.20.14 Passing an argument to a dialog box procedure

You can passavoid * to adialog box procedure by caling:
result = Di al ogBoxParan(hl nst,// Instance of the application.

MAKEI NTRESOURCE(i d) , /1 Theresource ID or dialog box name.
Get Acti veW ndow() , /1 The parent window.

D gf n, /1 Thedialog box procedure.
(DWORD) "Hell 0"); /1 The arguments.

In your dialog box procedure (here DIgFn), you will find those arguments in the [Param
parameter of the WM _INITDIALOG message.

2.20.15 Calling printf from a windows application

Windows applications do not have a console, i.e., the ‘DOS’ window. To access the console
from a Windows application, create one, initialize stdout, and use it as you would normally
use it from a native console application.

#i ncl ude <w ndows. h>
#i ncl ude <stdio. h>
#i nclude <fcntl. h>
int mai n(void)
{

int hCrt;

FI LE *hf

Al'l ocConsol e();

hCrt = _open_osfhandl e((l ong) GetStdHandl e (
STD_OUTPUT_HANDLE), _O TEXT);

hf = fdopen(hCrt, "w');

*stdout = *hf;

setvbuf (stdout, NULL, _IONBF, 0);

printf("Hello world\n");

return O;

}

2.20.16 Enabling or disabling a button or control in a dialog box.

You should first get the window handle of the control using

292 Windows programming with lcc-win32

hwndControl = GetDi glten{hwndD g, | DBUTTON) ;
Using that window handle, call EnableWindow.

2.20.17 Making a window class available for all applications in
the system.
Under 32-bit Windows and Windows NT, a style of CS_ GLOBALCLASS indicates that the

classisavailableto every DLL in the process, not every application and DLL in the system, as
it doesin Windows 3.1.

To have a class registered for every processin the system under Windows NT:
* Register theclassinaDLL.
 Useastyleof CS GLOBALCLASS.

» Listthe DLL inthe following registry key.
HKEY_LOCAL MACHI NE\ SOFTWARE\ M cr osof t \ W ndows NT\ Curr ent Ver si on\
W ndows\ Appl nit_DLLs

Thiswill forcethe DLL to be loaded into every process in the system, thereby registering the
classin each and every process.

NOTE: This technique does not work under Windows 95.

2.20.18 Accessing the disk drive directly without using a file
system
To open a physical hard drive for direct disk access (raw 1/0) in a Win32-based application,
use a device name of the form
\\.\ Physi cal DriveN
where N is0, 1, 2, and so forth, representing each of the physical drivesin the system.
To open alogical drive, direct accessis of the form
WA X
where X: is ahard-drive partition letter, floppy disk drive, or CD-ROM drive.

You can open aphysical or logical drive using the CreateFile() application programming inter-
face (API) with these device names provided that you have the appropriate access rights to the
drive (that is, you must be an administrator). You must use both the CreateFile()
FILE_SHARE_READ and FILE_SHARE_WRITE flags to gain access to the drive.

Oncethelogical or physical drive has been opened, you can then perform direct 1/O to the data
on the entire drive. When performing direct disk 1/O, you must seek, read, and write in multi-
ples of sector sizes of the device and on sector boundaries. Call DeviceloControl() using
IOCTL_DISK_GET_DRIVE_GEOMETRY to get the bytes per sector, number of sectors,
sectors per track, and so forth, so that you can compute the size of the buffer that you will
need.

Note that a Win32-based application cannot open afile by using internal Windows NT object
names; for example, attempting to open a CD-ROM drive by opening
\ Devi ce\ CdRonD

does not work because this is not a valid Win32 device name. You can use the Quer yDos De-
vice() API to get alist of all valid Win32 device names and see the mapping between a par-
ticular Win32 device name and an internal Windows NT object name. An application running

Some Coding Tips 293

at asufficient privilege level can define, redefine, or delete Win32 device mappings by calling
the DefineDosDevice() APL.

2.20.19 Retrieving the Last-Write Time

The following example uses the GetFileTime function to retrieve the last-write time for afile.
It converts the time to local time based on the current time-zone settings, and creates a date
and time string that can be shown to the user.

BOOL GetLastWiteTi me(HANDLE hFile, LPSTR String)

{
FILETIME ftCreate, ftAccess, ftWite;

SYSTEMI|I ME st UTC, st lLocal;

/I Retrieve the file times for the file.
if (!GetFileTine(hFile, & tCreate, & tAccess, &tWite))
return FALSE;

/I Convert the last-write time to local time.
Fil eTi meToSystenTi ne(&tWite, &stUTC);
Syst enili neToTzSpeci ficLocal Ti me(NULL, &stUTC, &stlLocal);

// Build a string showing the date and time.

sprintf(String, "%02d/%02d/ % 9%©2d: ¥©2d",
st Local . wbDay, stLocal.wwnth, stlLocal.wYear,
st Local . wHour, stLocal.wM nute);

return TRUE;

2.20.20 Setting the System Time

The following example sets the system time using the SetSystemTime function.
BOOL Set NewTi ne(WORD hour, WORD mi nut es)

{
SYSTEMI| ME st ;
char *pc;
CGet Syst enfli me(&st) ; /1 gets current tine
st.wHour = hour; /1 adjusts hours
st.wM nute = m nutes; /1 and mi nutes
if (!SetSysteniline(&st)) // sets systemtine
return FALSE;
return TRUE;
}

2.20.21 Getting the list of running processes

You can use pdh.lib to get a list of al the running processes. here is a simple code that will
print thislist in the standard outpui.

/*

* Using pdh.lib to get a list of the running processes. This sample is

* adapted from the similar sample code in the windows SDK. Compile with:
*|c listproc.c pdh.lib

*/

#i ncl ude <w ndows. h>

#i ncl ude <wi nperf. h>

#i ncl ude <mall oc. h>

294 Windows programming with lcc-win32

#i ncl ude <stdio. h>
#i ncl ude <pdh. h>
#i ncl ude <pdhnsg. h>

int main(void)

{
PDH STATUS pdhSt at us = ERROR_SUCCESS;
LPTSTR szCount er Li st Buf fer = NULL
DWORD dwCount er Li st Si ze = 0;
LPTSTR szl nst ancelLi st Buf f er = NULL
DWORD dw nst ancelLi st Si ze = 0;
LPTSTR szThi sl nst ance = NULL

/I call the function to determine the required buffer size for the data
pdhSt at us = PdhEnunthj ect |t ens(

NULL, /'l reserved

NULL, /1 1ocal machine
"Process", /1 object to enunerate
szCount er Li st Buffer, /1l pass in NULL buffers
&dwCount er Li st Si ze, /1 an 0 length to get

szl nstanceli st Buf fer, /1 required size

&dwl nst anceli st Si ze, /1 of the buffers in chars
PERF_DETAI L_W ZARD, /1l counter detail |eve

0);

i f (pdhStatus != ERROR SUCCESS && pdhStatus != PDH MORE DATA) {
printf("\nUnable to determ ne the buffer size required");
return 1,

}

/I allocate the buffers and try the call again

/ PdhEnum functions will return ERROR_SUCCESS in WIN2K, but

/ PDH_MORE_DATA in XP and later.

Il In either case, dwCounterListSize and dwlinstanceListSize should contain

/I the correct buffer size needed.

1

szCounterListBuffer = (LPTSTR) nal | oc (dwCount erLi stSize);

szl nstanceli stBuffer = (LPTSTR) mal | oc(dw nst ancelLi st Si ze) ;

if ((szCounterlListBuffer == NULL) |
(szl nstancelLi stBuffer == NULL)) {
printf ("\nUnable to allocate buffers");
return 1,

}

pdhSt at us = PdhEnuntbj ectltens (NULL, /1 reserved
NULL, /1 1ocal machine
"Process", // object to enunerate

szCount er Li st Buffer, /1 pass in NULL buffers
&dwCount er Li st Si ze, /1 an 0 length to get

szl nstanceli st Buf fer, /1 required size

&dwl nst anceli st Si ze, /1 of the buffers in chars
PERF_DETAI L_W ZARD, /1l counter detail |eve

0);

i f (pdhStatus == ERROR_SUCCESS) {
printf ("\'nRunning Processes:");
/1 walk the return instance |ist
for (szThislnstance = szl nstanceListBuffer;
*szThi sl nstance ! = 0;
szThi sl nstance += strlen(szThislnstance) + 1) {
printf ("\n 9", szThislnstance);
}

Some Coding Tips 295

if (szCounterlListBuffer !'= NULL) free (szCounterlListBuffer);
if (szlnstancelListBuffer !'= NULL) free (szlnstancelListBuffer);
return O;

2.20.22 Changing a File Time to the Current Time

The following example sets the last-write time for a file to the current system time using the
SetFileTime function.

BOOL SetFil eToCurrent Ti me(HANDLE hFi |l e)

{
FI LETI ME ft;
SYSTEMTI ME st ;
BOOL f;
Get Syst entli me(&st) ; /1 gets current tine
Systenili neToFi | eTi me(&st, &t); [/ converts to file time fornat
f = SetFileTine(hFile, /1 sets last-wite tine for file
(LPFI LETI ME) NULL, (LPFILETIME) NULL, &ft);
return f;
}

2.20.23 Displaying the amount of disk space for each drive

#i ncl ude <w ndows. h>
#i ncl ude <stdi o. h>
/I This program will loop through all drives in the system and will print the
/I capacity of each drive, the number of bytes free/used, and the percentage free.
/I At the end of the loop it will print the totals.
i nt mai n(voi d)
{
I ong | ong Byt esAvai l abl e, Tot al Byt esAvai | abl e=0;
I ong I ong capacity, Tot al Capacity=0;
| ong | ong user Free, Tot al User Fr ee=0;
I ong | ong used, Tot al Used=0;
| ong doubl e percent;
int counter = "'C; // Start with C drive ignoring floppies
char di sknanme[512];

strcpy(di sknanme,"C:\\");
printf("%6s %5s %5s %5s %%s\n","Drive", "Capacity",
"Avai l abl e", " Used", "Free");
while (counter !'= (1+ 2)) {
di sknane[0] = counter;
i f (CGetDi skFreeSpaceEx(di sknane, &BytesAvail abl e,
&capacity, &userFree)) {
percent = 100.0L*(((long doubl e) Byt esAvail abl e)/ (| ong
doubl e) capacity);
used = capacity-BytesAvail abl e;
/*
printf formats:
%-6s format string in 6 position, left justified (negative width)
%15'lld format 64 bit in 15 positions separating digits in groups (')
%6.2Lf format long double (Lf) in 6 positions with 2 decimals
*/
printf("%6s %5 11d %5 11d %5'11d 9. 2Lf%®An",
di sknane, capaci ty, Byt esAvai | abl e, used, percent);
Tot al Byt esAvai | abl e+=Byt esAvai | abl e;

296 Windows programming with lcc-win32

Tot al Capaci t y+=capacity;
Tot al Used+=used;
}

count er ++;

}

/I Now print the totals

percent = 100.0L*(((long doubl e) Tot al Byt esAvai | abl e)/ (| ong
doubl e) Tot al Capacity);

printf("\n%6s %5 11d %5 I1d %45 11d 9%6. 2Lf%®4ANn", "Total:"

Tot al Capaci ty, Tot al Byt esAvai | abl e, Tot al Used, percent);

return O;

}
The output of this program can look like this:

Drive Capacity Avai |l abl e Used Free
C\ 6, 292, 303, 872 2, 365, 452, 288 3,926, 851,584 37.59%
D:\ 10, 487, 197, 696 3,563, 794, 432 6, 923, 403, 264 33.98%
E\ 31, 453,437,952 17,499, 627,520 13, 953, 810,432 55.64%
F:\ 15, 726, 731, 264 10, 327, 638, 016 5,399, 093,248 65.67%
H:\ 569, 366, 528 0 569, 366, 528 0. 00%
I\ 31, 790, 673,920 27,672,530, 944 4,118, 142,976 87.05%

Total : 96, 319, 711, 232 61, 429, 043, 200 34, 890, 668, 032 63. 78%

Since it doesn’t check if adriveisa CD drive, drive H: islisted, and it has obviously 0 bytes

available sinceit isread only.

2.20.24 Mounting and unmounting volumes in NTFS 5.0

The windows file system allows you to “mount” disk drive in another directory, and see the
contents of the drive asif they were subdirectories of the directory where the drive is mounted.
Supposg, for instance, that you make a directory C:\mnt, and in this directory you make a sub-
directory caled cdrom. Using the utility below, you can mount the CDROM drive under the
c:\mnt\cdrom directory, and you will see the contents of the cdrom drive in c:\mnt\cdrom.

2.20.24.1 Mount
#i ncl ude <wi ndows. h>
#i ncl ude <stdio. h>
#def i ne BUFSI ZE MAX_PATH
int main(int argc, char *argv[])

{

BOOL bFl ag;
char Buf [BUFSI ZE] ; /1 tenporary buffer for vol une nane
char buf 1[BUFSI ZE] ; /1 tenporary buffer for volune name

DWORD nl , fl ags;
char fsnane[512];

if(argc '= 3) {
printf("Usage: nount <directory> <drive>\n");
printf("For exanple\nnount c:\\mt\\cdromg:\\\n");
return(-1);

}

/1 We should do sone error checking on the inputs. Make sure
/1l there are colons and backsl ashes in the right places, etc.

bFl ag = Get Vol uneNaneFor Vol uneMount Poi nt (
argv[2], // input volune nount point or directory
Buf, // output volune nane buffer

Some Coding Tips 297

BUFSI ZE // size of volunme nane buffer

)

if (bFlag !'= TRUE) ({
printf("Retrieving volume name for % failed.\n", argv[2]);
return (-2);
}
/1l Check that the file system supports nmounting
bFl ag = Get Vol unel nformati on(argv[2], buf 1, BUFSI ZE,
NULL, &nl , &f | ags, f snane, 256) ;
if (0 == (flags & FILE_SUPPORTS_REPARSE PO NTS)) {
printf("File systemdoesn't support nount points\n");
return (-3);

}

printf("Volume nane of % is %\n", argv[2], Buf);
if (strlen(argv[1]) < 2) {
printf("lncorrect path name %\n",argv[1]);
return -4;
}
strncpy(fsnane, argv[1], si zeof (f snane) - 1) ;
f sname[si zeof (fsnane) - 1] = O;
/1 Add a trailing backslash, if not this call will not work
if (fsnamg[strlen(fsnane)-1] '= "\\") {
strcat (fsnane, "\\");
}

bFl ag = Set Vol uneMount Poi nt (
fsname, // nount point
Buf // volume to be nounted

)

if (!'bFlag) {
printf ("Attenpt to nount % at % failed. Error code %\ n"
argv[2], argv[1], GetLastError());
}

else printf("% nounted in %\n",argv[2],argv[1]);

return (!bFlag);
}

2.20.24.2 Umount
Once we have mounted a drive, we can unmount it with the following utility:

#i ncl ude <wi ndows. h>
#i ncl ude <stdi o. h>
int main(int argc, char *argv[])
{
BOOL bFl ag;
char nmpat h[512];

if (argc !'= 2)

{
printf("% unnmounts a volune fromthe vol une nmount point.\n",
argv[0]);
printf("For exanple:\nunount c:\\mt\\cdromn");
return (-1);
}

strncpy(npat h, argv[1], si zeof (nmpat h) - 3) ;
npat h[si zeof (npath)-2] = 0O;

298 Windows programming with lcc-win32

if (nmpath[strlen(mpath)-1] = "\\") {
strcat (npath, "\\");

}
bFl ag = Del et eVol uneMbunt Poi nt(npath);

printf ("% % in unmounting the volume at %.\n",
argv[0], bFlag ? "succeeded" : "failed", npath);

return (!bFlag);

2.21 FAQ

Here are some answer to questions users of lcc-win32 have asked, or questions that | imagine
you will find useful.

2.21.1 How do I create a progress report with a Cancel button?

Hereisthe answer from the MSDN Knowledge base, article Q76415

The following article describes the mechanisms necessary to implement a progress or activity
indicator with a Cancel Operation option, to be used for lengthy and CPU-intensive subtasks
of an application. Examples of operations using this include: copying multiple files, directory
searches, or printing large files.

The progress dialog box isimplemented in two steps:
 [|nitialize the dialog box before starting lengthy or CPU intensive subtask.

» After each unit of the subtask is complete, call ProgressYield() to determine if the user
has canceled the operation and to update the progress or activity indicator.

Thisis the description of the progress dialog procedure. The procedure uses a global variable
(Cancel) to inform the CPU-intensive subtask that the user has indicated a desire to terminate
the subtask.

WORD Cancel = FALSE; /* This nust be global to all nodul es */
/* which call ProgressYield() */

BOOL FAR PASCAL ProgressD gProc(hDl g, nmessage, wParam | Param

HW\D hD g;

unsi gned nessage;

WORD wPar am

DWORD | Par am

{

swi tch (nmessage)

{
/* Use other messages to update the progress or activity */
[* indicator. */

case WM _COMVAND:
swi tch (wParam

{

case | D CANCEL: /* ID CANCEL = 2 */
Cancel = TRUE;

defaul t:

return FALSE;
}

FAQ 299

def aul t :
return FALSE;

}

}
The following describes the ProgressYield procedure, which should be called after each unit
of the CPU-intensive subtask is completed. The ProgressYield procedure uses the IsDialog-
Message function (described in the "Microsoft Windows Software Development Kit Refer-
ence Volume 1"). IsDialogM essage will convert keyboard messages into selection commands
for the corresponding dialog box.

voi d ProgressYiel d(HWND hwnd)

{
MSG nsgQ;
/* Renove all avail abl e nessages for any wi ndow that bel ong */
/* to the current application. */
whi |l e (PeekMessage(&rsg, NULL, 0, 0, PM REMOVE))
{
/* Translate and Dispatch the given nessage if the w ndow */
/* handle is null or the given nessage is not for the */
/* nodel ess dial og box hwnd. */
if (!'hwnd || !'I1sDi al ogMessage(hwnd, &nsg))
{

Tr ansl at eMessage(&nsQ) ;
Di spat chMessage(&rsq) ;
}

}

The following describes how to incorporate the progress dialog as part of an application’s sub-
task that is CPU-intensive. The PROGRESS DL G resource should contain a button with an
ID of 2, because this is the wParam of the WM_COMMAND that will be sent when the user
presses the ESC key. The button should also have the BS DEFPUSHBUTTON style so that
the ENTER key will also result in the termination of the CPU-intensive subtask.

FARPROC | pProgr essProc;
HAND hwndPr ogr ess; [* This needs to be global if */
/* accessed by other nodules. */

/* Initialize before starting CPU-intensive work. */
| pProgressProc = MakeProcl nstance(ProgressD gProc,
hinst); /* Current instance. */

hwndPr ogress = CreateDi al og(hl nst, /* Current instance. */
"PROGRESS DLG', /* Resource. */
hwndPar ent , [* Parent handl e. */

| pProgressProc);/* Instance address. */
ShowW ndow(hwndPr ogr ess) ;

/* Start CPU intensive work here. */

/* Before or after each unit of work, the application */

/* should do the follow ng: */
Pr ogr essYi el d(hwndPr ogr ess) ;
i f (Cancel == TRUE)

br eak; /* Term nate CPU-intensive work imrediately. */

300

Windows programming with lcc-win32

/* End CPU-intensive work here. */

Dest r oyW ndow(hwndPr ogr ess) ;
Fr eeProcl nst ance(| pProgressProc);

2.21.2 How do | show in the screen a print preview?

If a screen font is available that exactly matches (or at least very closely corresponds to) the
chosen printer font, then the processis very straightforward and consists of seven steps:

Retrieve a Device Context (DC) or an Information Context (IC) for the printer.

Call EnumFontFamilies() to obtain a LOGFONT structure for the selected printer font.
The nFontType parameter to the EnumFontFamilies() callback function specifies if a
given font is adevice font.

Get a DC for the screen.

Convert the IfHeight and IfWidth members of the LOGFONT structure from printer
resolution units to screen resolution units. If a mapping mode other than MM_TEXT is
used, round-off error may occur.

Call CreateFontIndirect() with the LOGFONT structure.
Call SelectObject(). GDI will select the appropriate screen font to match the printer font.
Release the printer device context or information context and the screen device context.

If a screen font that corresponds to the selected printer font is not available, the process is
more difficult. It is possible to modify the character placement on the screen to match the
printer font to show justification, line breaks, and page layout. However, visual similarity
between the printer fonts and screen fonts depends on a number of factors, including the num-
ber and variety of screen fonts available, the selected printer font, and how the printer driver
describes the font. For example, if the printer has a serifed Roman- style font, one of the GDI
serifed Roman-style fonts will appear to be very similar to the printer font. However, if the
printer has a decorative Old English-style font, no corresponding screen font will typicaly be
available. The closest available match would not be very similar.

To have a screen font that matches the character placement of a printer font, do the following:

» Perform the preceding seven steps to retrieve an appropriate screen font.
» Get the character width from the TEXTMETRIC structure returned by the EnumFonts

function in step 2 above. Use this information to calculate the page position of each
character to be printed in the printer font.

» Allocate ablock of memory and specify the spacing between characters. Make sure that

thisinformation is in screen resolution units.

» Specify the address of the memory block as the IpDx parameter to ExtTextOut(). GDI

will space the characters aslisted in the array.

2.21.3 How do | change the color of an edit field?
See page 252.

FAQ 301

2.21.4 How do | draw a transparent bitmap?

A portion of a graphic image that does not change the contents of the screen is termed "trans-
parent.” The Drawlcon function can create an image that contains transparent portions. It is
also possible to obtain this functionality using the BitBIt function; however, there are some
additional stepsinvolved.

Thefirst step is to obtain the contents of the area where the bitmap will be drawn and to store
this background image in a memory display context (DC). Mask out the area of the back-
ground that corresponds to the nontransparent portion of the image bitmap and mask out all
transparent pixels from the image bitmap. Use the XOR raster operation to merge the image
bitmap into the background bitmap. Finally, use the BitBIt function to move the merged image
to the destination DC.

The following nine steps describe a process used to draw transparent bitmaps:
* Create aDC to hold the image bitmap.
» Select the image bitmap into the DC.
» Create amemory DC to hold the final image. Thisisthe destination DC.
» Copy the portion of the screen that will be covered by the image into the destination DC.

* Create an "AND mask" that contains the mask of the colorsto draw (the nontransparent
portions of the image). To do this, perform the following three steps:

» Set the background color of the image DC to the color that will be transparent in the
Image.

* Create amonochrome DC.

 BitBlIt the image into the monochrome DC. Thiswill create an AND mask of the bitmap
by setting pixels that match the background color to white (1), and setting all other
pixelsto black (0).

» Use BitBIt with the SRCAND raster operation code to copy the AND mask onto the
destination DC. Use BitBIt with the SRCAND raster operation code to copy the inverse
of the AND mask onto the image DC. Use BitBIt with the SRCPAINT raster operation
code to copy the image DC onto the destination DC. Use BitBIt to copy the contents of
the destination DC to the appropriate portion of the screen.

The following code is a function that demonstrates the preceding steps:

voi d DrawTransparent Bi t map(HDC hdc, HBI TMAP hBitmap, short xStart,
short yStart, COLORREF cTransparent Col or)

{

Bl TMAP bm

COLORREF cCol or;

HBI TMAP bmAndBack, bmAndObj ect, bmAndMem bnfave;

HBI TMAP bmBackd d, bmObjectd d, bmvend d, bnSaved d;

HDC hdcMem hdcBack, hdcObject, hdcTenp, hdcSave;

PO NT pt Si ze;

hdcTenp = Creat eConpati bl eDC(hdc) ;
Sel ect Obj ect (hdcTenp, hBitmap); /1 Select the bitmp

Get Obj ect (hBi t map, si zeof (BI TMAP), (LPSTR) &m ;

pt Si ze. x = bm bmA dt h; /1 Get width of bitnmap
ptSi ze.y = bm bntHei ght; /1 Get height of bitmp
DPt oLP(hdcTenp, &ptSize, 1); /1 Convert from device

/1 to logical points

302 Windows programming with lcc-win32

/I Create some DCs to hold temporary data.

hdcBack = CreateConpati bl eDC(hdc);
hdcObj ect = Creat eConpati bl eDC(hdc) ;
hdcMem = CreateConpati bl eDC(hdc);
hdcSave = CreateConpati bl eDC(hdc);

/I Create a bitmap for each DC. DCs are required for a number of
/I GDI functions.

/1 Nonochrome DC
bmAndBack = CreateBitmap(ptSize.x, ptSize.y, 1, 1, NULL);

/I Monochrome DC
bmAndObj ect = CreateBitmap(ptSize.x, ptSize.y, 1, 1, NULL);

bmAndMem
bnBave

Creat eConpati bl eBi t map(hdc, ptSize.x, ptSize.y);
Creat eConpati bl eBi t map(hdc, ptSize.x, ptSize.y);

/l Each DC must select a bitmap object to store pixel data.

bmBackd d = Sel ect Ohj ect (hdcBack, bnmAndBack) ;
bmObj ectA d = Sel ect Obj ect (hdcObj ect, bmAndhj ect) ;
bmvenad d = Sel ect vj ect (hdcMem bmAndMem) ;
bnaved d = Sel ect Ovj ect (hdcSave, bnfave);

/I Set proper mapping mode.
Set MapMbde(hdcTenp, Get MapMode(hdc));

/I Save the bitmap sent here, because it will be overwritten.
BitBl t (hdcSave, 0, 0, ptSize.x, ptSize.y, hdcTenp, 0, 0, SRCCOPY);

/I Set the background color of the source DC to the color. contained in the parts of
/I the bitmap that should be transparent
cCol or = Set BkCol or (hdcTenp, cTransparent Col or);

/I Create the object mask for the bitmap by performing a BitBIt
/Il from the source bitmap to a monochrome bitmap.
BitBl t (hdcObject, 0, 0, ptSize.x, ptSize.y, hdcTenp, 0, 0, SRCCOPY);

/I Set the background color of the source DC back to the original color.
Set BkCol or (hdcTenp, cCol or);

Il Create the inverse of the object mask.
Bi t Bl t (hdcBack, 0, 0, ptSize.x, ptSize.y, hdcObject, O,
0, NOTSRCCOPY) ;

/I Copy the background of the main DC to the destination.
BitBlt(hdcMem 0, 0O, ptSize.x, ptSize.y, hdc, xStart,
ySt art, SRCCOPY) ;

/I Mask out the places where the bitmap will be placed.
BitBlt(hdcMem 0, O, ptSize.x, ptSize.y, hdcObject, 0, 0, SRCAND);

/I Mask out the transparent colored pixels on the bitmap.
BitBl t (hdcTenp, 0, 0, ptSize.x, ptSize.y, hdcBack, 0, 0, SRCAND);

/I XOR the bitmap with the background on the destination DC.
BitBlt(hdcMem 0, O, ptSize.x, ptSize.y, hdcTenp, 0, 0, SRCPAINT);

/I Copy the destination to the screen.

FAQ 303

BitBlt(hdc, xStart, yStart, ptSize.x, ptSize.y, hdcMem 0,

0, SRCCOPY) ;

/I Place the original bitmap back into the bitmap sent here.
BitBl t (hdcTenp, 0, 0, ptSize.x, ptSize.y, hdcSave, 0, 0, SRCCOPY);

/I Delete the memory bitmaps.
Del et ehj ect (Sel ect Obj ect (hdcBack, bmBackd d));
Del et enj ect (Sel ect Obj ect (hdcObj ect, bnmbjectd d));
Del et ehj ect (Sel ect Obj ect (hdcMem bmivenQ d)) ;
Del et ehj ect (Sel ect Obj ect (hdcSave, bnBaved d));

/I Delete the memory DCs.
Del et eDC(hdcMem) ;
Del et eDC(hdcBack) ;
Del et eDC(hdcbj ect) ;
Del et eDC(hdcSave) ;
Del et eDC(hdcTenp) ;

}
The following is an example of how the DrawTransparentBitmap function might be called:
Dr awTr anspar ent Bi t map(hdc, /1 The destination DC.
hBi t map, /1 The bitmap to be drawn.
xPos, /1 X coordinate.
yPos, /1 Y coordi nate.

2.21.5
/*

OXOOFFFFFF); // The color for transparent
/1 pixels (white, in this
/1 exanple).

How do | draw a gradient background?

DrawBackgroundPattern() *
Purpose: This function draws a gradient pattern that transitions between blue and black.
This is similar to the background used in Microsoft setup programs. */

voi d DrawBackgroundPat t er n(HWAND hWhd)

{

HDC hDC = Get DC(hwhd); // Get the DC for the w ndow

RECT rectFill; /1 Rectangle for filling band

RECT rectdient; /1 Rectangle for entire client area
float fStep; /1l How |l arge is each band?

HBRUSH hBr ush;
int iOnBand; // Loop index

/I How large is the area you need to fill?
Get d i ent Rect (hWhd, &rectdient);

/I Determine how large each band should be in order to cover the client with 256
/I bands (one for every color intensity level)
fStep = (float)rectCient.bottom/ 256. 0f;

/I Start filling bands
for (iOnBand = 0; i OnBand < 256; i OnBand++) {
/I Set the location of the current band
Set Rect (& ectFill,

0, /1 Upper left X
(int)(i OnBand * f Step), /1 Upper left Y
rectCient.right+1, /1 Lower right X

(int)((i OnBand+1) * fStep)); // Lower right Y

/I Create a brush with the appropriate color for this band

304 Windows programming with lcc-win32

hBrush = CreateSol i dBrush(RGB(0, 0, (255 - iOnBand)));
/I 'Fill the rectangle
Fill Rect (hDC, &rectFill, hBrush);

/I Get rid of the brush you created
Del et eoj ect (hBrush);

/I Give back the DC
Rel easeDC(hwhd, hDC);

2.21.6 How do I calculate print margins?

An application can determine printer margins as follows:
Calculate the left and top margins

» Determine the upper left corner of the printable area calling GetDeviceCaps() with the
PHY SICALOFFSETX and PHY SICALOFFSETY indices. For example:
/1 Init our pt struct in case escape not supported
pt.x = 0; pt.y = 0;
/'l Locate the upper left corner of the printable area
pt.x = Get Devi ceCaps(hPrnDC, PHYSI CALOFFSETX) ;
pt.y = Get Devi ceCaps(hPrnDC, PHYSI CALOFFSETY);

Determine the number of pixels required to yield the desired margin (x and y offsets) by

calling GetDeviceCaps() using the LOGPIXELSX and LOGPIXELSY flags.

[* Figure out how much you need to offset output to produce the left and top margins for the
output in the printer. Note the use of the "max" macro. It is possible that you are asking for
margins that are not possible on this printer. For example, the HP LaserJet has a 0.25"
unprintable area so we cannot get margins of 0.1". */
xOffset = max (0, GetDeviceCaps (hPrnDC, LOGPI XELSX) *

nl nchesWweWant - pt.x);
yOfset = max (0, GetDeviceCaps (hPrnDC, LOGPI XELSY) *

nl nchesWwevant - pt.y);
I* When doing all the output, you can either offset it by the above values or call SetViewportOrg()
to set the point (0,0) at the margin offset you calculated.*/
SetViewportOrg (hPrnDC, xOfset, yOfset); //all other output here

e Cadculate the bottom and right margins. Obtain the total size of the physical page
(including printable and unprintable areas) calling GetDeviceCaps() with the
PHYSICALWIDTH and PHY SICALHEIGHT indices in Windows NT.

» Determine the number of pixels required to yield the desired right and bottom margins
by calling GetDeviceCaps using the LOGPIXELSX and LOGPIXELSY flags.

e Cadculate the size of the printable area with GetDeviceCaps() using the HORZRES and

VERTRES flags. The following code fragment illustrates steps a through c:
/I Get the size of the printable area

pt.x = Get Devi ceCaps(hPrnDC, PHYSI CALW DTH) ;

pt.y = GetDevi ceCaps(hPrnDC, PHYSI CALHEI GHT);

xOFfset O Ri ght Margin = xOF fset +
Get Devi ceCaps (hPrnDC, HORZRES) -
pt.x -
Get Devi ceCaps (hPrnDC, LOGPI XELSX) *
w nchesWewant ;

yOfset Of Bottonvargin = yOffset +
Get Devi ceCaps (hPrnDC, VERTRES) -

pt.y -

FAQ 305

Get Devi ceCaps (hPrnDC, LOGPI XELSY) *
wl nchesWeVant ;

NOTE: Now, you can clip all output to the rectangle bounded by xOffset, yOffset, xOff setOf -
RightMargin, and yOffsetOf BottomMargin.

2.21.7 How do | calculate the bounding rectangle of a string of

text?

/* Get a bounding rectangle for a string of text output to a specified coordinate in a DC using the

currently selected font NOTE: The reference DC must have a True Type font selected */

BOOL Get Text Boundi ngRect (HDC hDC, /1 Reference DC
i nt X, /1 X-Coordinate
i nt Y, /'l Y-Coordinate
LPSTR | pStr, // The text string to evaluate
DWORD dwien, // The length of the string
LPRECT | prc) [// Holds bounding rectangl e

LPPO NT | pPoi nts;
LPBYTE | pTypes;
int i, iNunPts;

// Draw the text into a path
Begi nPat h(hDC) ;
i = Set BkMbde(hDC, TRANSPARENT);
TextQut (hDC, x, y, |pStr, dwLen);
Set Bkvbde(hDC, i);
EndPat h(hDC) ;

/l How many points are in the path
i NunPts = GetPat h(hDC, NULL, NULL, 0);
if (iNunPts == -1) return FALSE;

/I Allocate room for the points
| pPoints = (LPPA NT) d obal Al l oc(GPTR, sizeof (PO NT) * i NunPts);
if (!l pPoints) return FALSE;

/I Allocate room for the point types
| pTypes = d obal Al | oc(GPTR, i NunPts);
if (!lpTypes) {
d obal Free(l pPoi nts);
return FALSE;

/I Get the points and types from the current path
i NunPts = Get Pat h(hDC, | pPoints, |pTypes, iNunPts);

// More error checking

if (iNunPts == -1) {
d obal Free(l pTypes);
d obal Free(l pPoi nts);
return FALSE;

/I Intialize the rectangle
Set Rect (I prc, OxFFFFF, OxFFFFF, 0, 0);

306 Windows programming with lcc-win32

2.21.8 How do I close an open menu?

To cancel an active menu send aWM_CANCELMODE message to the window that ownsit.

When you send the WM_CANCELMODE message to the owner window of an active menu,
the window exits the menu mode. You can use this technique to force the abandonment of
active TrackPopupMenu or TrackPopupM enuEX.

2.21.9 How do | center adialog box in the screen?

To center adialog box on the screen before it is visible, add the following lines to the process-
ing of the WM _INITDIALOG message:

{
RECT rc;

Get W ndowRect (hDl g, &rc);

Set W ndowPos(hDl g, NULL,
((Get Systemvetrics(SM CXSCREEN) - (rc.right - rc.left)) / 2),
((Get Systemvetrics(SM CYSCREEN) - (rc.bottom- rc.top)) / 2),
0, 0, SWP_NCSIZE | SWP_NOACTI VATE) ;

}

This code centers the dialog horizontally and vertically.

2.21.10 How do I create non-rectangular windows?

In previous versions of Windows and Windows NT, it was possible to create only rectangular
windows. To simulate a non-rectangular window required a lot of work on the application
developer's part. Besides handling all drawing for the window, the application was required to
perform hit-testing and force underlying windows to repaint as necessary to refresh the "trans-
parent” portions of the window.

Windows 95 and Windows NT version 3.51 greatly simplify this by providing the SetWin-
dowRgn function. An application can now create aregion with any desired shape and use Set-
WindowRgn to set this as the clipping region for the window. Subsequent painting and mouse
messages are limited to this region, and Windows automatically updates underlying windows
that show through the non-rectangular window. The application need only paint the window as
desired.

For more information on using SetWindowRgn, see the Win32 APl documentation.

2.21.11 How do | implement a non-blinking caret?

Although Windows is designed to blink the caret at a specified interval, a timer function and
SetCaretBlinkTime() can be used to prevent Windows from turning the caret off by following
these three steps:

FAQ 307

e Cal set caretBli nkTi me(10000), which instructs Windows to blink the caret every
10,000 milliseconds (10 seconds). Thisresultsin a'round-trip" time of 20 seconds to go
from OFF to ON and back to OFF (or vice versa).

» Create atimer, using SetTimer(), specifying a timer procedure and a 5,000 millisecond
interval between timer ticks.

* In the timer procedure, call SetCaretBlinkTime(10000). This resets the timer in
Windows that controls the caret blink.

When an application implements this procedure, Windows never removes the caret from the
screen, and the caret does not blink.

2.21.12 How do | create a title window (splash screen)?

A "splash" screen (title screen) can be used by an application to display important information
about a program. The splash screen can also be used as an activity indicator during application
startup.

A splash screen is usually used when it is known that an application will take more than a sec-
ond or two to display its first Ul elements. The splash screen gives the user visual feedback
that the application is starting. If a splash screen is not used, the user may assume that the start
command was not run properly, and the user may try to start the application again.

To display a splash window, create an overlapped window. In the WndProc for this window,
intercept the WM_NCCALCSIZE message and return NULL (instead of the DefWindowProc
function), which prevents Microsoft Windows from redefining the window's maximum
default full-screen client area size to accommodate borders and caption bar.

This window can be created before the main application initializes. The main application can
send messages to this window to display itsinitialization information or a bitmap.

The following code shows one way to implement a splash screen window:

#define SZ INT TEXT("Initializing application...")
#define SZ_LQOAD TEXT(" Loadi ng resources... ")
#define SZ CLOSE TEXT("d osing splash wi ndow...")
#define SZ SPLASH TEXT("Splash w ndow")

#define | D_TI MER CLOSEOx1111
#define | D_TIMER | NI TOx1112
#define | D_TI MER_ LOADOX1113
#define | D_TI MER DONEOXx1114

ATOM MyRegi st er d ass(H NSTANCE hl nst ance) ;

BOOL Initlnstance(H NSTANCE hl nstance, int nCndShow);

LRESULT CALLBACK WhdProc(HWND hWwhd, Ul NT nessage, WPARAM wPar am LPARAM
| Paran;

HI NSTANCE hl nst = NULL;
TCHAR Spl ashwhdd ass| 28] ;
i nt APl ENTRY W nMai n(H NSTANCE hl nst ance,
HI NSTANCE hPrevl nst ance,

LPSTR | pCndLi ne,
i nt nCndShow)
{
MSG nsg;

| strcpy(Spl ashwhdd ass, TEXT(" Spl ashW ndow")) ;
My/Regi st er d ass(hl nstance) ;
/1 Performapplication initialization:

308 Windows programming with lcc-win32

}

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

if (!'lInitlnstance (hlnstance,

{
}

return FALSE;

/1 Main nessage | oop:
whil e (Get Message(&nsg,
{

NULL,

nCndShow))

0, 0))

Tr ansl at eMessage(&nsQ) ;
Di spat chMessage(&nsg) ;

}

return nsg. wPar am

FUNCTI ON:. MyRegi sterd ass()

PURPCSE: Regi sters the w ndow cl ass.

COMMVENTS:

This function and its use

is only necessary if you want

this code to be conpatible with Wn32 systens prior to the

' Regi st erd assEx’
i mportant to call

get 'well fornmed snall

function that was added to W ndows 95.
this function so that the application wll
i cons associated with it.

ATOM MyRegi st er d ass(H NSTANCE hl nst ance)

{

}

/1
11
11
11
11
/1
/1
/1
/1
/1

BOOL Initlnstance(H NSTANCE hl nst ance,

{

VWADCLASSEX wecex;

chSi ze

style

| pf nWAdPr oc
cbC sExtra
cbWhdExtra

hl nst ance

hl con

hCur sor

hbr Backgr ound
| pszMenuNane
| pszC assName
hl conSm

Wcex.
Wwcex.
Wcex.
Wcex.
Wcex.
Wcex.
Wcex.
Wcex.
Wwecex.
Wcex.
Wcex.
Wwcex.

return Registerd assEx(&wc

FUNCTI ON:

I nitlnstance(HANDLE,

si zeof (WNDCLASSEX) ;
CS_HREDRAW | CS_VREDRAW
(WNDPRQOC) WadPr oc;

0;

0;

hl nst ance;

NULL;

LoadCur sor (NULL, | DC _ARROW ;
(HBRUSH) (COLOR_W NDOWH1) ;
NULL;

Spl ashwhdd ass;

NULL;

ex);

int)

PURPCSE: Saves i nstance handl e and creates main w ndow

COMMVENTS:

In this function, we save
vari abl e and create and di

the instance handle in a gl obal
splay the nmai n program w ndow.

i nt nCndShow)

It

is

FAQ 309

HWND hwhd;
RECT rect;
int splashwidth = 350;
int splashhei ght = 350;

hlnst = hinstance; // Store instance handle in this global variable
Syst enPar anet er sl nf o(SPI _GETWORKAREA, 0, (LPVO D) &rect, 0);

hwid = Creat eW ndowex(W5_EX_ TOOLW NDOW
Spl ashwhdd ass,
NULL,
W5_OVERLAPPED,
(rect.right - rect.left - splashw dth)/2,
(rect.bottom- rect.top - splashheight)/2,
spl ashwi dt h,
spl ashhei ght,
NULL,
NULL,
hl nst ance,
NULL) ;
i f (!hwad)
{

}

ShowW ndow(hwhd, nCndShow) ;
Updat eW ndow(hwhd) ;

return FALSE;

return TRUE;

}

/1

/1 FUNCTI ON: WhdPr oc(HWND, unsi gned, WORD, LONG

/1

/1 PURPCSE: Processes nessages for the main w ndow.
/1

/1 W _COMWAND- Process the application nenu

/1 VW _PAI NT- Paint the main w ndow

/1 WM DESTROY- Post a quit nessage and return

/1

/1

LRESULT CALLBACK WhdProc(HWND hWwhd, Ul NT nessage, WPARAM wPar am LPARAM
| Par am

{

swi tch (nessage)
{
case WM NCCALCSI ZE: //CAPTURE THI S MESSAGE AND RETURN NULL
return NULL;
case WM CREATE:
Set Ti mer (hwhd, ID TIMER INIT, 1000, NULL);
Set Ti mer (hwhd, 1D _TI MER LOAD, 2000, NULL);
Set Ti mer (hwhd, | D _TI MER DONE, 4000, NULL);
Set Ti mer (hwhd, 1D _TI MER CLOSE, 5000, NULL);
br eak;
case WM _PAI NT:

PAI NTSTRUCT ps ={ 0 };
RECT rc ={ 0 };
HDC hDC = Begi nPai nt (hWhd, &ps);

310 Windows programming with lcc-win32

CGet d i ent Rect (hWhd, &rc);
InflateRect(&c, -2,-2);
Rect angl e(hDC, rc.left, rc.top, rc.right, rc.botton);
InflateRect (& c, -15,-15);
HFONT hFont = CreateFont(-35,-35, 0, 0,0,0,0,
0,0,0,0,0,0, TEXT("Arial"));
HFONT hd dFont = (HFONT) Sel ect Obj ect (hDC, hFont);
Dr awText (hDC, SZ SPLASH, |strlen(SZ_SPLASH),
& c, DT_WORDBREAK) ;
Sel ect Obj ect (hDC, hd dFont);
EndPai nt (hWhd, &ps);
}
br eak;
case WM DESTROY:
Post Qui t Message(0) ;
br eak;
case WM TI MER:
{
HDC hDC = Get DC(hWhd) ;
RECT rc = { 0 };
Get d i ent Rect (hWhd, &rc);
Ki | I Ti mer (hWhd, wParanj;
swi tch (wParam
{
case | D_TI MER_CLOSE:
Dest r oyW ndow(hwd) ;
br eak;
case ID_TIMER_INIT:
Text Qut (hDC, rc.right-200, rc.bottom 20,
SZINT, Istrlen(SZ_INT));
br eak;
case | D _TI MER_LOAD:
Text Qut (hDC, rc.right-200, rc.bottom 20,
SZ LOAD, Istrlen(SzZ LOAD));
br eak;
case | D _TI MER_DONE:
Text Qut (hDC, rc.right-200, rc.bottom 20,
SZ CLCSE, Istrlen(SZ CLOSE));
br eak;
}

Rel easeDC(hwhd, hDC);

}
br eak;
def aul t:
return Def WndowPr oc(hwhd, nessage, wParam | Paranj;
}
return O;

2.21.13 How do | append text to an edit control?

Windows-based applications often use edit controls to display text. These applications some-
times need to append text to the end of an edit control instead of replacing the existing text.
There are two different waysto do thisin Windows:

Usethe EM_SETSEL and EM_REPLACESEL messages.

Usethe EM_SETSEL message with the clipboard functions to append text to the edit control's
buffer.

FAQ 311

The EM_SETSEL message can be used to place a selected range of text in a Windows edit
control. If the starting and ending positions of the range are set to the same position, no selec-
tion is made and a caret can be placed at that position. To place a caret at the end of the text in
aWindows edit control and set the focus to the edit control, do the following:

HWD hEdit = GetDigltem (hDig, IDEDT);

i nt ndx = Get WndowText Length (hEdit);

Set Focus (hEdit);
SendMessage (hEdit, EM SETSEL, (WPARAM ndx, (LPARAM ndx);

Once the caret is placed at end in the edit control, you can use the EM_REPLACESEL to
append text to the edit control. An application sends an EM_REPLACESEL message to
replace the current selection in an edit control with the text specified by the IpszReplace
(IParam) parameter. Because there is no current selection, the replacement text is inserted at
the current caret location. This example sets the selection to the end of the edit control and
inserts the text in the buffer:

SendMessage (hEdit, EM SETSEL, (WPARAM ndx, (LPARAM ndx);

SendMessage (hEdit, EM REPLACESEL, 0, (LPARAM ((LPSTR)
szBuffer));

Another way to insert text into an edit control is to use the Windows clipboard. If the applica-
tion has the clipboard open or finds it convenient to open the clipboard, and copies the text

into the clipboard, then it can send the WM _PASTE message to the edit control to append text.
Of course, any datathat was in the clipboard will be lost.

Before sending the WM_PASTE message, the caret must be placed at the end of the edit con-
trol text using the EM_SETSEL message. Below is "pseudo” code that shows how to imple-
ment this method:

Opend i pBoard () ;

Empt yd i pBoard() ;

Set d i pBoardDat a() ;

SendMessage (hEdit, EM SETSEL, (WPARAM ndx, (LPARAM ndx);
SendMessage (hEdit, WM PASTE, 0, OL);

This "pseudo” code appends text to the end of the edit control. Note that the data in the clip-
board must bein CF_TEXT format.

2.21.14 How do | spawn a process with redirected stdin and
stdout?

The CreateProcess() API through the STARTUPINFO structure enables you to redirect the
standard handles of a child console based process. If the dwFlags member is set to
STARTF_USESTDHANDLES, then the following STARTUPINFO members specify the
standard handles of the child console based process:

HANDLE hStdinput - Standard input handle of the child process.
HANDLE hStdOutput - Standard output handle of the child process.

HANDLE hStdError - Standard error handle of the child process.

You can set these handles to either a pipe handle, file handle, or any handle that can do syn-
chronous reads and writes through the ReadFile() and WriteFile() API. The handles must be
inheritable and the CreateProcess() APl must specify that inheritable handles are to be inher-
ited by the child process by specifying TRUE in the bInheritHandles parameter. If the parent
process only wishesto redirect one or two standard handles, specifying GetStdHandle() for the
specific handles causes the child to create the standard handle as it normally would without

312 Windows programming with lcc-win32

redirection. For example, if the parent process only needs to redirect the standard output and
error of the child process, then the hStdInput member of the STARTUPINFO structure isfilled
asfollows:

hStdl nput = Get St dHandl e(STD_| NPUT_HANDLE) ;

NOTE: Child processes that use such C run-time functions as printf() and fprintf() can behave
poorly when redirected. The C run-time functions maintain separate 10 buffers. When redi-
rected, these buffers might not be flushed immediately after each 1O call. As aresult, the out-
put to the redirection pipe of a printf() cal or the input from a getch() call is not flushed
immediately and delays, sometimes-infinite delays occur. This problem is avoided if the child
process flushes the 10 buffers after each call to a C run-time 10 function. Only the child pro-
cess can flush its C run-time 10 buffers. A process can flush its C run-time IO buffers by call-
ing the fflush() function.

NOTE: Windows 95 and Windows 98 require an extra step when you redirect the standard
handles of certain child processes.

2.21.15 How to modify the width of the list of a combo box

The combo box in Windows is actually a combination of two or more controls; that's why it's
called a"combo" box.

To make the combo box list wider or narrower, you need the handle of the list box control
within the combo box. Thistask is difficult because the list box is actually a child of the desk-
top window (for CBS DROPDOWN and CBS DROPDOWNLIST styles). If it were a child
of the ComboBox control, dropping down the list box would clip it to the parent, and it
wouldn't display.

A combo box receives WM_CTLCOLOR messages for its component controls when they
need to be painted. This alows the combo box to specify a color for these controls. The
HIWORD of the IParam in this message is the type of the control. In case of the combo box,
Windows sends it a WM_CTLCOLOR message with the HIWORD set to
CTLCOLOR_LISTBOX when the list box control needs to be painted. The LOWORD of the
|Param contains the handle of the list box control.

Once you obtain the handle to the list box control window, you can resize the control by using
the MoveWindow API.

The following code sample demonstrates how to do this. This sample assumes that you have
placed the combo box control in adialog box.

LRESULT CALLBACK NewConmboProc (HWD hWhd, U NT nessage, WPARAM
wParam LPARAM | Param); // prototype for the combo box subclass proc

HANDLE hl nst ; /1 Current app instance.

BOOL bFirst; /1 A flag.

/1 Dialog procedure for the dialog containing the conbo box.
BOOL CALLBACK Di al ogProc(HWND hDI g, Ul NT nessage, WPARAM
wPar am LPARAM | Par am
{
FARPROC | pf nNewConboPr oc;
switch (nessage) {
case WM I NI TDI ALOG
bFirst = TRUE;, // Set flag here - see bel ow for usage.
/1 Subcl ass the conbo box.
| pf nA dConboProc = (FARPROC) Set W ndowLong (
GetDigltem (hDli g, IDC COvVBOL),
GW._VWWDPRCC,
(LONG) NewConboProc);

FAQ 313

br eak;
case WM DESTROY:

(FARPROC) Set WndowLong (GetDigltem (hD g,

| DC_COvBQOL),
GWAL_VWWDPRCC,
(LONG) | pf nA dConboProc);
br eak;
defaul t:
br eak;

}

return FALSE;

} // End dial og proc.

/1 Conbobox subcl ass proc.
LRESULT CALLBACK NewConmboProc (HWD hWhd, U NT nessage, WPARAM

{

wPar am LPARAM | Param) ;

stati ¢ HAWND hwndLi st ;
static RECT rectlList;

if (WM CTLCOLORLI STBOX == nessage) // 32 bits has new nessage.

{
/1

/1
11
11
/1

}

Is this nessage for the Iist box control in the conbo?
Do only the very first tinme, get the |ist

box handl e and the list box rectangle.

Note the use of Get WndowRect, as the parent

of the Iist box is the desktop w ndow

if (bFirst) {

hwndLi st = (HWND) | Param ; /1 HWAD is 32 bits.

Get WndowRect (hwndList, &rectList);

bFirst = FALSE;

}
/1 Resize |istbox window cx by 50 (use your size here).
MoveW ndow (hwndLi st, rectList.left, rectList.top,
(rectList.right - rectList.left + 50),
rectList.bottom- rectList.top, TRUE);

/1 Call original combo box procedure to handle other combo messages.
return Cal |l WndowProc (| pfnd dConmboProc, hwd, nessage,

wParam | Param);

2.21.16 How do | modify environment variables permanently?

You can modify user environment variables by editing the following Registry key:
HKEY_CURRENT USER\ Envi r onnent

You can modify system environment variables by editing the following Registry key:
HKEY_LOCAL_MACHI NE \

SYSTEM \

Current Control Set \

Control \

Sessi on Manager \
Envi r onment

314 Windows programming with lcc-win32

Note that any environment variable that needs to be expanded (for example, when you use
%SY STEM%) must be stored in the registry asaREG_EXPAND_SZ registry value. Any val-
ues of type REG_SZ will not be expanded when read from the registry.

Note that RegEdit.exe does not have a way to add REG_EXPAND_SZ. Use RegEdt32.exe
when editing these values manually.

However, note that modifications to the environment variables do not result in immediate
change. For example, if you start another Command Prompt after making the changes, the
environment variables will reflect the previous (not the current) values. The changes do not
take effect until you log off and then log back on.

To effect these changes without having to log off, broadcast aWM_SETTINGCHANGE mes-
sage to al windows in the system, so that any interested applications (such as Program Man-
ager, Task Manager, Control Panel, and so forth) can perform an update.

For example, on Windows NT, the following code fragment should propagate the changes to
the environment variables used in the Command Prompt:
SendMessageTi meout (HAND_BROADCAST, WM SETTI NGCHANGE, 0,

(LPARAM) "Environnent", SMIO ABORTI FHUNG
5000, &dwRet urnVal ue);

None of the applications that ship with Windows 95, including Program Manager and the
shell, respond to this message. Thus, while this article can technically be implemented on
Windows 95, there is no effect except to notify third-party applications. The only method of
changing global environment variables on Windows 95 is to modify the autoexec.bat file and
reboot.

2.21.17 How do | add a menu item to the explorer right click
menu?

When you press the right mouse button within the explorer window, there is a pop-up menu
that shows you a series of options like “Explore’, “Open”, etc. To add an entry to this menu
you just add your new menu item name to

[HKEY_CLASSES ROOT\ Di rect ory\ shel I\ Your |t emNane]
The value of this key should be atext string containing the menu item name.

Then, you add a subkey called “ command” that specifies the command to be executed. To take
a concrete and simple example: we want to start a command shell in the directory where the
mouse is pointing to. We prepare atext file to add this keys using notepad or another text edi-
tor:

REGEDI T4

[HKEY_CLASSES ROOT\ Di rect ory\ shel I \ CndHer e]

@" CMD &Pronpt Here"

[HKEY_CLASSES ROOT\ Di r ect or y\ shel I \ CndHer e\ command]
@" G \\ WNDOMNS\ \ SystenB2\\cnd. exe /k cd \"%d\""

We call the program “regedit” with the argument the file we just created and that is al. The
two new keys will be automatically added to the registry. Note the double backward slashes!

Obviously you should change the path to cmd.exe to suit your system configuration.12®

126.1 got the idea of this from http://www.kbcafe.com/articles’HowTo.Shell.pdf by by Randy Charles
Morin.

FAQ 315

2.21.18 How do | translate between dialog units and pixels?

When a application dynamically adds a child window to a dialog box, it may be necessary to
align the new control with other controls that were defined in the dialog box's resource tem-
plate in the RC file. Because the dialog box template defines the size and position of a control
in dialog-box units rather than in screen units (pixels), the application must transate dialog-
box units to screen units to align the new child window.

An application can use the following two methods to translate dialog- box units to screen
units:

The MapDiaogRect function provides the easier method. This function converts dialog-box
units to screen units automatically.

For more details on this method, please see the documentation for the MapDialogRect func-
tion in the Microsoft Windows Software Development Kit (SDK).

Use the GetDia ogBaseUnits function to retrieve the size of the dialog base unitsin pixels. A
dialog unit in the x direction is one-fourth of the width that GetDialogBaseUnits returns. A
dialog unit in the y direction is one-eighth of the height that the function returns.

For more details on this method, see the documentation for the GetDialogBaseUnits function
in the Windows documentation of |cc-win32.

2.21.19 How do | translate between client coordinates to screen
coordinates?
To determine the screen coordinates for the client area of a window, call the ClientToScreen

function to trandate the client coordinates returned by GetClientRect into screen coordinates.
The following code demonstrates how to use the two functions together:

RECT r MyRect ;
Get d i ent Rect (hwnd, (LPRECT) & MyRect);

dient ToScreen(hwnd, (LPPO NT) & MyRect.left);
dient ToScreen(hwnd, (LPPO NT) & MyRect.right);

2.21.20 When should | use critical sections and when is a mutex
better?

Critical sections and mutexes provide synchronization that is very similar, except that critical
sections can be used only by the threads of a single process. There are two areas to consider
when choosing which method to use within a single process.

Speed. The Synchronization overview says the following about critical sections:

» Critical section objects provide a dightly faster, more efficient mechanism for mutual-
exclusion synchronization.

» Critical sections use a processor-specific test and set instruction to determine mutual
exclusion.

Deadlock. The Synchronization overview says the following about mutexes:

316 Windows programming with lcc-win32

« |f athread terminates without releasing its ownership of a mutex object, the mutex is
considered to be abandoned. A waiting thread can acquire ownership of an abandoned
mutex, but the wait function's return value indicates that the mutex is abandoned.

» WaitForSingleObject() will return WAIT_ABANDONED for a mutex that has been
abandoned. However, the resource that the mutex is protecting is left in an unknown
State.

» Thereisno way to tell whether acritical section has been abandoned.

2.21.21 Why is my call to CreateFile failing when | use conin$ or
conout$?

If you attempt to open a console input or output handle by calling the CreateFile() function
with the specia CONIN$ or CONOUT$ filenames, this cal will return
INVALID_HANDLE_VALUE if you do not use the proper sharing attributes for the fdw-
ShareMode parameter in your CreateFile() call. Be sure to use FILE_ SHARE_READ when
opening "CONIN$" and FILE_SHARE_WRITE when opening "CONOUT$".

2.21.22 How to erase afile into the recycle bin?

When you erase afile within a program, the deleted file doesn’t appear in the recycle bin. This
can be annoying if you want to undo this operation of course.

The solution is to use the APl SHFileOperation with the flag FOF_ ALLOWUNDO. Hereis a
small program that does all this for you. Compile with -DTEST to have a standalone program
that will accept command line arguments, or without it to have just the Recycle function that

will erase afile to the recycle bin.1?’

#i ncl ude <w ndows. h>

#i ncl ude <stdio. h>

#i ncl ude <coni o. h>

#i nclude <direct. h>

#i ncl ude <shell api. h>

i

/I Send a file to the recycle bin. Args:

/I - full pathname of file.

/I - bDelete: if TRUE, really delete file (no recycle bin)

I

int Recycl e(LPCTSTR pszPath, BOOL bDel et e)

{
/1 Copy pathnane to doubl e-NULL-term nated string.
/1
char buf[_ _MAX PATH + 1]; // allow one nore character
SHFI LEOPSTRUCT sh
strcpy(buf, pszPath); /1 copy caller's path nane
buf [strl en(buf) +1] =0; /1 need two NULLs at end

/1 Set SHFI LEOPSTRUCT parans for del ete operation
/1

127.This program is based on asimilar program published in MSDN magazine 2001. In the commentsfor
that program | found the following:

/I'1f this code works, it was written by Paul DiLascia.

//'1f not, | don't know who wroteit.

FAQ

menset (&sh, 0, si zeof (SHFI LEOPSTRUCT)) ;

sh. fFl ags | = FOF_SI LENT; /1 don't report progress
sh. f Fl ags | = FOF_NOERRORUI ; /1 don't report errors
sh. fFl ags | = FOF_NOCONFI RVATION; // don't confirmdel ete
sh. wkunc = FO _DELETE; /1 REQUI RED: del ete operation
sh. pFrom = buf; /1 REQUI RED: which file(s)
sh. pTo = NULL; /1 MUST be NULL
if (bDelete) { /1 if delete requested..
sh.fFlags & ~FOF_ALLOMUNDO, // ..don't use Recycle Bin
} else { /1 otherwi se..
sh. fFl ags | = FOF_ALLOWNUNDG, /1 ..send to Recycle Bin
}
return SHFi | eQperation(&sh);
}
#i f def TEST
/1 Test program
#i ncl ude <gc. h> /1 for GC malloc
#i ncl ude <sys/stat. h> /1 For stat()

/I This list structure holds the names of the files given in
/l the command line
typedef struct tagFileList {

struct tagFileList *Next;

char *Nane;

} FILELI ST;
/'l pre-declare functions
voi d usage(voi d);

voi d hel p(voi d);

char *GetCurrentDir();

char * MakeAbsol ute(char *rel name);
BOCL confirm LPCTSTR pFi | eNane) ;
LPCTSTR Get Error Msg(int err);

/1l gl obal command-line switches

BOOL bPronpt =FALSE; /1 pronpt at each file

BOOL bQui et =FALSE; /1 don't display nmessages

BOOL bDi spl ayOnl y=FALSE; /1 display results only; don't erase
BOOL bZap=FALSE; /1 delete (don't recycle)

/1 test if file exists
int fileexists(LPCTSTR pFil enane)
{

struct stat st;

return stat(pFil ename, &st)==0;

}

/I Adds to the list of file a new name. Allocates memory with
/I the garbage collector
FI LELI ST *AddToLi st (FI LELI ST *start, char *nane)

{
FI LELI ST *new i st;

new i st = GC nall oc(si zeof (FILELIST));
new i st->Nane = GC nml | oc(strl en(nane)+1);
strcpy(new i st->Nane, nane) ;
if (start) {

new i st->Next = start;
}

return new i st;

317

318 Windows programming with lcc-win32

int main(int argc, TCHAR* argv[], TCHAR* envp[])
{
/1l Parse command line, building list of file nanes.
/1l Switches can cone in any order.
/1
FILELI ST * files = NULL;

for (int i=1; i<argc; i++) {
if (argv[i][O] =="/" || argv[i][0O] =="-") {
switch(tolower(argv[i][1])) {
case '(q':
bQui et =TRUE;
br eak;
case 'n':
bDi spl ayOnl y=TRUE;
br eak;
case 'p':
bPr onpt =TRUE;
br eak;
case 'z':
bZap=TRUE;
br eak;
case '?':
hel p();
return O;
defaul t:
usage();
return O;
}
} else {
/] Got a file nanme. Make it absolute and add to |ist.
files = AddToList(fil es, MakeAbsol ute(argv[i]));

}

if (files == NULL) {
/1 No files specified: tell bozo user how to use this conmand.
usage();
return O;

}

/1l Delete (recycle) all the files in the list
i nt nDel =0;

/1 loop over list of files and recycle each one
for (; files; files = files->Next) {

/1 Only recycle if file exists.

if (fileexists(files->Name)) {

if (!'bQuiet && !bPronpt) {
/1 tell user I"'mrecycling this file
fprintf(stderr,"% %\n",
bzap ? "Deleting" : "Recycling", files->Nane);
}

if (!bDisplayOnly) {
if (!bPronmpt || confirm(files->Nane)) {
/1 Finally! Recycle the file. Use CRecycleFile.
int err = Recycl e(fil es->Nane, bZap);

FAQ 319

if (err==0) {
nDel ++;
} else {
/1l Can't recycle: display error nessage
fprintf(stderr,"Error %: %", err
Get Error Msg(err));

}
}
}
} else {
fprintf(stderr,"File not found \"%\"\n", files->Nane);
}
}
if (!bQuiet) {
fprintf(stderr,"% files recycled\n", nDel);
}
return O;
}
voi d usage(voi d)
{
printf("Usage: RECYCLE [/ QNPZ?] file...\n");
}
voi d hel p(voi d)
{
printf("Purpose: Send one or nore files to the recycle bin.\n");
printf("Fornat: RECYCLE [/ Q/N /P /Z] file....\n");
printf(" / Q uiet) no messages\n");
printf(" / N(ot hi ng) don't delete, just show files\n");
printf(" [/ P(ronpt) confirmeach file\n");
printf(" [Z(ap) really del etesane as del\n");
}

/I Make a file name absolute with respect to current directory.
char *MakeAbsol ut e(char *rel nane)
{

/1l Get current directory.

char *cwd = GetCurrentDir();

char *absnane;

if (relname[0] && relnane[l] && relname[1]==":") {
/1l relnane is already absol ute
absnanme = rel nane;

}
else if (relnane[0]=="\\") {
/I relname begins with \ add drive letter and colon
menmove(r el name+2, rel nane, strl en(rel nane) +1) ;
rel name[0] = cwd[0] ;
rel name[1] = cwd[1];
absnanme = rel nane;

} else { // file name begins with letter:
/1l relnane begins with a letter prepend cwd
strcat (cwd, rel nane) ;
absnanme = cwd;
}

return absnane;

320 Windows programming with lcc-win32

i
/I Get current directory. For some reason unknown to mankind, getcwd
Il returns "C:\FOQO" (no \ at end) if dir is NOT root; yet it returns "C:\"
/I (with)\) if cwd is root. Go figure. To make the result consistent for
/I appending a file name, GetCurrentDir adds the missing \ if needed.
/I Result always has final \.
i
char *Get CurrentDir(void)
{

static char dir[MAX_PATH ;

getcwd(dir, sizeof(dir));

/1 Append '\' if needed
int lastchar = strlen(dir)-1;

if (lastchar>0 & & dir[lastchar] !'="\\") // if last char isn't \
strcat(dir,"\\"); /1 ..add one
return dir;
}
[P rrrirrr
/1l Get user confirmation to recycle/delete a file
THEEEEErrrrrrirrr
BOOL confirm LPCTSTR pFi | eNang)
{
while (TRUE) ({
printf("Recycle % (Y NAI)? ", pFileNanme);
char ¢ = getch();
if (e=="") {
printf("~CQn");
exit(0);
}
printf("\n");
switch (tolower(c)) {
case 'a':
bPr onpt =FALSE;
/1 fall through
case 'y':
return TRUE;
case 'n':
return FALSE;
}
}
}
THEEEEErrrrrrirrr
/1l Get Wndows system error nessage
THEEEEErrrrrrrrrrd
LPCTSTR Get Error Msg(int err)
{

static char buf[BUFSI Z];
buf [0] =0;

/I Only Windows could have a function this confusing to get a simple
/I error message.
For mat Message(FORMAT _MESSAGE FROM SYSTEM |
FORMAT _MESSAGE_| GNORE_|I NSERTS,
NULL, /] source
err, /'l error code

Finding more examples and source code 321

0, /1 language |ID
buf, /1 buffer to receive nessage
BUFSI Z, // size of buf
NULL) ; /1 argunents
return buf;

}
#endi f

2.22 Finding more examples and source code

John Finlay has created a web site for source code for lcc-win32. Here is what John writes
about hiswork:

When [initialy started using L CC-Win32 searching the Internet revealed no good sources of
material that one could download as examples, so creating a web site dedicated to this end
seemed agood idea. If | needed help obviously others would too.

The web site http://www.btinternet.com/~john.findlayl/ contains many examples that lcc-
win32 users can easily compile and learn from. | have tried to place each example in an appro-
priate section to help in locating as the number of examples would be bewildering if there
were no discrete departments. These 'departments/sections however are not absolute as exam-
ples do not always readily fit into any specific category.

The largest section is 'Windows Programming' where you will find examples ranging from a
simple 'Generic' application to far more sophisticated software. There are many other sections
that may be of interest - OpenGL, DirectX, Windows Common Controls, Custom Controls,
MultiMedia, Telephony, Games, etc. There is aso the 'Assembler' section with texts and
examples explaining and showing how to code in assembler using lcc-win32 specifically as
the asm syntax used is AT& T not Intel asiswith most other compilers.

2.23 Overview of Icc-win32's documentation
The documentation of Icc-win32 comesin four files:;

9) Manual.chm. This is the user’s manual, where you will find information about how the
system is used, command line options, menu descriptions, how to use the debugger, etc. It
explains how to build a project, how to setup the compiler, each compiler option, all that
with dl the details.

10) c-library.chm. This file contains the documentation for all functions in the C runtime
library. It will be automatically invoked by the IDE when you press the F1 function key.
Thistwo files (c-library.chm and manual.chm) are distributed in “manual .exe’.

11) L cc-win32.doc. Thisis atechnical description for interested users that may want to know
how the system is built, how the programs that build it were designed, the options | had
when writing them, etc.

The documentation of the windows API is distributed in a relatively large file called

win32hlp.exe. Thisis absolutely essential, unless you know it by heart... When installed, this

file will become Win32.hlp. That file is not complete however. More documentation for the
new features of Win32 can be found in the win32apidoc.exe file, aso in the Icc distribution
site. When installed, that file will install:
* Shelldoc.doc. This documents the windows shell, its interfaces, function definitions,
etc.
* Wininet.doc. This documents the TCP/IP subsystem for network programming.

322 Windows programming with lcc-win32
» CommonControls.doc. This explains the new controls added to windows after 1995.

Note that Wedit will detect if the documentation isinstalled, and will allow you to see the doc-
umentation of any function just with pressing the F1 key. Thisis a nice feature, especially for
beginners. Install afull version if you aren’t an expert. A version without the documentation it
Isapain, since you have to go fishing for that information each time you want to call an AP,
not a very exciting perspective.

But if you want to get serious about windows programming, you should download the
Microsoft Software Development Kit (SDK) from the msdn site, and ingtal it in your
machine. Wedit will automatically recognize the msdn library or the SDK if installed and will
call them instead of using the win32.hlp file.

2.24 Bibliography

Here are some books about C. | recommend you to read them before you believe what | say
about them.

«C Unleashed»

Richard Heathfield, Lawrence Kirby et al.

Heavy duty book full of interesting stuff like structures, matrix arithmetic, genetic algorithms
and many more. The basics are covered too, with lists, queues, double linked lists, stacks, etc.

«Algorithmsin C»
Robert Sedgewick.

| have only the part 5, graph algorithms. For that part (that covers DAGs and many others) |
can say that thisis a no-nonsense book, full of useful algorithms. The code is clear and well
presented.

«C areference manual»
(Fifth edition) Samuel P Harbison Guy L Steele Jr.

If you are a professional that wantsto get al the C language described in great detail this book
isfor you. It covers the whole grammar and the standard library with each part of it described
in detail.

«The C programming language»
Brian W Kernighan, Dennis Ritchie. (second edition)

Thiswas the first book about C that | got, and it is still agood read. With many exercises, itis
thistutorial in a better rendering...

«A retargetable C compiler: design and implementation»
Chris Fraser and Dave Hanson

This book got me started in this adventure. It is a book about compiler construction and not
really about the C language but if you are interested in knowing how Icc-win32 works thisis
surely the place to start.

“C interfaces and implementations”
David R. Hanson

This is an excellent book about many subjects, like multiple precision arithmetic, lists, sets,
exception handling, and many others. The implementation is in straight C and will compile
without any problems in lcc-win32.

Bibliography 323

“Safer C”
Les Hatton

As we have seen in the section «Pitfalls of the C language», C is quite ridden with problems.
This book address how to avoid this problems and design and develop you work to avoid get-
ting bitten by them.

“Programming Windows”
Charles Petzold
Microsoft Press

Thisisavery easy to read introduction to the windows API that covers in depth all aspects of
windows programming. You can download an electronic version of thisbook at the site of the
author: www.cpetzold.com.

“Windows Networ k Programming”
Ralph Davis
Addison Wesley

Thisisavery extensive introduction to this side of programming. If you want an in-depth cov-
erage of sockets, net-bios, etc etc, here you will find it.

C Programming FAQs
Steve Summit

C Programming FA Qs contains more than 400 frequently asked questions about C, accompa
nied by definitive answers. Some of them are distributed with lcc-win32 but the book is more
complete and up-to-date.

The Sandard C Library
P.J. Plauger.

This book shows you an implementation (with the source code) of the standard C library done
by somebody that isin the standards committee, and knows what he is speaking about. One of
the best ways of learning C isto read C. Thiswill give you alot of examples of well written C,
and show you how a big project can be structured.

The C Sandard
John Wiley and Sons.

Thisisthe reference book for the language. It contains the complete C standard and the ratio-
nale, explaining some fine points of the standard.

324 Windows programming with lcc-win32

	Introduction to C
	1.1 Organization of C programs
	1.2 Hello
	1.2.1 Console mode programs and windows programs
	1.2.2 An overview of the compilation process
	1.2.3 Technical notes
	1.2.4 The run time environment
	1.2.4.1 We wrote the program first
	1.2.4.2 We compiled our design
	1.2.4.3 Run time

	1.3 An overview of the standard libraries
	1.3.1 The “stdheaders.h” include file
	1.3.2 Windows specific headers

	1.4 Passing arguments to a program
	1.4.1 Iteration constructs
	1.4.1.1 for
	1.4.1.2 while
	1.4.1.3 do

	1.4.2 Basic types

	1.5 Declarations and definitions
	1.5.1 Variable declaration
	1.5.2 Function declaration
	1.5.3 Function definitions
	1.5.4 Variable definition
	1.5.5 Statement syntax

	1.6 Errors and warnings
	1.7 Reading from a file
	1.8 Commentaries
	1.8.1 Standard comments
	1.8.1.1 Describing a function
	1.8.1.2 Describing a file

	1.9 An overview of the whole language
	1.9.1 Statements
	1.9.2 Declarations
	1.9.3 Pre-processor
	1.9.4 Windows specific defined symbols
	1.9.5 Structured exception handling
	1.9.6 Control-flow
	1.9.7 Windows specific syntax

	1.10 Extensions of lcc-win32
	1.11 A closer view
	1.11.1 Identifiers.
	1.11.2 Constants.
	1.11.2.1 Evaluation of constants
	1.11.2.2 Integer constants
	1.11.2.3 Floating constants
	1.11.2.4 Character string constants

	1.11.3 Arrays.
	1.11.4 Function call syntax
	1.11.5 Functions with variable number of arguments.
	1.11.6 Assignment.
	1.11.7 Postfix
	1.11.8 Subtraction.
	1.11.9 Conditional operator.
	1.11.10 struct.
	1.11.11 union.
	1.11.12 typedef.
	1.11.13 register.
	1.11.14 sizeof.
	1.11.15 enum.
	1.11.16 Prototypes.
	1.11.17 variable length array.
	1.11.18 const.
	1.11.19 unsigned.
	1.11.20 bit fields
	1.11.21 stdcall.
	1.11.22 break and continue statements
	1.11.23 Null statements
	1.11.24 Comments
	1.11.25 Switch statement.
	1.11.26 inline
	1.11.27 Logical operators
	1.11.28 Bitwise operators
	1.11.29 Address-of operator
	1.11.30 Sequential expressions
	1.11.31 Casts
	1.11.32 Indirection
	1.11.33 Precedence of the different operators.

	1.12 The printf family
	1.12.1 Conversions
	1.12.2 The conversion flags
	1.12.2.1 The minimum field width
	1.12.2.2 The precision

	1.12.3 The size specification
	1.12.4 The conversions

	1.13 setjmp and longjmp
	1.13.1 Register variables and longjmp()

	1.14 Simple programs
	1.14.1 strchr
	1.14.2 strlen
	1.14.3 ispowerOfTwo
	1.14.4 Write ispowerOfTwo without any loops
	1.14.5 strlwr
	1.14.6 paste

	1.15 Using arrays and sorting
	1.15.1 Summary of Arrays and sorting

	1.16 Pointers and references
	1.17 Structures and unions
	1.17.1 Structures
	1.17.2 Structure size
	1.17.3 Defining new types
	1.17.4 Unions

	1.18 Using structures
	1.18.1 Fine points of structure use

	1.19 Identifier scope and linkage
	1.20 Top-down analysis
	1.21 Extending a program
	1.22 Improving the design
	1.23 Path handling
	1.23.1 Security considerations

	1.24 Traditional string representation in C
	1.25 Memory management and memory layout
	1.25.1 Functions for memory allocation
	1.25.2 Memory layout under windows

	1.26 Memory management strategies
	1.26.1 Static buffers
	1.26.2 Stack based allocation
	1.26.3 “Arena” based allocation
	1.26.4 The malloc / free strategy
	1.26.5 The malloc with no free strategy
	1.26.6 Automatic freeing (garbage collection).
	1.26.7 Mixed strategies

	1.27 Counting words
	1.27.1 The organization of the table
	1.27.2 Memory organization
	1.27.3 Displaying the results
	1.27.4 Code review

	1.28 Time and Date functions
	1.29 Using structures (continued)
	1.29.1 Lists
	1.29.2 Hash tables

	1.30 A closer look at the pre-processor
	1.30.1 Preprocessor commands
	1.30.1.1 Preprocessor macros
	1.30.1.2 Conditional compilation
	1.30.1.3 The pragma directive
	1.30.1.4 The ## operator
	1.30.1.5 The # operator

	1.30.2 Things to watch when using the preprocessor

	1.31 Using function pointers
	1.31.1 Function pointers as decision tables
	1.31.1.1 An even shorter solution

	1.32 Advanced C programming with lcc-win32
	1.32.1 Operator overloading
	1.32.1.1 How to use this facility

	1.32.2 References
	1.32.3 Generic functions
	1.32.4 Default arguments
	1.32.5 Structured exception handling
	1.32.5.1 Why exception handling?
	1.32.5.2 How do I use SEH?
	1.32.5.3 Auxiliary functions
	1.32.5.4 Giving more information
	1.32.5.5 Catching stack overflow
	1.32.5.6 The __retry construct

	1.32.6 The signal function
	1.32.6.1 Software signals
	1.32.6.2 Using the signal mechanism

	1.33 Numerical programming
	1.33.1 Floating point formats
	1.33.1.1 Float (32 bit) format
	1.33.1.2 Double (64 bit) format
	1.33.1.3 Long double (80 bit) format
	1.33.1.4 The qfloat format
	1.33.1.5 Special numbers

	1.33.2 What can we do with those numbers then?
	1.33.2.1 Range
	1.33.2.2 Precision
	1.33.2.3 Going deeper
	1.33.2.4 Rounding modes

	1.33.3 Numerical stability
	1.33.4 Complex numbers
	1.33.4.1 Complex constants:

	1.34 Programming with security in mind
	1.34.1 Always include a ‘default’ in every switch statement
	1.34.2 Pay attention to strlen and strcpy
	1.34.3 Do not assume correct input
	1.34.4 Watch out for trojans

	1.35 Pitfalls of the C language
	1.35.1 Defining a variable in a header file
	1.35.2 Confusing = and ==
	1.35.3 Forgetting to close a comment
	1.35.4 Easily changed block scope.
	1.35.5 Using the ++ or -- more than once in an expression.
	1.35.6 Unexpected Operator Precedence
	1.35.7 Extra Semi-colon in Macros
	1.35.8 Watch those semicolons!
	1.35.9 Assuming pointer size is equal to integer size
	1.35.10 Careful with unsigned numbers
	1.35.11 Changing constant strings
	1.35.12 Indefinite order of evaluation
	1.35.13 A local variable shadows a global one
	1.35.14 Careful with integer wraparound
	1.35.15 Problems with integer casting
	1.35.16 Octal numbers

	Windows Programming
	2.1 Introduction
	2.1.1 WinMain
	2.1.2 Resources
	2.1.3 The dialog box procedure
	2.1.4 A more advanced dialog box procedure

	2.2 User interface considerations
	2.3 Libraries
	2.4 Dynamically linked libraries (DLLs)
	2.5 Using a DLL
	2.6 A more formal approach.
	2.6.1 New syntax
	2.6.2 Event oriented programming

	2.7 A more advanced window
	2.7.1 Working with keyboard accelerators

	2.8 Customizing the wizard generated sample code
	2.8.1 Making a new menu or modifying the given menu.
	2.8.2 Adding a dialog box.
	2.8.3 Drawing the window
	2.8.4 Initializing or cleaning up
	2.8.5 Getting mouse input.
	2.8.6 Getting keyboard input
	2.8.7 Handling moving/resizing

	2.9 Window controls
	2.9.1 Using controls without a dialog box

	2.10 A more complex example: a "clone" of spy.exe
	2.10.1 Creating the child windows
	2.10.2 Moving and resizing the child windows
	2.10.3 Starting the scanning.
	2.10.4 Building the window tree.
	2.10.5 Scanning the window tree
	2.10.6 Review
	2.10.7 Filling the status bar
	2.10.8 Auxiliary procedures

	2.11 Numerical calculations in C.
	2.12 Filling the blanks
	2.13 Using the graphical code generator
	2.14 Customizing controls
	2.14.1 Processing the WM_CTLCOLORXXX message
	2.14.2 Using the WM_DRAWITEM message

	2.15 Building custom controls
	2.15.1 An lcd display

	2.16 The Registry
	2.16.1 The structure of the registry
	2.16.2 Enumerating registry subkeys
	2.16.3 Rules for using the registry
	2.16.4 Interesting keys

	2.17 Etc.
	2.17.1 Clipboard
	2.17.2 Serial communications.
	2.17.3 Files
	2.17.4 File systems
	2.17.5 Graphics
	2.17.6 Handles and Objects
	2.17.7 Inter-Process Communications
	2.17.8 Mail
	2.17.9 Multimedia
	2.17.10 Network
	2.17.11 Hooks
	2.17.12 Shell Programming
	2.17.13 Services
	2.17.14 Terminal Services
	2.17.15 Windows

	2.18 Advanced windows techniques
	2.18.1 Memory mapped files
	2.18.2 Letting the user browse for a folder: using the shell
	2.18.3 Retrieving a file from the internet

	2.19 Error handling under windows
	2.19.1 Some tips for debugging
	2.19.1.1 Check the return status of any API call.
	2.19.1.2 Always check allocations

	2.20 Some Coding Tips
	2.20.1 Determining which version of Windows is running
	2.20.2 Translating the value returned by GetLastError() into a readable string
	2.20.3 Clearing the screen in text mode
	2.20.4 Getting a pointer to the stack
	2.20.5 Disabling the screen saver from a program
	2.20.6 Drawing a gradient background
	2.20.7 Capturing and printing the contents of an entire window
	2.20.8 Centering a dialog box in the screen
	2.20.9 Determining the number of visible items in a list box
	2.20.10 Starting a non-modal dialog box
	2.20.11 Propagating environment variables to the parent environment
	2.20.12 Restarting the shell under program control
	2.20.13 Translating client coordinates to screen coordinates
	2.20.14 Passing an argument to a dialog box procedure
	2.20.15 Calling printf from a windows application
	2.20.16 Enabling or disabling a button or control in a dialog box.
	2.20.17 Making a window class available for all applications in the system.
	2.20.18 Accessing the disk drive directly without using a file system
	2.20.19 Retrieving the Last-Write Time
	2.20.20 Setting the System Time
	2.20.21 Getting the list of running processes
	2.20.22 Changing a File Time to the Current Time
	2.20.23 Displaying the amount of disk space for each drive
	2.20.24 Mounting and unmounting volumes in NTFS 5.0
	2.20.24.1 Mount
	2.20.24.2 Umount

	2.21 FAQ
	2.21.1 How do I create a progress report with a Cancel button?
	2.21.2 How do I show in the screen a print preview?
	2.21.3 How do I change the color of an edit field?
	2.21.4 How do I draw a transparent bitmap?
	2.21.5 How do I draw a gradient background?
	2.21.6 How do I calculate print margins?
	2.21.7 How do I calculate the bounding rectangle of a string of text?
	2.21.8 How do I close an open menu?
	2.21.9 How do I center a dialog box in the screen?
	2.21.10 How do I create non-rectangular windows?
	2.21.11 How do I implement a non-blinking caret?
	2.21.12 How do I create a title window (splash screen)?
	2.21.13 How do I append text to an edit control?
	2.21.14 How do I spawn a process with redirected stdin and stdout?
	2.21.15 How to modify the width of the list of a combo box
	2.21.16 How do I modify environment variables permanently?
	2.21.17 How do I add a menu item to the explorer right click menu?
	2.21.18 How do I translate between dialog units and pixels?
	2.21.19 How do I translate between client coordinates to screen coordinates?
	2.21.20 When should I use critical sections and when is a mutex better?
	2.21.21 Why is my call to CreateFile failing when I use conin$ or conout$?
	2.21.22 How to erase a file into the recycle bin?

	2.22 Finding more examples and source code
	2.23 Overview of lcc-win32’s documentation
	2.24 Bibliography

		jacob@jacob.remcomp.fr
	2004-02-11T11:05:50+0100
	Paris,France
	jacob navia
	I am the author of this document

